用户名: 密码: 验证码:
渣油加氢反应动力学及组合工艺研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着燃油标准的日趋严格,以及重质燃料油需求量的逐渐下降,经济环保的渣油加氢处理技术已成为当今世界各国在石油化工领域争相开发的热点之一
     为了优化渣油加氢反应过程,降低催化剂使用成本,利于装置长周期稳定运行和现场操作,本文采用FZC系列渣油加氢催化剂,从渣油加氢反应过程的催化剂失活、渣油加氢主要影响因素、催化剂组合装填比例等方面建立了渣油加氢反应动力学模型,同时开发了SFI渣油加氢与催化裂化深度组合系列技术,可以大幅度提高炼化企业总体经济收益。
     渣油加氢处理技术开发的关键之一是催化剂的研制和各类催化剂的组合。本文首先根据渣油加氢反应和催化剂的特点,研究了FZC系列各类催化剂的物化性质和活性、稳定性评价结果,为FZC系列催化剂组合研究提供技术依据。研究结果表明,FZC系列催化剂的主要物化性质和反应活性均达到了国外同类催化剂的水平,而且具有良好的稳定性。
     其次,依据采用FZC系列催化剂的渣油加氢工业装置实测数据,应用经验动力学模型和催化剂时变失活模型分别对茂名、齐鲁、海南三套装置的实测操作数据进行模拟和分析,建立了渣油加氢失活动力学模型,求取了各装置的反应动力学参数和失活动力学模型表达式。结果表明,该建模方法是切实可行的。运用渣油加氢失活动力学模型可以预测产品杂质含量和催化剂使用寿命。
     在此基础上进一步对FZC系列催化剂的性能进行中试试验,分别研究了原料油性质和操作条件对渣油加氢处理过程的影响,建立了包括原料油影响因子校正和操作条件影响因子校正的渣油加氢反应动力学模型。同时,针对工业装置各种催化剂没有达到同步失活的现状,提出了催化剂组合装填比例优化的动力学研究方法。
     最后,针对现有组合工艺的不足开发了SFI渣油加氢与催化裂化深度组合技术,其主要特征是渣油加氢装置不设产品分馏系统和催化裂化重柴油、回炼油及油浆外循环到渣油加氢装置。该组合技术实现了重油深度转化最大量生产高价值汽油产品的预期目标,显著地提高了原油资源利用率;而且该组合技术工艺流程简单,装置建设投资和操作费用低,从而大幅度地提高了炼化企业总体经济收益。
With more and more stringent standards of fuel oils and less and less demand on heavy fuel oil in recent years, the R & D on economic profitable and environmental friendly residue hydrotreating process has become increasing attention to petroleum industry worldwide.
     In order to optimize the residue hydrotreating process, lower the cost of catalyst, longer stable running and easier operate, the FZC series catalysts are been selected to study. By the study of FZC catalyst, the deactivation of catalysts, key influent factors and grading loading during the residue hydrotreating process, the residue hydrotreating model has been built up. At the same time, a series of SFI combination technologies of residue hydrotreating and RFCC are developed, which can greatly increase the benefit of refineries in whole.
     One of the key factors in residue fixed bed hydrotreating is the catalyst development and catalyst combination technology.
     Firstly, on the base of the characteristics of residue hydrotreating reaction and catalyst, various types of FZC catalyst are introduced and evaluation results of activity and stability are outlined, which provides the basic information for FZC series catalyst combination.
     The performance test results showed that, the catalyst of FZC series can be the same technical tier as the reference catalyst both in physic-chemical specification and reactive activity and has well long-term stability.
     Secondly, based on simulation and analysis of the operation data with FZC series catalysts in three commercial units of Maoming, Qilu and Hainan, residue hydrotreating deactivation kinetics models have been established. And reaction kinetics model parameters and deactivation kinetics model formula have been set up, which is used in predicting the impurities in products and catalyst cycle length and the calculation results well match with those of commercial running.
     On the basis of reaction kinetics model parameters and deactivation kinetics model formula, pilot plant test had been conducted to show the effects of the properties of feedstock and operating conditions on residue hydrotreating process, and correction factors impacting on feedstock and operating conditions have thus been established. Meanwhile, a kinetics research method of optimization of various types of catalyst combination loading ratio has been proposed due to catalyst un-synchronous deactivation in commercial applications.
     Finally, to overcome the shortage of existing combination process, a series of SFI combination technologies of residue hydrotreating and RFCC are developed, whose main feature is that there is no fractionation system in residue hydrotreating unit, and FCC diesel, recycle oil and/or FCC slurry oil recycle back to the residue hydrotreating unit. SFI combination technologies can achieve maximum production of high value gasoline by residue deep conversion and therefore increase the utilization of crude resources. SFI combination technologies are also characterized by simpler process flow, lower capital and operation cost, which can greatly improve the overall economic benefits for refineries.
引文
[1]张密密.我国石油资源安全战略的选择.石油工业技术监督,2005,21(6):55-56.
    [2]方雷.国有石油企业“走出去”战略研究:(硕士学位论文).东营:中国石油大学(华东),2009.
    [3]刘海燕,于建宁,鲍晓军等.世界石油炼制技术现状及未来发展趋势.过程工程学报,2007,7(1):176-185.
    [4]陶宗乾.渣油加氢工艺的特点及工业应用.当代石油石化,1997,5(4):36-41.
    [5]方向晨.加氢精制.北京:中国石化出版社,2006.
    [6]Beaton W I, Bertolacini R J. Resid hydroprocessing at Amoco. Catalysis reviews Science and engineering,1991,33 (3&4):281-317.
    [7]Ware R A, Wei J. Catalytic hydrodemetallation of nickel porphyrins. Journal of Catalysis,1985,93 (1): 100-121.
    [8]石油化工科学研究院情报组.重油加工译文集.北京:中国石化出版社,1990.
    [9]Furimsky E, Massoth F E. Deactivation of hydroprocessing catalysts. Catalysis Today,1999,52 (4): 381-495.
    [10]陈俊武,曹汉昌.残炭前身化合物的结构及其在炼油过程中的作用.炼油设计,1992,22(1):1-11.
    [11]Rajagopal K, Ahon V R, Moreno E. Estimating thermochemical properties of hydroprocessing reactions by molecular simulation and group contribution methods. Catalysis Today,2005,109 (1-4): 195-204.
    [12]Zhao S, Kotlyar L S, Woods J R, et al. Effect of thermal and hydro-catalytic treatment on the molecular chemistry of narrow fractions of Athabasca bitumen pitch. Energy & Fuels,2001,15(1): 113-119.
    [13]小沼和彦.石油学会志,1984,27(4):348.
    [14]Pereica C J.1985,30(1):74-83.
    [15]侯芙生.发展重油加工提高轻质产品收率.石油炼制与化工,1995,26(1):1-6.
    [16]刘家明.减压渣油加氢脱硫—重油催化裂化联合工艺是渣油加工的方向.炼油设计,1994.24(2):30-33.
    [17]李洪禄,吕振寰.VRDS—FCC组合工艺的开发.石油炼制与化工,1995,26(1):11-16.
    [18]王雷.渣油加氢催化剂的研究和应用.辽宁化工,2005,34(2):71-74.
    [19]李大东.加氢处理工艺与工程.北京:中国石化出版社,2004.
    [20]日本石油学会精制部重质油分科会.重质油水素化脱硫.石油学会志,1981,24(1):71-80.
    [21]野村宏次等.重质油水素化脱硫反应(第一报).石油学会志(日),1979,22(5):288-294.
    [22]野村宏次等.重质油水素化脱硫反应(第二报).石油学会志(日),1979,22(5):296-301.
    [23]野村宏次等.重质油水素化脱硫反应(第三报).石油学会志(日),1980,23(5):321-327.
    [24]野村宏次等.重质油水素化脱硫反应(第三报).石油学会志(日),1982,25(1):1-6.
    [25]野村宏次等.重质油水素化脱硫反应(第四报).石油学会志(日),1981,24(4):253-2591.
    [26]Chaohe Y. Feng D, Hai Z, et al. Hydroconversion characteristics and kinetics of residue narrow fractions. Fuel.2005.84 (6):675-684.
    [27]杨朝合.重质油加氢转化特性和动力学研究:(博士学位论文).北京:石油大学.1997.
    [28]Hauser A, Marafi A. Stanislaus A, et al. Relation between feed quality and coke formation in a three-stage atmospheric residue desulfurization (ARDS) process. Energy Fuels,2005,19(2):544-553.
    [29]Kim J W, Longstaff D C, Hanson F V. Catalytic and thermal effects during hydrotreating of bitumen-derived heavy oils. Fuel,1998,77(15):1815-1823.
    [30]Kim J, Longstaff D, Hanson F. Upgrading of bitumen-derived heavy oils over a commercial HDN catalyst. Fuel,1997,76 (12):1143-1150.
    [31]Ancheyta J, Betancourt G, Marroqun G, et al. Hydroprocessing of Maya heavy crude oil in two reaction stages. Applied Catalysis A, General,2002,233(1-2):159-170.
    [32]Panariti N, Del Bianco A, Del Piero G, et al. Petroleum residue upgrading with dispersed catalysts Part 2. Effect of operating conditions. Applied Catalysis A, General,2000,204 (2):215-222.
    [33]Morawski I, Mosio-Mosiewski J. Effects of parameters in Ni-Mo catalysed hydrocracking of vacuum residue on composition and quality of obtained products. Fuel Processing Technology,2006,87 (7): 659-669.
    [34]Mosio-Mosiewski J, Morawski I. Study on single-stage hydrocracking of vacuum residue in the suspension of Ni-Mo catalyst. Applied Catalysis A. General,2005,283 (1-2):147-155.
    [35]Inoue S, Asaoka S, Nakamura M. Recent trends of industrial catalysts for resid hydroprocessing in Japan. Catalysis Surveys from Japan,1998,2(1):87-97.
    [36]Bartholdy J, Andersen S I. Changes in asphaltene stability during hydrotreating. Energy & Fuels,2000, 14(1):52-55.
    [37]Galiasso R, Garcoa J, Caprior L, et al. Reactions of porphyrinic and non porphyrinic molecules during hydrodemetallization of heavy crude oils. Preprints- American Chemical Society Division of Petroleum Chemistry,1985,30 (1):50-61.
    [38]Hannerup P N, Jacobsen A C. Model for the deactivation of residue hydrodesulfurization catalysts. Am Chem Soc, Div Pet Chem, Prepr,1983,28(3):576-599.
    [39]Tamm P W, Harnsberger H F, Bridge A G. Effects of feed metals on catalyst aging in hydroprocessing residuum. Ind Eng Chem Proc Des Dev,1981,20(2):262-273.
    [40]Bartholomew C H, Butt J B. Catalyst deactivation. Amsterdam:Science Publishers B V,1991.
    [41]Mosby J F, Hoekstra G B, Kleinhenz T A, et al. Pilot plant proves resid process. Hydrocarbon Process, 1973,52 (5):93-97.
    [42]盖茨B C.催化过程的化学.北京:化学工业出版社,1985.
    [43]程之光.重油加工技术.北京:中国石化出版社,1994.
    [44]Beuther H.渣油加氢脱硫过程的机理与速度.第六届世界石油会议报告论文集第三卷,第一分册,1964:101-111.
    [45]徐征利,吴辉.加氢脱氮动力学模型.华东理工大学学报:自然科学版,2001,27(1):42-45.
    [46]Perot G. The reactions involved in hydrodenitrogenation. Catalysis Today,1991,10(4):447-472.
    [47]第十二届世界石油会议报告论文集.北京:烃加工出版社,1989.
    [48]常杰.渣油加氢处理反应动力学及催化剂失活模型的研究(博士学位论文).北京:石油化工科学研究院,1997.
    [49]晋梅,韩保平.渣油加氢脱残炭的动力学模型研究.燃料化学学报.2003,31(6):525-530.
    [50]韩崇仁.加氢裂化工艺与工程.北京:中国石化出版社,2001.
    [51]魏立纲,蒋立敬,王少君等. Mo-Ni系列催化剂上渣油加氢裂化反应过程与集总动力学分析.大连工业大学学报,2009,28(3):184-187.
    [52]刘炳泗,邱建国.加氢型化集总动力学模型的研究:I.四氢萘加氢裂化集总模型.石油学报:石油加工,1994,10(3):10-18.
    [53]刘炳泗,邱建国.加氢裂化集总动力学模型的研究:II.正十烷加氢裂化集总模型.石油化工,1995,24(3):]69-175.
    [54]刘炳泗,邱建国.正癸烷加氢裂化集总动力学研究.催化学报,1994,15(5):380-386.
    [55]邱建国,袁兴东,刘炳泗.正十烷加氢裂化集总动力学的研究.石油化工高等学校学报,1994,7(1):1-7.
    [56]邱建国,刘炳泗,袁兴东.四氢萘加氢裂化集总动力学模型的研究.石油化工高等学校学报,1994,7(2):1-9.
    [57]Beecher R, Voorhies Jr A, Eberly Jr P. Hydrocracking and Diffusion of Pure Compounds on Mordenite Catalysts. Industrial & Engineering Chemistry Product Research and Development,1968,7 (3):203-209.
    [58]Gray M R. Lumped kinetics of structural groups:hydrotreating of heavy distillate. Industrial & Engineering Chemistry Research,1990,29 (4):505-512.
    [59]Neurock M, Libanati C, Nigam A, et al. Monte carlo simulation of complex reaction systems: molecular structure and reactivity in modelling heavy oils. Chemical Engineering Science,1990,45 (8):2083-2088.
    [60]林世雄.石油炼制工程.北京:石油工业出版社,2000.
    [61]Stangeland B, Kittrell J. Jet fuel selectivity in hydrocracking. Industrial & Engineering Chemistry Process Design and Development,1972,11(1):15-20.
    [62]Yui S M, Sanford E C. Kinetics of hydrogenation of aromatics determined by carbon-13 NMR for Athabasca bitumen-derived middle distillates. American Chemical Society, Division of Petroleum Chemistry, Preprints,1987,32 (2):315-320.
    [63]Ihm S K, Moon S J, Choi H J. Hydrodesulfurization of thiophene over CoMo, NiMo, and NiW/Al2O3 catalysts; Kinetics and adsorption. Industrial and Engineering Chemistry Research,1990,29 (7): 1147-1151.
    [64]杨朝合,林世雄.重质油加氢裂化反应动力学的研究.石油与天然气化工,1998,27(1):19-24.
    [65]杨朝合,徐春明.渣油加氢裂化反应的窄馏分集总动力学模型.石油学报:石油加工,1999,15(5):44-49.
    [66]朱豫飞,张治和.加氢裂化反应动力学模型初步探讨.炼油设计,1990,20(3):18-23.
    [67]Houalla M, Nag N K, Sapre A V, et al. Hydrodesulfurization of dibenzothiophene catalyzed by sulfided CoO-MoO3γ-Al2O3:The reaction network. AlChE Journal,1978,24 (6):1015-1021.
    [68]Stangeland B E. A kinetic model for the prediction of hydrocracker yields. Industrial and Engineering Chemistry:Process Design and Development,1974,13(1):71-76.
    [69]Krishna R, Saxena A K. Use of an Axial-dispersion Model for Kinetic Description of Hydrocracking. Chemical Engineering Science,1989,44 (3):703-712.
    [70]刘传文,阙国和.分散型铁催化剂存在下孤岛渣油加氢裂化的七集总动力学模型.石油炼制与化工,1994,25(5):18-22.
    [71]Ayasse A R, Nagaishi H, Chan E W. et al. Lumped kinetics of hydrocracking of bitumen. Fuel,1997, 76(11):1025-1033.
    [72]Reynolds B E, Brown E C, Silverman M A. Clean gasoline via VRDS/RFCC. Hydrocarbon Processing,1992,71 (4):43-51.
    [73]Chen J. Optimized Combination of Residue Hydrodesulfurization and Residue Fluid Catalytic Cracking. China Petroleum Processing and Petrochemical Technology Quarterly,2003,1:13-17.
    [74]Schlosser C R. Evaluation of processing heavy Brazalian resides in RDS/RFCC. NPRA Annual Meeting,1999:AM-99-50.
    [75]Reynolds B E, Brossard David N. RDS/VRDS hydrotreating broadens in RDS/RFCC. HTI Quarterly, Winer 1995/96.
    [76]Jesper B, Joan Legind L. RFCC economics enhanced by new residue hydroprocessing catalysts. World Refining,2002,, (7&8):30-36.
    [77]彭明阳,赵洪涛.渣油加氢处理与催化裂化组合工艺的应用分析.石油炼制与化工,2009,40(2):6-8.
    [78]牛传峰,张瑞弛.渣油加氢—催化裂化双向组合技术RICP.石油炼制与化工,2002,33(1):27-29.
    [79]张德义.含硫原油加工技术.北京:中国石化出版社,2003.
    [80]Swaty T E, Letzsch W S. Fuelling the debate. Hydrocarbon engineering,2003,8 (3):31-36.
    [81]戴立顺.渣油加氢—延迟焦化的组合工艺方法.中国,CN1309164,2000.
    [82]McQuitty W D. The Bi-Provincial Upgrader H-Oil operation and performance. Upgrading Heavy Ends with IFP,IFP Industrial Division,1997:51-61.
    [83]李春年.渣油加工工艺.北京:中国石化出版社,2002.
    [84]韩照明,蒋立敬.反向催化剂级配装填技术在固定床渣油加氢装置的应用.炼油技术与工程,2007,37(8):38-41.
    [85]胡长禄,赵愉生,刘纪端等.渣油固定床加氢处理技术的研究开发.炼油设计,2001,31(6):39-43.
    [86]蒋立敬,韩崇仁,刘纪端等.FZC系列渣油加氢处理催化剂的开发.炼油设计,2000,30(7):51-53.
    [87]韩崇仁,刘纪端,赵愉生等.渣油加氢处理系列催化剂的研究开发和应用.重质油加工利用学术研讨会,2002:116-122.
    [88]刘纪端,赵愉生,方维平等.渣油加氢保护剂和脱金属催化剂的开发及应用.炼油设计,1999,29(8):79-81.
    [89]徐元辉,刘纪端. S-RHT渣油加氢脱金属催化剂的研制及工业应用.工业催化.2001.9(3):47-51.
    [90]方维平,王家寰.渣油加氢脱氮催化剂的研究.工业催化,1997,5(2):34-37.
    [91]苏晓波,袁胜华,方维平.渣油加氢脱残炭催化剂的研制.工业催化,2001,9(2):27-29.
    [92]李宝善.催化剂失活反应动力学的研究.甘肃联合大学学报:自然科学版,2005,19(4):71-73.
    [93]姚立松,穆海涛,吕浩等.加氢处理催化剂失活模型的建立与研究.石油炼制与化工,2009,40(8):27-30.
    [94]Wojchiechowski B W. A theoretical treatment of catalyst decay. Journal of Chemical Engineering, 1968,46(1):48-52.
    [95]Levenspiel O. Experimental search for a simple rate equation to describe deactivating porous catalyst particles. Journal of Catalysis,1972,25 (2):265-272.
    [96]Chen J W, Cao H C. Catalytic cracking technology and engineering. Beijing:China Petrochemical Press,1995.
    [97]Callejas M A, Martinez M T. Hydroprocessing of a Maya residue. Intrinsic kinetics of sulfur-, nitrogen-, nickel-, and vanadium-removal reactions. Energy Fuels,1999,13(3):629-636.
    [98]Trasobares S, Callejas M A, Benito A M, et al. Kinetics of Conradson carbon residue conversion in the catalytic hydroprocessing of a Maya residue. Ind Eng Chem Res,1998,37 (1):11-17.
    [99]李建伟,李英霞,屈锦华等.裂解汽油加氢脱硫脱烯烃的本征动力学.石油学报:石油加工,2005,21(3):69-75.
    [100]孙丽丽.渣油加氢转化-劣质渣油加工的重要手段.中国石油学会第四届石油炼制学术年会论文集,北京:石油化工出版社,2001:365-370.
    [101]赵愉生.上流式渣油加氢保护剂开发和工业应用.加氢技术论文集,抚顺:中国石化加氢科技情报站,2004:385-388.
    [102]蔡文军,吕清茂. VRDS和UFR/VRDS装置的工艺技术比较.齐鲁石油化工,2007,35(2):96-101.
    [103]梁文杰.重质油化学.东营:石油大学出版社,2000.
    [104]侯祥麟.中国炼油技术.北京:中国石化出版社,2001.
    [105]韩崇仁.发展渣油加氢-催化裂化组合工艺增产清洁运输燃料.当代石油石化,2005,13(6):8-14.
    [106]张会成,颜涌捷,赵荣林等.渣油加氢处理过程中金属分布与脱除规律的研究.石油炼制与化工,2006,37(11):7-10.
    [107]Voorhies A. Deactivation ofthe reforming catalyst. Ind Eng Chem,1945,37:318.
    [108]李绍芬.反应工程.北京:化学工业出版社,2000.
    [109]Howell R, Chen H, Gibson K, et al. Catalyst selection important for residuum hydroprocessing. Oil Gas Journal,1985,83(30).
    [110]Adams C, DelPaggio A, Schaper H, et al. Hydroprocess catalyst selection. Hydrocarbon Processing, 1989,68 (9):57-62.
    [111]潘洋.固定床反应器催化剂装填方案的优化.中外能源,2007,12(6):76-79.
    [112]韩照明.刘长厚.蒋立敬等.固定床渣油加氢过程催化剂级配优化研究及工业应用.当代化工2006.35(5):333-335.
    [113]王志合,胡长禄,王建平等.渣油加氢处理反应动力学模型的建立.华东理工大学学报(自然科学版),2007-2008,33(4):470-474.
    [114]戴立顺.一种渣油加氢处理—催化裂化组合工艺方法.中国,发明专利,CN99100399.3.1999.
    [115]牛传峰.渣油加氢处理与重油催化裂化联合的方法.中国,发明专利,CN01115496.9.2001.
    [116]牛传峰.一种渣油加氢处理与催化裂化组合工艺方法.中国,发明专利,CN101210200.2006.
    [117]牛传峰.芳香性对渣油加氢反应的影响.石油炼制与化工,2008,39(6):1-5.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700