用户名: 密码: 验证码:
储层微观剩余油分析技术开发与应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文针对微观剩余油分析,开发研制了冷冻制片、荧光显微镜剩余油分析、激光共聚焦乳化油和剩余油分析配套技术,实现了保持岩心样品孔隙结构内油、水、岩原始状态的制备要求;通过优化光路系统后的荧光显微镜,使油水界面区分清晰,分辨率提高10倍以上;通过自主设计开发的剩余油分析软件实现了对油水比、剩余油类型和分布状态、剩余油含量等参数进行量化分析;通过激光共聚焦分波段检测和多层断层扫描,实现了对孔隙内微观剩余油三维检测、量化识别原油轻重比以及不同原油组份与岩石表面粘土矿物的接触关系、三元复合驱后原油乳化程度与微观剩余油分布的关系。以上技术申报三项国家发明专利,撰写三项企业标准(均为第一完成人)
     采用以上研发的新技术,以大庆长垣萨北-北二区中高渗和榆树林区低-特低渗砂岩储层为应用研究目标区,进行大量分析测试。详细研究了储层孔渗特征、孔隙中粘土矿物特征、孔隙结构特征、原油的乳化特征,对高渗和低-特低渗储层中微观剩余油类型进行详细分类。根据目标区储层孔隙结构特征建立孔隙尺度数学模型,模拟不同配位数样品的孔隙内流体速度场变化和剩余油分布关系。揭示了油层不同水洗程度与剩余油类型、孔隙结构与剩余油类型、孔隙结构与沉积相和成岩作用、水洗程度与粘土矿物、粘土矿物与剩余油类型、水洗程度与原油轻重比、原油乳化程度与剩余油和采收率的关系。
     激光共聚焦剩余油分析和冷冻制片荧光显微镜分析技术是剩余油研究的重要新技术手段,适用于从高孔渗到特低孔渗的不同类型储层中剩余油的研究,在大庆油田代表性区块中应用效果明显,因此预计在其它油田开发中具有推广应用价值。
In order to study the mode of occurrence and law of Remaining oil of water flooding and polymer flooding different physical properties reservoir of Daqing oil field, and the view of quantitative and high-resolution visualization of remaining oil from the microscopic point, identify the micro control factors of remaining oil, the article based on the independent research and development of confocal laser, fluorescence microscope, cast body image analysis technology as the core. Combined with scanning electron microscopy, petrophysical property analysis and mip analysis in daqing oil field experimental method pizza north-north two regions with high permeability reservoirs, elm forest areas low-super low permeable reservoirs, a detailed study of the different permeability core pore structure characteristics and washing of remaining oil in the process of change, micro types and mode of occurrence, water flooding and crude oil weight ratio relations and the different pore structure and the permeability of the fluid velocity field pore distribution characters, and oil emulsiflcation phenomenon after asp flooding produced to the influence of remaining oil distribution and recovery obtains the following results:
     Developed the full spectrum fluorescence microscopy technique of frozen core grinding slice oil-water rock, laser scanning confocal microscope detection of remaining oil, microscopic three-dimensional reconstruction of the remaining oil, and formed a mature detection supporting means of microscopic distribution of remaining oil. Declared three state invention patent that include the analysis method of emulsifying crude oil emulsion confocal laser, the flooding model of the real core observation in constantly and a kind of method that oil multi-gas process of observe the real core. Wrote four enterprise standards that the digital image analysis for the hole of core and crack analysis, the method of confocal laser for crude oil emulsion analysis and microscopic residual oil distribution.
     Developed a set of software that for fluorescence image analysis of micro residual oil to reach the technical target of microscopic high resolution clear distinction and quantitative identification remaining oil-water rock, visual observation of three-dimensional distribution, quantitative proportion of crude oil light and heavy components.
     By core test of Sabei and Yushulin peripherals low permeability reservoir, the micro-remaining oil in the Daqing oil field is divided into 3 categories of 10 subclasses occurrence, bound state, semi-bound state, free state. Bound state 3 categories:pore surface sheet film, adsorption-like particles, slit-like; half-bound states of three types:corner-shaped, throat-shaped, pore center of precipitation; free state in 4 categories:cluster, state within the grain, adsorption-like between the grain, light mist. Established mature corporate standards remaining oil experiments of Daqing oil field.
     Simulated real core with different pore structure by Multi-physics modeling software, Simulated velocity variation of different coordination number core samples with different pore structure of the image method. Found that the high velocity concentrated in a narrow throat, when the relatively low coordination number (equal to 3) and better connectivity,the velocity differentiation low, may drive more the remaining oil; when coordination number increased (> 4-5) and better connectivity, the high-velocity concentrated in a relatively wide throat, the velocity differentiation high, may remain more remaining oil. Reservoir heterogeneity is stronger, finer grain size, the higher the coordination number, the more reservoir oil.
     Found that the certain relationship between clay mineral type and displacement efficiency of water flooding, not only the total amount of clay in oil reservoir after water flooding has a certain downward trend, and a certain regularity of different clay changes, illite and illite/ smectite mixed layer content down the fastest, then for chlorite, kaolinite again, displacement order of clay minerals, illite and illite/smectite mixed-layer, chlorite, kaolinite. With illite and illite/smectite mixed-layer more conducive to higher oil water flooding.
     Core test results of site inspection wells show that the extent of crude oil displacement controlled by rock physical properties, and good physical area, a high degree of displacement, throat width of the distribution is concentrated in the 15-25 micron oil, oil displacement efficiency.
     Flooding conditions and displacement efficiency studies have shown that proportion of Crude oil light and heavy components in high permeability reservoirs had no obvious relation with the flooding conditions, with the degree of flooding and displacement increases, reducing the proportion of light component is not obvious; but proportion of crude oil light and heavy components in low-super low permeability reservoir had a certain relationship with the degree of flooding conditions, with the degree of flooding and displacement increases, the proportion of light components were less obvious, heavy component was significantly increased.
     Oil emulsion after the asp flooding produced,there are correspondence in emulsion type and emulsion liquid viscosity, the average grain and diameter emulsion liquid viscosity among them, the more smaller with emulsion average particle size distribution, the more concentrated it will and the viscosity will more higher,and to these pore play a quite sealing role,thus to spread influence about oil flow of adjacent pore, for homogeneous reservoir, as the increaseof emulsion liquid viscosity, the recovery have reduce, for Heterogeneity of reservoir, as the increaseof emulsion liquid viscosity, the recovery have increase.
     The experiment of remaining oil shows that:still have considerable remaining oil has not been taken out after the water flooding and the tertiary recovery,the moving of each layer of remaining oil and the rate of recoverable remaining oil can also have a large improvement by the development of new technology, it is great significance to the continued development of oil fields and China's energy strategy.
引文
[1]周总瑛,张抗.中国油田开发现状与前景分析[J].石油勘探与开发,2004,(01):84-87
    [2]马翠.俄罗斯油田采取的有效提高采收率措施[J].国外油田工程,2009,(06):9-13
    [3]杜旭东,赵齐辉,倪国辉,蔡红芽,周开凤,陈杏霞,朱建伟.俄罗斯尤罗勃钦油田储层评价与油气分布规律[J].吉林大学学报(地球科学版),2009,(06):968-975
    [4]付百舟.喇萨杏油田特高含水期开发指标变化趋势及技术政策界限研究[D].大庆石油学院,2008
    [5]赵颖,衡海良,董传杰,董淑清,田俊杰.枣园孔二段低渗透油藏二次开发技术对策研究[J].石油地质与工程,2010,(01):70-73
    [6]窦松江,赵平起.断层封闭性在油田开发中的应用[J].断块油气田,2010,(01):28-31
    [7]薛兆杰,侯健,王斌.开发方式对断块油藏开发效果影响规律研究[J].断块油气田,2003,(03):55-59
    [8]孙丕飞,孙丕谦.关于提高采收率的方法的探讨[J].科技信息,2009,(01):51-52
    [9]王庆霞.喇萨杏油田低渗透油层剩余油挖潜研究[J].石油天然气学报,2005,(S2):374-376
    [10]张煜,张进平,王国壮.不稳定注水技术研究及应用[J].江汉石油学院学报,2001,(01):49-54
    [11]胡丹丹,常毓文,杨菊兰.长垣油田特高含水期开发技术对策[J].内蒙古石油化工,2009,(03):1-4
    [12]束青林.孤岛油田河流相储层结构与剩余油分布规律研究[D].中国科学院研究生院(广州地球化学研究所),2005
    [13]王正波,叶银珠,王继强.聚合物驱后剩余油研究现状及发展方向[J].油气地质与采收率,2010,(04):37-42
    [14]韩大匡.中国油气田开发现状、面临的挑战和技术发展方向[J].中国工程科学,2010,(05):51-57
    [15]王学忠.疏松砂岩油藏套损机理研究[J].中国西部油气地质,2006,(04):461-465
    [16]刘彦成,王健,李拥军,刘彦武,孟建勋,刘培培.稠油开采技术的发展趋势[J].重庆科技学院学报(自然科学版),2010,(04):17-23
    [17]崔梅红,殷志华.低渗透油田开发实践及认识[J].断块油气田,2007,(04):39-43
    [18]赵荣生,赵巍.物理法采油技术研究与应用[J].钻采工艺,2008,(S1):60-66
    [19]巢华庆,许运新.大庆油田持续稳产的开发技术[J].石油勘探与开发,1997,24(1):34-38
    [20]陈建宏,崔振东,李健,沈焕文,周飞.老油田剩余油分布及技术对策研究—以吴起油田为例[J].新疆地质,2008,(04):67-69
    [21]向智慧.水驱剩余油油藏工程预测方法[J1.中国城市经济,2010,(06):15-16
    [22]刘东生.一种新的剩余油饱和度测井方法—注钆中子伽马测井[J].石油仪器,2009,(01):67-70
    [23]王朴,蔡进功,谢忠怀,田方,何洪.用含油薄片研究剩余油微观分布特征[J].油气地质与采收率,2002,(01):60-63
    [24]陈建达,李莉.高分辨率层序地层学在油田开发中的应用[J].江汉石油职工大学学报,2002,(03):14-17
    [25]宋考平,李世军,方伟,吴家文,穆文志.用荧光分析方法研究聚合物驱后微观剩余油变化[J].石油学报,2005,(02):92-95
    [26]徐守余,宋洪亮.微观剩余油仿真实验研究[J].中国科技论文在线,2008,(11):863-866
    [27]黄国勇,王中华.岩心仿真水驱法研究微观剩余油分布规律[J].内江科技,2006,(01):160-161
    [28]张顺康.水驱后剩余油分布微观实验与模拟[D].中国石油大学,2007
    [29]侯健,李振泉,张顺康,曹绪龙,宋新旺,高德波.岩石三维网络模型构建的实验和模拟研究[J].中国科学(G辑:物理学力学天文学),2008,(11):1563-1575
    [30]吴家文.低渗透油层微观孔隙内流体分布规律研究[D].大庆石油学院,2009
    [31]曹志壮,陈义贤,于天欣.定量荧光技术在低孔低渗储集层中的应用研究阴.录井工程,200516(3):19-24
    [32]郭舜玲.荧光显微技术[M].北京:石油工业出版社,1994
    [33]肖劲飞,王晓宇,陈斌,孙晓刚,刘兵.基于K-L变换和模糊集理论的彩色字符图像分割[J].计算机应用,2010,(09):3464-3466
    [34]李静,王军政,马立玲.一种高精度CCD测试系统的非均匀性校正方法[J].北京理工大学学报2010,(04):451-455
    [35]Daida J M,Samadani R, Vesecky J F. Object-oriented feature-tracking algorithms for SAR images of the marginal ice zone. IEEE Transactions on Geoscience and Remote Sensing,1990,28 (4):573-589
    [36]Banfield J, Raftery A E. Ice floe identification in satellite images using mathematica morphology and clustering about principal curves. Journal of American Statistical Association,1992 87(417):7-16
    [37]Noordmans H J, Smeulders A W M. Detection and characterization of isolated and overlapping spots Computational Vision and Image Understanding,1998,70(1):23-35
    [38]李楠,激光扫描共聚焦显微术,人民军艺出版社,1999
    [39]张敏,王光盈,运用MRC-600型激光共聚焦扫描显微镜研究煤岩中孢粉、藻质体的显微特征,中匡煤田地质,1995,(3):22-24
    [40]应凤祥,杨式升,张敏,李豫喜,周宏燕,激光扫描共聚焦显微镜研究储层结构,沉积学报2002,(3):12-14
    [41]罗平,应凤祥 储集岩基础实验分析新技术与新方法,石油工业出版社
    [42]胡茂海.激光共聚焦扫描显微成像系统及其信息分析的研究[D].南京理工大学,2002
    [43]冯志强,冯子辉,2003年石油地质实验技术,石油工业出版社
    [44]Nguyen N, Milanfar P, Golub G A. Computationally Efficient Superresolution Image Reconstructioi Algorithm. IEEE Trans Image Proc,2001,10(4):573-583
    [45]Brent P. Burton, Automated 3D Reconstruction of Neuronal Structures from Serial Sections Computerized Medical Imaging and Graphics,1999,26:229-238
    [46]Stephen Paddock. On laser scanning confocal microscopy and three dimensional volume renderingo biological structures. Bioimaging and Two-Dimensional Spectroscopy SPIE,1990,1205:135-162
    [47]孙先达,索丽敏,张民志,王璞珺.激光共聚焦扫描显微检测技术在大庆探区储层分析研究中的亲进展[J].岩石学报,2005,(05):1479-1488
    [48]金熹高,朱世雄,贾世军,陈柳生,多组份高聚物体系多层形态观察的新方法:激光共聚焦荧光显微技术[J],化学通报,1999,(6):12-16
    [49]Stasiuk, L. D.,Snowdon. L. R.,1997. Fluoresence micro-spectrometry of synthetic and natura hydrocarbon fluid inclusion:Crude oil chemistry, density and application to petroleum migration. Applied Geochemistry,12:229-241
    [50]Munz, I. A.,2001. Petroleum inclusions in sedimentary basins:Systematics,analytical methods and applications. L i thos,55:195-212
    [51]Goldstein, R. H., Reynolds, T.J.,1994. Systematics of fluid inclusions in diagenetic minerals. SEPM Short Course,31:69-85
    [52]Przyjalgowski, M. A., Ryder, A. G., Feely, M.,2005. Analysis of hydrocarbon-bearing fluid inclusions (HCFI) using time-resolved fluorescence spect roscopy. Optical Sensing and Spectroscopy,5826:173-184
    [53]余孝颍,施继锡,红外、紫外及荧光分析在有机包裹体研究中的应用[J].矿物学报,1996,(2):212-217
    [54]邹海峰,徐学纯,高福红,大港探区前第三系显微荧光分析及油气运聚特征研究[J].世界地质,2002,(3):247-248
    [55]刘文斌,姚素平,胡文蠹,等,流体包裹体的研究方法及应用[J].新疆石油地质,2003,(3):264-267
    [56]李纯泉,陈红汉,陈汉林,塔河油田奥陶系有机包裹体的油气指示意义[J].天然气工业,2004,(10):24-26
    [57]郝雪峰,陈红汉,高秋丽,等,东营凹陷牛庄砂岩透镜体油气藏微观充注机理[J].地球科学—中国地质大学学报,2006,(2):182-190
    [58]郝石生,贾振远.碳酸盐岩油气形成与分布[M].北京:石油工业出版社,1989
    [59]柳广弟,高岗,王晖,碳酸盐烃源岩有机质分布与排烃特征[J].沉积学报,1999,(03):482-485
    [60]包友书,张林晔,张守春,刘庆,孔祥星.用渗流法研究东营凹陷烃源岩压实排油特点[J].石油学报,2008,(05):707-710
    [61]张立娟,岳湘安,郭振杰.ASP体系与大港和大庆原油的乳化特性研究[J].油气地质与采收率2010,(03):74-77
    [62]马春曦,谭井山,刘素敏,于振宇,赵晓非.大庆原油的流变性质及乳化降粘研究[J].化学与生物工程,2010,(01):79-81
    [63]焦正杰,李杰训,魏立新.三元复合驱采出液的乳化与化学破乳[J].油气田地面工程,2008,(03):41-43
    [64]姜志军.萨北开发区西部剩余油分布研究[D].大庆石油学院,2007
    [65]闫百泉.萨北开发区北二西剩余油分布特征研究[D].大庆石油学院,2004
    [66]刘金山.萨北开发区水驱开发指标预测的一种新方法[J].石油地质与工程,2008,(02):55-60
    [67]张英志.萨北开发区纯西葡一油层组沉积构成及聚驱解堵增注研究[D].中国地质大学(北京),2006
    [68]焦艳丽.大庆油田萨北开发区二类油层储层沉积模式[J].大庆石油学院学报,2010,(03):19-22
    [69]朱焕来.二类油层非均质性评价方法研究[D].大庆石油学院,2004
    [70]高战备,丁红霞.甜菜碱型表面活性剂的合成与应用[J].中国洗涤用品工业,2008,(02):72-74
    [71]任晓娟.低渗砂岩储层孔隙结构与流体微观渗流特征研究[D].西北大学
    [72]聂晶.应用测井资料分析微孔隙结构的方法研究[D].大庆石油学院,2009
    [73]文政,赖强,魏国章.利用测井资料求取储层孔隙结构特征参数[J].石油天然气学报,2006,(04):78-81
    [74]胡玉伟.榆树林油田东16井区开发效果评价及井网加密调整研究[D].大庆石油学院,2009
    [75]A.E.薛定谔著,王鸿勋,张朝琛,孙书琛译:《多孔介质中的渗流物理》,石油工业出版社,北京,1982. (A.E. Sheidegger, The Physics of Flow Through Porous Media,3rd ed., Toronto Univ. Press, Toronto, 1974.)
    [76]M.麦斯盖特著,俞志汉,李秦孝译:《采油物理原理》,上册、下册,石油工业出版社,北京,1979.(M. Muskat, Physical Principles of Oil Production, McGraw-Hill, New York,1949.)
    [77]穆文志.低渗透油层孔隙介质内微观流动机理研究[D].大庆石油学院,2009
    [78]熊敏,王勤田.盘河断块区孔隙结构与驱油效率[J].石油与天然气地质,2003,24(1):42-44
    [79]鄢捷年.油藏岩石湿润性对注水过程中驱油效率的影响[J].石油大学学报(自然科学版),1998,22(3):43-46
    [80]朱玉双,曲志浩,孔令荣,等.靖安油田长6、长2油层驱油效率影响因素[J].石油与天然气地质,1999,20(4):333-335
    [81]王尤富,鲍颖.油层岩石的孔隙结构与驱油效率的关系[J].河南石油,1999,13(1):23-25
    [82]胡志明.低渗透储层微观孔隙结构特征研究及其应用[D].硕士论文
    [83]张绍东,王绍兰,李琴等.孤岛油田储层微观结构特征及其对驱油效率的影响.石油大学学报(自然科学版),2002,26(3):47-53
    [84]Bear J., Dynamics of Fluid in Porous Media[M]. Dover publications, INC, New York,1972
    [85]Auset and A.A. Keller, Pore-scale processes that control dispersion of colloids in saturated porous media [M]. Water Resources Research, vol.40, no.3,2004.
    [86]Sirivithayapakorn and A.A. Keller, Transport of colloids in saturated porous media:A pore-scale observation of the size exclusion effect and colloid acceleration[S]. Water Resources Research, vol.39, no.4,2003

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700