用户名: 密码: 验证码:
中国东部苏北—合肥新生代大陆玄武岩地球化学研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
中国东部广泛出露新生代大陆玄武岩,近三十年来国内外学者对其开展了大量的地质地球化学研究。根据放射成因同位素组成,这些研究识别出不同的地幔源区组分(包括富集和亏损地幔组分),但就其产生的化学地球动力学过程来说,目前仍然存在严重分歧。主流观点包括:软流圈地幔或软流圈地幔与岩石圈地幔相互作用,地幔与拆沉/俯冲大陆基性下地壳(榴辉岩)熔体/残留体相互作用,俯冲洋壳来源熔体与岩石圈地幔相互作用。
     为了进一步确定中国东部新生代大陆玄武岩的成因机制,本文选取郯庐断裂带中段江苏北部和安徽东部地区的新生代玄武岩作为研究对象,对其进行了全岩Ar-Ar定年、全岩主量和微量元素、放射成因同位素(Sr-Nd-Hf-Pb)、全岩和单矿物O同位素、微量碳酸盐C-O同位素以及斑晶矿物成分分析。在这些地球化学数据的解释时,强调了主量-微量元素制约与稳定-放射成因同位素制约想结合的方法。结果表明,俯冲脱水后的洋壳部分熔融生成的埃达克质熔体与新生大陆岩石圈地幔相互作用产生辉石岩,辉石岩与地幔橄榄岩的混合源区部分熔融形成了这一地区的新生代玄武岩。
     合肥盆地小蜀山和鸡鸣山玄武岩全岩Ar-Ar坪年龄为37.8±0.4-38.3±0.3 Ma。苏北-合肥新生代玄武岩SiO_2含量为41.61-48.57 wt.%,Al_2O_3含量为11.86-15.55 wt.%,Fe_2O_3t含量为11.78-15.45 wt.%,CaO含量为7.56-10.63 wt.%,全碱含量(Na_2O+K_2O)为4.05-10.10 wt.%,Mg#为52.9-68.7,Fe/Mn比值为60.9-74.2。这些玄武岩均为碱性玄武岩,出现标准矿物霞石(Ne)。在稀土配分模式和微量元素蛛网图上都显示出与OIB相似的特征:LREE富集,HREE亏损([La/Yb]N为11-39),Nb和Ta正异常,Rb和Pb负异常。总体上,不相容微量元素含量随碱性程度的增强而增加,轻重稀土分异也随之增加。
     苏北-合肥新生代玄武岩具有相对亏损的放射成因同位素(Sr-Nd-Hf)组成,但变化范围较大。全岩Sr~(87)/Sr~(86)初始比值为0.7033-0.7042;ε_Nd(t)值为1.8-7.3,单阶段Nd模式年龄为237-874 Ma;ε_Hf(t)值为6.7-13.1,单阶段Hf模式年龄为177-545 Ma。Pb~(206)/Pb~(204)比值为17.414-18.815 , Pb~(207)/Pb~(204)比值为15.355-15.473 , Pb~(208)/Pb~(204)比值为37.365-38.041。
     苏北-合肥新生代玄武岩中橄榄石斑晶的δO~(18)值为4.9-5.9‰,与正常地幔来源橄榄石δO~(18)值(5.2±0.2‰)基本一致。单斜辉石斑晶δO~(18)值为4.1-6.2‰,绝大多数低于正常地幔值5.6±0.2‰。斜长石斑晶δO~(18)值主要为4.4-7.1‰,少数样品δO~(18)值明显偏高(9.6-15.9‰)。这些新生代玄武岩均含有微量碳酸盐,大部分样品的碳酸盐含量低于0.3 wt.%,个别样品大于0.5 wt.%。微量碳酸盐的δC~(13)值-15.6 - -4.7‰,δO~(18)值为14.2-21.3‰。微量碳酸盐低的δC~(13)值和高的δO~(18)值以及部分斜长石斑晶异常高的δO~(18)值表明,在岩浆上升过程中发生了不同程度的CO2去气作用,使得幔源碳酸盐含量下降,并伴随δC~(13)值降低;成岩后经历了不同程度的低温热液蚀变作用,使得碳酸盐和部分斜长石斑晶δO~(18)值升高。全岩δO~(18)值为4.1-6.0‰,类似或略低于新鲜大洋中脊玄武岩的δO~(18)值分布范围,表明后期低温热液蚀变对全岩δO~(18)值的影响较小。
     苏北-合肥新生代玄武岩具有OIB型微量元素分布特征。高度不相容元素Nb/U比值为18.9-50.1,ΔNb值为0.11-0.41,与MORB明显不同,指示软流圈地幔不可能是这些玄武岩的直接源区。相对较低的Mg#、较高的Fe/Mn比值以及橄榄石斑晶高的Ni含量表明,其源区含有辉石岩组分。相对亏损但变化的放射成因同位素组成表明,它们来源于不同组分的混合源区(亏损地幔组分和富集组分)。新生大陆岩石圈地幔(SCLM)可以产生同位素组成上与软流圈地幔来源相近的玄武质熔体。斑晶矿物低的δO~(18)值表明,其源区亏损O~(18)。经历过高温海水热液蚀变的洋壳具有低的δO~(18)值,因此可能对新生代玄武岩的形成有所贡献。
     综上所述,本文提出一个苏北-合肥新生代玄武岩的成因模型。中生代太平洋板块以低角度俯冲到欧亚大陆之下,低角度俯冲使下部古老SCLM拆沉进入软流圈,从而将俯冲洋壳上部的地幔楔转变成新生SCLM。脱水榴辉岩质洋壳发生部分熔融生成埃达克质熔体,埃达克质熔体上升并与上覆新生SCLM橄榄岩发生反应形成辉石岩,从而形成辉石岩-橄榄岩混合源区。新生代大陆岩石圈拉张引起该这些新生SCLM辉石岩发生部分熔融,从而形成这些OIB型新生代大陆玄武岩。因此,俯冲洋壳衍生熔体与地幔楔橄榄岩之间的相互作用可能是形成大陆玄武岩地幔源区的关键。
Cenozoic continental basalts widely occur in eastern China, and a great number of geological and geochemical studies were made for them in the past three decades. In view of radiogenic isotope compositions, these studies have identified the existence of distinct mantle components (including both enriched and depleted mantle). However, mantle processes responsible for the Cenozoic basalts are still issues for debate. The dominant viewpoints on their petrogenesis are: derivation from convective asthenosphere or from lithosphere-asthenosphere interaction, inetraction between mantle and eclogite-derived melt/residue formed by delamination/subducted mafic lower continental crust, or reaction between the subducted oceanic crust-derived melt and the mantle wedge peridotite.
     In order to constrain the petrogenesis of Cenozoic continental basalts in eastern China, this PhD thesis has made a combined study of whole-rock Ar-Ar dating, whole-rock major and trace elements, radiogenic isotopes Sr-Nd-Hf-Pb, whole-rock and mineral O isotopes, micro-amount carbonate C-O isotopes as well as phenocryst olivine elements for the Cenozoic basalts from eastern Anhui (Hefei) and northern Jiangsu (Subei) in east-central China. In interpreting the geochemical data, the constraints from major and trace elements are integrated with the constraints from stable and radiogenic isotopes. In this regard, the results suggest that these basalts were derived from pyroxenite of juvenile subcontinental lithospheric mantle (SCLM) that was generated by the interaction between mantle peridotite and adakitic melts derived from the dehydrated oceanic crust.
     Whole-rock Ar-Ar dating for basalts from Xiaoshushan and Jimingshan in the Hefei basin yields Eocene ages of 37.8±0.4 to 38.3±0.3 Ma. The Subei-Hefei basalts have low SiO_2 contents of 41.61 to 48.57 wt.% and Mg# of 52.9 to 68.7 wt.%, high Fe/Mn ratios of 60.9 to 74.2 and alkali contents of 4.05 to 10.10 wt.%. They have relatively narrow range of Al_2O_3 (11.86 to 15.55 wt.%), Fe_2O_3t (11.78 to 15.45 wt.%), and CaO (7.56 to 10.63 wt.%) contents. All these samples are classified into alkali basalts with the occurrence of CIPW normative mineral nepheline (Ne). The basalts are characterized by OIB-like patterns of trace element distribution such as enrichment in light rare earth elements (LREE), depletion in heavy rare earth elements (HREE), no depletion in Nb and Ta, but with negative Rb and Pb anomalies on primitive mantle-normalized spidergrams. The contents of incompatible trace elements and the differentiation extents between LREE and HREE are positively correlated with the alkali contents.
     The Subei-Hefei basalts show considerable variations in initial 143Nd/144Nd, Sr~(87)/Sr~(86) and 176Hf/177Hf ratios, being generally depleted in these radiogenic isotopic compositions. They have initial Sr~(87)/Sr~(86) ratios of 0.7033 to 0.7042,ε_Nd(t) values of 1.8 to 7.3 with single-stage Nd model ages of 237 to 874 Ma, andε_Hf(t) values of 6.7 to 13.1 with single-stage Hf model ages of 177 to 545 Ma. They have Pb~(206)/Pb~(204) ratios of 17.414 to 18.815, Pb~(207)/Pb~(204) ratios of 15.355 to 15.473, and Pb~(208)/Pb~(204) ratios of 37.365 to 38.041.
     Olivine phenocrysts haveδO~(18) values of 4.9 to 5.9‰, basically similar to normal mantle values of 5.2±0.2‰. TheδO~(18) values of clinopyroxene phenocrysts are 4.1 to 6.2‰, most of which are lower than normal mantle values of 5.6±0.2‰. Most plagioclase phenocrysts haveδO~(18) values of 4.4 to 7.1‰, and several samples have very highδO~(18) values of 9.6 to 15.9‰. Most of the basalts have low carbonate contents (<0.3 wt.%), and some samples have carbonate contents higher than 0.5 wt.%. The minor-amount carbonates haveδC~(13) values of -15.6 to -4.7‰andδO~(18) values of 14.2 to 21.3‰. The presence of lowδC~(13) and highδO~(18) values for the carbonates as well as the highδO~(18) values for some plagioclase phenocrysts suggest the effect of CO2 degassing during magma eruption, which would decrease the minor carbonate contents andδC~(13) values, and the low-T hydrothermal alteration, which would increase theδO~(18) values of some plagioclase phenocrysts and carbonate. However, these basalts haveδO~(18) values of 4.1 to 6.0‰for whole-rock, most of them are close to or slightly lower than the normal mantle values of 5.7±0.5‰. This suggests that theδO~(18) values of these basalts have not been significanty affected by the low-T hydrothermal alteration.
     The Subei-Hefei basalts have OIB-like patterns of trace element distribution. They have Nb/U ratios of 18.9 to 50.1 andΔNb values of 0.11 to 0.41, which are significantly different from those of MORB. This suggests that these basalts were unlikely derived from the asthenospheric mantle, the source of MORB. The high Fe/Mn ratios of 60.9 to 74.2, relatively low Mg# of 52.9 to 68.7 and high Ni contents for olivine phenocrysts suggest the existence of pyroxenite in their mantle source. They have relatively depleted but variable radiogenic isotope compositions, suggesting their derivation from a mixed mantle source between depleted and enriched components. The juvenile SCLM is capable of generating basaltic melts with radiogenic isotopic compositions similar to those derived from the asthenospheric mantle. The low-δO~(18) phenocrysts would have crystallized from lowδO~(18) melts and thus the mantle source appears to have been depleted in O~(18) before partial melting. The O~(18) depletion of mantle source would be caused by reaction of mantle peridotites with lowδO~(18) melts that would be derived from partial melting of the dehydrated oceanic crust that experienced high-T seawater-rock interaction during the magma emplacement.
     Finally, this study proposes a model for petrogenesis of the Subei-Hefei basalts. It assumes low-angle subduction of the Pacific Plate beneath the Eurasian continent during the Early Mesozoic, leading to dehydration of the high-T altered oceanic crust below the ancient SCLM in east-central China. The low-angle subduction would delaminate the lower part of the ancient SCLM into the asthenosphere, and transformed the mantle wedge overlying the subducting oceanic crust to the juvenile SCLM. Dehydrated oceanic basalt would initially become eclogite during subduction and then undergo partial melting to generate the adakitic melt. Subsequently, the adakitic melts would ascend rapidly and react with the overlying juvenile SCLM peridotite to form silica-deficient pyroxenites. Thus the juvenile SCLM source is composed of pyroxenite-peridotite mixtures, whose partial melting at the lithosphere-asthenosphere thermal boundary due to continental rifting in the Cenozoic gave rise to the alkalic basaltic magmas. Therefore, the interaction between the oceanic crustal-derived melt and the mantle-wedge peridotite is suggested as a key to formation of the mantle source, and the composition of continental basalts provides a snapshot of SCLM with respect to the regime of plate tectonics.
引文
安徽省地质矿产局, 1978.安徽省区域地质志.地质出版社,北京.
    陈道公,彭子成. 1988a.皖苏若干新生代火山岩的钾氩年龄和铅锶同位素特征.岩石学报, 4 (2) : 3-12
    陈道公,彭子成, 1988b.安徽江苏部分新生代火山岩的K-Ar年龄, Nd和Sr同位素组成.岩石学报, 4, 3-12.
    陈道公.郯庐断裂带中南段新生代玄武岩地球化学.刘若新.中国新生代火山岩年代学与地球化学. 北京:地震出版社, 1992. 171-200
    陈福坤,李秋立,李潮峰,李向辉,王秀丽,王芳, 2005.高精度质谱计在同位素地球化学的应用.地球科学, 30, 639-645.地球物理学报,34(02): 172-181.
    陈国英,宋仲和,安昌强,陈立华,庄真,傅竹武,吕梓龄,胡家富, 1991.华北地区三维地壳上地幔结构
    池际尚.中国东部新生代玄武岩及上地幔研究.北京:地质出版社, 1988: 1-240.
    池际尚,路凤香.华北地台金伯利岩及古生代岩石圈地幔特征.北京:科学出版社, 1996 : 1-96.
    储雪蕾,樊祺诚,刘若新等. 1995.中国东部新生代玄武岩中超镁铁质捕掳体的CO2包裹体的碳同位素初步研究.科学通报, 40: 62-64.
    从伯林,王清晨,张海政,等. 1996,中国苏皖盆地新生代火山岩成因岩石学研究.岩石学报, 12(3): 370-381
    邓文峰,韦刚健,李献华. 2005.不纯碳酸盐的碳氧同位素组成的在线分析.地球化学,34(5): 495-500.
    樊祺诚,刘若新,林卓然,储雪蕾,赵瑞,霍卫国, 1996.中国东部地幔CO2流体包裹体的碳同位素初步研究.地球化学, 25(3) : 264-266.
    龚冰,郑永飞, 2003.硅酸盐矿物氧同位素组成的激光分析.地学前缘, 10, 286-295. 江苏省及上海市区域地质志,1984.江苏省地质矿产局,地质出版社. 501-505.
    金振民,余日东,杨文采,欧新功. 2003.江苏东海县幔源橄榄岩包体及其深部构造意义.地质学报77, 451-462.
    李龙,郑永飞,周根陶等. 2002.硅酸盐岩中微量碳酸盐的碳氧同位素分析及其地球化学应用.岩石学报, 18(1): 109-116.
    李献华,祁昌实,刘颖, 2005.岩石样品快速Hf分离与MC-ICPMS同位素分析:一个改进的单柱提取色谱方法.地球化学, 34, 109-114.
    刘建明,张宏福,孙景贵,叶杰. 2003.山东幔源岩浆岩的碳-氧和锶-钕同位素地球化学研究.中国科学(D辑),33(10): 921-930.
    刘若新,陈文寄,孙建中,等. 1992.中国新生代火山岩的K-Ar年代与构造环境.中国新生代火山岩年代学与地球化学.北京:地震出版社, 1992 :1-42.
    罗维均,王世杰,刘秀明. 2008.中国大气降水δO~(18)区域特征及其对古气候研究的意义.地球与环境,36(1): 47-55.
    牛漫兰,朱光,宋传中,王道轩. 2000.郯庐断裂带火山活动与深部过程的新认识.地质科技情报, 19(3) : 21-26.
    牛漫兰,刘国生,朱光,宋传中,王道轩, 2005.郯庐断裂带鲁皖段新生代玄武岩形成机制的稀土判别.中国稀土学报, 23: 363-367.
    陶成,把立强,李广友等. Gasbench-IRMS在碳酸盐岩δC~(13)和δO~(18)在线连续分析中的应用.岩矿测试,2006,25(4): 334-336.
    万天丰,朱鸿.郯庐断裂带的最大左行走滑断距及其形成时期.高校地质学报, 1996, 2 (1) :14-27.
    吴福元,李献华,郑永飞,高山. Lu-Hf同位素体系及其岩石学应用.岩石学报,2007,23 (2):185-220.
    杨岳衡, 2007.博士论文Lu-Hf同位素的MC-ICP-MS实验方法及其应用研究.
    张铭杰,王先彬,刘刚等.1998.中国东部新生代玄武岩中的流体组成及其碳、氧同位素地球化学特征.地球化学,27(5): 452-457.
    郑永飞,傅斌,张学华.1996.岩浆去气作用的碳硫同位素效应.地质科学,31:43-52.
    郑永飞,龚冰,王峥荣.岩石中碳同位素比值的EA-IRMS测定及其地球化学应用.地质论评,1999,45(5):529-538.
    郑永飞,李一良,龚冰. 2001.大别-苏鲁造山带榴辉岩的碳同位素地球化学研究.安徽地质,11(2):113-117.
    郑永飞,陈江峰. 2000.稳定同位素地球化学.北京:科学出版社,143-145,205-214.
    郑永飞,傅斌,龚冰. 2002.大陆板块俯冲和折返的同位素地球动力学.高校地质学报,8:365-379.
    支霞臣,陈道公,杨晶. 1995.皖东上第三系玄武岩的地球化学特征和成因.地质学报, 69 (2) : 156 -167.
    朱光,徐嘉炜,刘国生,等.下扬子地区沿江前陆盆地形成的构造控制.地质论评, 1998 , 44(2) : 120-129.
    Allègre, C.J., Dupre, B., Richard, P., Rousseau, D., 1982. Subcontinental versus suboceanic mantle. II. Nd-Sr-Pb isotopic comparison of continental tholeiites with mid-ocean ridge tholeiites, and the structure of the continental lithosphere. Earth and Planetary Science Letters 57, 25-34.
    Allegre, C.J., 2008. Isotope Geology. Cambridge University Press, Cambridge.
    Anderson, A.T., Clayton, R.N. and Mayeda, T.K., 1971. Oxygen isotope thermometry of mafic igneous rocks. J. Geol. 79, 715-729.
    Anderson, D.L., 1994. Lithosphere and flood basalts. Nature 367, 226-226.
    Anhui BGMR (Bureau of Geology and Mineral Resources), 1978. Regional Geology Records of Anhui Province (in Chinese). Geological Publishing House, Beijing.
    Baldridge W. S., Keller G. R., Haak V., Wendlandt E., Jiracek G. R., and Olsen K. H. (1995) The Rio Grande Rift. In Continental Rifts: Evolution, Structure, Tectonics, Developments in Geotectonics (ed. K. H. Olsen). Elsevier, Amsterdam, vol. 25, pp. 233–275.
    Barry, T.L., Saunders, A.D., Kempton, P.D., Windley, B.F., Pringle, M.S., Dorjnamjaa, D.,Saandar, S., 2003. Petrogenesis of Cenozoic basalts from Mongolia: evidence for the role of asthenospheric versusmetasomatised lithospheric mantle sources. Journal of Petrology 44, 55-91.
    Basu, A.R., Junwen, W., Wanking, H., Guanghong, X., Tatsumoto, M., 1991.Major element, REE, and Pb, Nd and Sr isotopic geochemistry of Cenozoic volcanic rocks of eastern China: implications for their origin from suboceanic-type mantle reservoirs. Earth and Planetary Science Letters 105, 149-169.
    Bernard-Griffiths J, Fourcade S, Dupuy C. 1991. Isotopic study (Sr, Nd, O and C) of lamprophyres and associated dykes from Tamazert (Morocco): crustal contamination processes and source characteristics. Earth Planet. Sci. Lett., 103:190-199.
    Bizzarro, M., Baker, J.A., Ulfbeck, D., 2003. A new digestion and chemical separation technique for rapid and highly reproducible determination of Lu/Hf and Hf isotope ratios in geological materials by MC-ICP-MS. Geostandards Newsletter 27, 133-145.
    Bogaard, P.J.F., W?rner, G., 2003. Petrogenesis of basanitic to tholeiitic volcanic rocks from the Miocene Vogelsberg, Central Germany. Journal of Petrology 44, 569-602.
    Brandon, A.D., Hooper, P.R., Goles, G.G., Lambert, R.S-J., 1993. Evaluating crustal contamination in continental basalts: the isotopic composition of the Picture Gorge basalt of the Columbia River Basalts group. Contributions to Mineralogy and Petrology 114, 452-464.
    Brewer, T.S., Hergt, J.M. and Hawkesworth, C.J., 1992. Coats land dolerites and the generation of Antarctic continental flood basalts. Geological Society Special Publication 68, 185-208.
    Carlson, R.W., Lugmair, G.W., Macdougall, J.D., 1981. Columbia River volcanism: the question of mantle heterogeneity or crustal contamination. Geochimica et Cosmochimica Acta 45, 2483-2499.
    Carlson, R.W., Pearson, D.G., James, D.E., 2005. Physical, chemical and chronological characteristics of continental mantle. Reviews of Geophysics 43, RG1001, doi:10.1029/2004RG000156.
    Chen, D.G., Peng, Z.C., 1988. K-Ar ages, Nd and Sr isotopic characteristics of some Cenozoic volcanic rocks in Anhui-Jiangsu. Acta Petrologica Sinica (in Chinese with English abstract) 4, 3-12.
    Chen, F., Hegner, E. and Todt, W., 2000. Zircon ages, Nd isotopic and chemical compositions of orthogneisses from the Black Forest, Germany - evidence for a Cambrian magmatic arc. Intern. J. Earth Sci. 88, 791-802.
    Chen W., Liu X -Y, Zhang S -H. 2002a. Continuous laser stepwise heating Ar~(40)/Ar~(39) dating technique. Geol. Rev., 48 (Suppl.), 127-134(in Chinese with English abstract).
    Chen, F., Siebel, W., Satir, M., Terzioglu, N. and Saka, K., 2002b. Geochronology of the Karadere basement (NW Turkey) and implications for the geological evolution of the Istanbul zone. Intern. J. Earth Sci. 91, 469-481.
    Chen, Y., Zhang, Y.X., Graham, D., Su, S.G., Deng, J.F., 2007. Geochemistry of Cenozoic basalts and mantle xenoliths in Northeast China. Lithos 96, 108-126.
    Chen, L.-H., Zeng, G., Jiang, S.-Y., Hofmann, A.W., Xu, X.-S., 2009. Sources of Anfengshan basalts: subducted lower crust in the Sulu UHP belt, China. Earth and Planetary Science Letters 286, 426-435.
    Chiba, H., Chacko, T., Clayton, R.N., Goldsmith, J.R., 1989. Oxygen isotope fractionations involving diopside, forsterite, magnetite, and calcite: Application to geothermometry. Geochimica et Cosmochimica Acta 53, 2985-2995.
    Chu, N.C., Taylor, R.N., Chavagnac, V., Nesbitt, R.W., Boella, R.M., Milton, J.A., Germain, C.R., Bayon, G., Burton, K., 2002. Hf isotope ratio analysis using multi-collector inductively coupled plasma mass spectrometry: an evaluation of isobaric interference corrections. J. Anal. At. Spectrom. 17, 1567-1574.
    Chu, Z.Y., Wu, F.Y., Walker, R.J., Rudnick, R.L., Pitcher, L., Puchtel, I.S., Yang, Y.H., Wilde, S. A., 2009. Temporal evolution of the lithospheric mantle beneath the eastern North China Craton. Journal of Petrology 50, 507-529.
    Chung, S.-L., Sun, S.-s., Tu, K., Chen, C.-H., Lee, C.-y., 1994. Late Cenozoic basaltic volcanism around the Taiwan Strait, SE China: Product of lithosphere-asthenosphere interaction during continental extension. Chemical Geology 112, 1-20.
    Chung, S.-L., 1999. Trace element and isotope characteristics of Cenozoic basalts around the Tanlu Fault with implications for the eastern plate boundary between north and south China. The Journal of Geology 107, 301-312.
    Cong, B.L., 1996. Ultrahigh-Pressure Metamorphic rocks in the Dabieshan-Sulu Region of China. Science Press, Beijing, 224 pp.
    Cox, K.G., Hawkesworth, C.J., 1985. Geochemical stratigraphy of the Deccan Traps at Mahabaleshwar, Western Ghats, India, with implications for open system magmatic processes. Journal of Petrology 26, 355-377.
    Davies, G.R., Stolz, A.J., Mzhotakin, I.L., Nowell G.M., Pearson, D.G.,, 2006. Trace Element and Sr–Pb–Nd–Hf Isotope Evidence for Ancient, Fluid-Dominated Enrichment of the Source of Aldan Shield Lamproites. Journal of Petrology 47, 1119-1146.
    Defant, M.J., Drummond, M.S., 1990. Derivation of some modern arc magmas by melting of young subducted lithosphere. Nature 347, 662-665.
    Deines P. 2002. The carbon isotope of geochemical in mantle xenoliths. Earth Science Review, 58:247-258.
    Demény A, Vennemann T.W., Hegner E.,Nagy G., Milton J.A., Embey-Isztin A., Homonnay Z., Dobosi G. 2004. Trace element and C-O-Sr-Nd isotope evidence for subduction-related carbonate-silicate melts in mantle xenoliths (Pannonian Basin,Hungary). Lithos, 75:89-113.
    Demény A, Dallai L, Frezzotti M L, Vennemann T W, Embey-Isztin A, Dobosi G, Nagy G. 2010. Origin of CO2 and carbonate veins in mantle-derived xenoliths in the Pannonian Basin. Lithos, 117:172-182.
    DePaolo, D.J., 1988. Neodymiun Isotope Geochemistry: An Introduction. Springer-Verlag, Berlin, 189 pp.
    DePaolo, D.J., Daley, E.E., 2000. Neodymium isotopes in basalts of the Southwest Basin and Range and lithospheric thinning during continental extension. Chemical Geology 169, 157-185.
    Dostal, J., Dupuy, C., Zhai, M.Z., Zhi, X.C., 1988. Geochemistry and origin of Pliocene alkali basaltic lavas from Anhui-Jiangsu, eastern China. Geochemical Journal 22, 165-176.
    Dunn, T., Sen, C., 1994. Mineral/matrix partition coefficients for orthopyroxene, plagioclase, and olivine in basaltic to andesitic systems: a combined analytical and experimental study. Geochimica et Cosmochimica Acta 58, 717-733.
    Eiler, J.M., Farley, K.A., Valley, J.W., Hauri, E., Craig, H., Hart, S., Stolper, E.M., 1996. Oxygen isotope variations in ocean island basalt phenocrysts. Geochimica et Cosmochimica Acta 61, 2281-2293.
    Eiler J. M., Farley K. A., Valley J. W., Hauri E. H., Harmon C., Hart S. R., and Stolper E. M. 1997. Oxygenisotope variations in ocean island basalt phenocrysts. Geochim. Cosmochim. Acta 61, 2281-2293.
    Eiler, J.M., 2001. Oxygen isotope variations of basaltic lavas and upper mantle rocks. Stable Isotope Geochemistry, p 319-364.
    Elkins L. T. and Hager B. H. (2000) Melt intrusion as a trigger for lithospheric foundering and the eruption of the Siberian flood basalts. Geophys. Res. Lett. 27, 3937–3940.
    Ellam, R.M., Cox, K.G., 1989. A Proterozoic lithospheric source for Karoo magmatism: evidence from the Nuanetsi picrites. Earth and Planetary Science Letters 92, 207–218.
    Falloon T J, Green D H, Hatton C J et al. 1988. Anhydrous partial melting of a fertile and depleted peridotite from 2 to 30 kb and application to basalt petrogenesis. J. Petrol., 29:1257-1282
    Falloon T J, Green D H. 1990. Solidus of carbonated fertile peridotite under fluid-saturated conditions. Geology, 18: 195-199
    Falloon T. J., Danyushevsky, L.V., 2000. Melting of refractory mantle at 1.5, 2.0 and 2.5 GPa under anhydrous and H2O undersaturated conditions: implications for the petrogenesis of high-Ca boninites and the influence of subduction components on mantle melting. Journal of Petrology 41, 257-283.
    Fan, Q.C. and Hooper, P.R., 1991. The cenozoic basaltic rocks of eastern China: petrology and chemical composition. J. Petrol. 32, 765-810.
    Fan, W.M., Menzies, M.A., 1992. Destruction of aged lower lithosphere and accretion of asthenosphere mantle beneath eastern China . Geotectonic et Metallogenia, 16 (3-4) : 171-180.
    Fan, W.M., Zhang, H.F., Baker, J., Javis, K.E., Mason, P.R.D., Menzies, M.A., 2000. On and off the North China craton: where is the Archaean keel? Journal of Petrology 41, 933-950.
    Farmer, G.L., Glazner, A.F., Manley, C.R., 2002. Did lithospheric delamination trigger late Cenozoic potassic volcanism in the southern Sierra Nevada, California? GSA Bulletin; June 2002; v. 114; no. 6; p. 754-768;
    Farmer, G.L., 2003. Continental basaltic rocks. Treatise on Geochemistry 3, 85-121.
    Feigenson, M.D., Bolge, L.L., Carr, M.J., Herzberg, C.T., 2003. REE inverse modeling of HSDP2 basalts: evidence for multiple sources in the Hawaiian plume. Geochemistry, Geophysics, Geosystems 4. doi:10.1029/2001gc000271.
    Fitton and Dunlop, 1985. The Cameroon line, wesr Africa, and its bearing on the origin of oceanic and continental alkali basal. Earth Planet. Sci. Lett., 72:23-38
    Fitton, J.G., James, D., Leeman, W.P., 1991. Basic magmatism associated with Late Cenozoic extension in the western United States: Compositional variations in space and time. Journal of Geophysical Research B96, 13693–13711.
    Fitton, J.G., Saunders, A.D., Norry, M.J., Hardarson, B.S., Taylor, R.N., 1997. Thermal and chemical structure of the Iceland plume. Earth and Planetary Science Letters 153, 197-208.
    Fitton, J.G., 2007. The OIB paradox. In: Foulger, G.R., and Jurdy, D.M. (eds.), Plates, Plumes, and Planetary Processes. Geological Society of America Special Paper, vol. 430, pp. 387-412.
    Foley, S., 1992. Vein-plus-wall-rock melting mechanisms in the lithosphere and the origin of potassic alkaline magmas. Lithos 28, 435-453.
    Frey F. A. and Green D. H., 1974. Mineralogy, geochemistryand origin of lherzolite inclusions in Victorian basanites. Geochim. Cosmochim. Acta 38, 1023–1059.
    Fuex A N, Barker D R. 1973. Stable carbon isotopes in selected granitic, mafic, and ultramafic igneous rocks. Geochim. Cosmochim Acta,37:2509-2521.
    Furman, T., Graham, D., 1999. Erosion of lithospheric mantle beneath the East African Rift system: evidence from the Kivu volcanic province. Lithos 48, 237-262.
    Gaetani, G., Grove, T., 1998. The influence of water on melting of mantle peridotite. Contribution to Mineralogy and Petrology 131, 323-346.
    Gallagher K. and Hawkesworth C. (1992) Dehydration melting and the generation of continental flood basalts.Nature 258, 57–59.
    Gao, S., Zhang, B.-R., Gu, X.-M., Xie, X.-L., Gao, C.-L., Guo, X.-M., 1995. Silurian-Devonian provenance changes of South Qinling basins: implications for accretion of the Yangtze (South China) to the North China cratons. Tectonophysics 250, 183-197.
    Gao, S., Rudnick, R.L., Carlson, R.W., McDonough, W.F., Liu, Y.S., 2002. Re-Os evidence for replacement of ancient mantle lithosphere beneath the North China craton. Earth and Planetary Science Letters 198, 307-322.
    Gao, S., Rudnick, R.L., Yuan, H.-L., Liu, X.-M., Liu, Y.-S., Xu, W.-L., Ling, W.-L., Ayers, J.,Wang, X.-C., Wang, Q.-H., 2004. Recycling lower continental crust in the North China craton. Nature 432, 892–897.
    Gao, S., Rudnick, R.L., Xu, W.L., Yuan, H.L., Liu, Y.S., Puchtel, I., Liu, X., Huang, H., Wang, X.R., 2008. Recycling deep cratonic lithosphere and generation of intraplatemagmatism. Earth and Planetary Science Letters 270, 41–53.
    Gautason, B., Muehlenbachs, K., 1998. Oxygen isotopic fluxes associated with hightemperature processes in the rift zones of Iceland. Chemical Geology 145, 275–286.
    Gong B and Zheng Y -F. 2003. A CO2-Laser Technique for Oxygen Isotope Analysis of Silicates. Earth Sciences Frontiers, 10(2): 295-286 (in Chinese with English abstract).
    Gong, B., Zheng, Y.-F., Chen, R.-X., 2007a. TC/EA-MS online determination of hydrogen isotope composition and water concentration in eclogitic garnet. Phys. Chem. Minerals., 34, 687-698.
    Gong, B., Zheng, Y.-F., Chen, R.-X., 2007b. A TCEA-MS online method for determination of hydrogen isotope composition and water concentration in geological samples. Rapid Commun. Mass Spectrom. 21 (8): 1386-1392.
    Green, T.H., 1980. Island arc and continent-building magmatism; a review of petrogenetic models based on experimental petrology and geochemistry. Tectonophysics 63, 367-385.
    Griffin, W.L., Zhang, A.D., O’Reilly, S.Y., Ryan, G., 1998. Phanerozoic evolution of the lithosphere beneath the Sino–Korean Craton. In: Flower, M., Chung, S.L., Lo, C.H., Lee, T.Y. (Eds.), Mantle Dynamics and Plate Interactions in East Asia, Am. Geophys. Union. Geodynamic Series, vol. 27, pp.107– 126.
    Griffin W. L., O’Reilly S. Y., and Ryan C. G., 1999. The composition and origin of sub-continental lithospheric mantle. In Mantle Petrology: Field Observations and High Pressure Experimentation (eds.
    Y. Fei, C. M. Bertka, and B. O. Mysen), Special Publication no. 6. The Geochemical Society, Houston, pp. 13–45.
    Griffin, W.L., Pearson, N.J., Belousova, E., Jackson, S.E., van Achterbergh, E., O’Reilly, S.Y., Shee S.R., 2000. The Hf isotope composition of cratonic mantle: LAM-MC-ICPMS analysis of zircon megacrysts in kimberlites. Geochimica et Cosmochimica Acta 64, 133-147.
    Haase, K.M., Goldschmidt, B., Garbe-Sch?nberg, D., 2004. Petrogenesis of Tertiary continental intra-plate lavas from the Westerwald region. Journal of Petrology 45, 883-905
    Harmon, R.S., and Hoefs, J., 1995, Oxygen isotope heterogeneity of the mantle deduced from global 18O systematics of basalts from different geotectonic settings. Contributions to Mineralogy and Petrology 120, 95-114.
    Hart, S.R., 1984. A large-scale isotope anomaly in the SouthernHemisphere mantle. Nature 309, 753-757. Hart, S.R. 1988. Heterogeneous mantle domains: signatures, genesis and mixing chronologies. Earth planet. Sci. lett., 90:273-296
    Hart, S.R., Hauri E H, Oschmann L A, et al. 1992. Mantle plume and entrainment: isotopic evidence. Science, 256: 517-520
    Harry, D.L., Leeman, W.P., 1995. Partial melting of melt metasomatized subcontinental mantle and the magma source potential of the lower lithosphere. Journal of Geophysical Research 100, 10255-10269.
    Hauri, E.H., Wagner, T.P., Grove, T.L., 1994. Experimental and natural partitioning of Th, U, Pb and other trace elements between garnet, clinopyroxene and basaltic melts. Chemical Geology 117, 149-166.
    Hawkesworth, C.J., Vollmer, R., 1979. Crustal contamination vs enriched mantle: Nd~(143)/Nd~(144) and Sr~(87)/Sr~(86) evidence from the italian volcanics. Contributions to Mineralogy and Petrology 69, 151-165.
    Hawkesworth, C.J., mantovani M S S, Peate D.1988. Lithosphere remobilisantion during Parana CFB magmatism. J. Petrol. ,Special Lithosphere Issue, 205-223
    Hawkesworth, C.J., Hergt, J.M., Ellam, R.M., McDermott, F., 1991. Element fluxes associated with subduction related magmatism. Philosophical Transaction of Royal Society A335, 393–405.
    Hawkesworth, C.J., Gallagher, K. and Kelley, S., 1992. Parana magmatism and the opening of the South Atlantic. Geological Society Special Publication 68, 221-240.
    He, H.Y., Pan Y.X., Tauxe, L., Qin, H.F., Zhu, R.X., 2008. Toward age determination of the Barremian - Aptian boundary (M0r) of the Early Cretaceous. Phys. Earth Planet. Inter., 169, 41-48.
    Helmstaedt, H., Schulze, D.J., 1989. Southern African kimberlites and their mantle sample; implications for Archean tectonics and lithosphere evolution. Geological Society of Australia, Special Publication 14, 358-368.
    Herzberg, C., 2006. Petrology and thermal structure of the Hawaiian plume from Mauna Kea volcano. Nature 444, 605-609.
    Hirose, K., Kushiro, I., 1993. Partial melting of dry peridotites at high pressures: determinations ofcompositions of melts segregated from peridotite using aggregates of diamond. Earth and Planetary Science Letters 114, 477-489.
    Hirschimann, M., Baker, J., Stolper, E., 1995. Partial melting of Mantle pyroxenite. ESO, AGU Fall Meeting: F-696.
    Hirschmann, M.M., Kogiso, T., Baker, M., Stolper, E.M., 2003. Alkalic magmas generated by partial melting of garnet pyroxenite. Geology 31, 481–484.
    Hoefs, Jochen. 2009. Stable Isotope Geochemistry. 3: 136-149.
    Hofmann, A.W., Hart, S.R., 1978. An assessment of local and regional isotopic equilibrium in the mantle. Earth and Planetary Science Letters 38, 44-62.
    Hofmann, A.W., White, W.M., 1982. Mantle plumes from ancient oceanic crust. Earth and Planetary Science Letters 57, 421-436.
    Hofmann A W. 1984. Geochemical mantle models. Terra Cognita, 4:157-165
    Hofmann N R A, Mckenzie D P, 1985. The destruction of geochemical heterogeneities by differential fluids motion during mantle convention. Geophys. J. R. astr. Soc., 82:163-206
    Hofmann, A.W., Jochum, K.P., Seufert, M., White, W.M., 1986. Nb and Pb in oceanic basalts: new constraints on mantle evolution. Earth and Planetary Science Letters 79, 33-45.
    Hofmann, A.W., 1988. Chemical differentiation of the earth: the relationship between mantle continental crust and oceanic crust. Earth and Planetary Science Letters 79, 270-280.
    Hofmann, A.W., 1997. Mantle geochemistry: The message from oceanic volcanism. Nature 385, 219-229.
    Hofmann, A.W.,2003. Treatise on Geochemistry 2, 61–101
    Humayun, M., Qin, L., Norman, M.D., 2004. Geochemical evidence for excess iron in the mantle beneath Hawaii. Science 306, 91-94.
    Irvine T. N. and Baragar W. R. A. 1971. A guide to the chemical classification of the common volcanic rocks. Can. J. Earth Sci. 8, 523-548.
    Jaques and Green, 1980. Anhydrous melting of peridotites at 0-15 kb pressure and the genesis of tholeiitic basult. Contrib. Mineral. Petrol., 73: 287-310
    Jaques A L, O′Neil H St C, Smith C B.1990. Diamondiferous peridotite xenoliths from the Argyle (AK1)lamproite pipe, West Australia. Contrib. Mineral. Petrol., 104:255-276.
    Jahn, B.-m. and Condie, K.C., 1995. Evolution of the Kaapvaal Craton as viewed from geochemical and Sm-Nd isotopic analyses of intracratonic pelites. Geochim. Cosmochim. Acta 59, 2239-2258.
    Johnson R. W., Knutson J., and Taylor S. R. 1989. Intraplate Volcanism in Eastern Australia and New Zealand. Cambridge University Press, Cambridge.
    Johnson, K.T.M., Dick, H.J.B., Shimizu, N., 1990. Melting in the oceanic upper mantle: an ion microprobe study of diopsides in abyssal peridotites. J. Geophys. Res. 95, 2661-2678.
    Kelemen P. B., Hart S. R., and Bernstein S. 1998. Silica enrichment in the continental upper mantle via melt/rock reaction. Earth Planet. Sci. Lett. 164, 387–406.
    Klemme, S., Blundy, J.D.,Wood, B.D., 2002. Experimental constraints on major and trace element partitioning during partial melting of eclogite. Geochimica et Cosmochimica Acta 66, 3109–3123.
    Keller J, Hoefs J.1995. Stable isotope characteristics of recent natrocarbonatites from Oldoinyo Lengai. In: Bell K, Keller J.(Eds.), Carbonatite Volcanism: Old Lengai and the Petrogenesis of natrocarbonatites. Spinger, Berlin, 113-123.
    Kempton, P.D., Fitton, J.G., Hawkesworth, C.J., Ormerod, D.S., 1991. Isotopic and trace element constraints on the composition and evolution of the lithosphere beneath the southwestern United States. Journal of Geophysical Research B96, 13713–13735.
    Keshav, S., Gudfinnsson, G.H., Sen, G., Fei, Y.W., 2004. High-pressure melting experiments on garnet clinopyroxenite and the alkalic to tholeiitic transition in ocean island basalts. Earth and Planetary Science Letters 223, 365–379.
    King S. D. and Anderson D. L. (1998) Edge-driven convection. Earth Planet. Sci. Lett. 160, 289-296.
    Kleinhanns, I.C., Kleinhanns, I.C., Kreissig, K., Kamber, B.S., Meisel, T., Nagler, T.F., Kramers, J.D., 2002. Combined chemical separation of Lu, Hf, Sm, Nd, and REEs from a single rock digest: Precise and accurate isotope Determinations of Lu-Hf and Sm-Nd using multicollector-ICPMS. Analytical Chemistry 74, 67-73.
    Klemme, S., Blundy, J.D., Wood, B.D., 2002. Experimental constraints on major and trace element partitioning during partial melting of eclogite. Geochimica et Cosmochimica Acta 66, 3109-3123.
    Kogiso T., Hirose K. and Takahashi E. 1998. Melting experiments on homogeneous mixtures of peridotite and basalt: application to the genesis of ocean island basalts. Earth Planet. Sci. Lett. 162, 45-61.
    Kogiso T. and Hirschmann M. M. 2001. Experimental study of clinopyroxenite partial melting and the origin of ultra-calcic melt inclusions. Contrib. Mineral. Petrol. 142, 347-360.
    Kogiso, T., Hirschmann, M.M., Frost, D.J., 2003. High-pressure partial melting of garnet pyroxenite: possible mafic lithologies in the source of ocean island basalts. Earth and Planetary Science Letters 216, 603-617.
    Kogiso, T. and Hirschmann, M.M., 2006. Partial melting experiments of bimineralic eclogite and the role of recycled mafic oceanic crust in the genesis of ocean island basalts. Earth and Planetary Science Letters 249, 188–199.
    Koppers, A.A.P., 2002. ArArCALC-software for Ar~(40)/Ar~(39) age calculations. Computers & Geosciences 28, 605-619.
    Kr?ner, A., Zhang, G., Sun, Y., 1993. Granulites in the Tongbai area, Qinling belt, China, geochemistry, petrology, single zircon geochronology, and implications for the tectonic evolution of eastern Asia. Tectonics 12, 245-255. Kushiro, I., 2001. Partial melting experiments on peridotite and origin of mid-ocean ridge basalts. Annual Review of Earth and Planetary Sciences 29, 71-107. Langmuir, C.H., Klein, E.M., Plank, T., 1992. Petrological systematics of mid-ocean ridge basalts: constraints on melt generation beneath ocean ridge. American Geophysical Union Geophysical Monograph Series 71, 81-180. Le Bas, M.J., Le Maitre, R.W., Streckeisen, A., Zanettin, B., 1986. A chemical classification of volcanic rocks based on the total alkali-silica diagram. Journal of Petrology 27, 745-750.
    Le Fevre, B., Pin, C., 2001. An extraction chromatography method for Hf separation prior to isotopic analysis using multiple collection ICP-mass spectrometry. Analytical Chemistry 73, 2453-2460.
    Leeman W P. Fitton J G. 1989. magmatism associated with lithospheric exrtension: introduction. J. geophys. Res. , 94: 7682-7684
    Li, Z.X., Li, X.H., 2007. Formation of the 1300-km-wide intracontinental orogen and postorogenic magmatic province in Mesozoic South China: a flat-slab subductionmodel. Geology 35, 179-82
    Liew, T.C. and Hofmann, A.W., 1988. Precambrian crustal components, plutonic associations, plate environment of the Hercynian fold belt of central Europe; indications from a Nd and Sr isotopic study. Contrib. Mineral. Petrol. 98, 129-138.
    Liou, J.G., Ernst, W.G., Zhang R.Y., Tsujimori, T., Jahn, B.-m., 2009. Ultrahigh-pressure minerals and metamorphic terranes– The view from China. Journal of Asian Earth Science 35, 199-231.
    Liu, C.-Q., Masuda, A., Xie, G.-H., 1994. Major- and trace-element compositions of Cenozoic basalts in eastern China: Petrogenesis and mantle source. Chemical Geology 114, 19-42.
    Liu, Y.S., Gao, S., Kelemen, P.B., Xu, W.L., 2008. Recycled crust controls contrasting source compositions of Mesozoic and Cenozoic basalts in the North China Craton. Geochimica et Cosmochimica Acta 72, 2349-2376.
    Luhr, J.F., Pier, J.G., Aranda-Gómez, J.J., Podosek, F., 1995. Crustal contamination in early Basin-and-Range hawaiites of the Los Encinos Volcanic Field, central Mexico. Contributions to Mineralogy and Petrology 118, 321-339.
    Lustrino, M., 2005. How the delamination and detachment of lower crust can influence basaltic magmatism. Earth-Science Reviews 72, 21–38.
    Mattey, D P, Taylor, W R., Green D H and Pillinger C T. 1990. Carbon isotopic fractionation between CO2 vapour, silicate and carbonate melts: An experimental study to 30 kbar. Contrib. Mineral. Petrol. 104: 490-505.
    Mattey, D P, 1991. Carbon dioxide solubility and carbon isotope fractionation in basaltic melt. Geochimica et Cosmochimica Acta 55: 3467-3473
    Macpherson, C.G., 1995. New analytical approaches to the oxygen and carbon stable isotope geochemistry of some subduction-related lavas. Ph.D. Thesis, University of London, 206pp.
    Macpherson, C.G., Gamble, J.A. and Mattey, D.P., 1998. Oxygen isotope geochemistry of lavas from an oceanic to continental arc transition, Kermadec-Hikurangi margin, SW Pacific. Earth Planet. Sci. Lett. 160, 609-621.
    McDonough, W.F., Sun, S.-S., 1995. The composition of the Earth. Chemical Geology 120, 223-253. McDonald, G.A., Katsura, T., 1964. Chemical composition of Hawaiian Lavas. Journal of Petrology 5, 82-133.
    McKenzie D. and Bickle M. J., 1988. The volume and composition of melt generated by extension of the lithosphere.J. Petrol. 29, 625–679.
    McKenzie D., 1989. Some remarks on the movement of small melt fractions in the mantle. Earth Planet. Sci. Lett.95, 53–72.
    McKenzie D. and O’Nions R. K., 1991. Partial melt distributions from inverstion of rare earth element concentrations.J. Petrol. 32, 1021–1091.
    Meng, Q.R., Zhang, G.W., 1999. Timing of the collision of the North and South China blocks: controversy and reconciliation. Geology 27, 123-126.
    Menzies, M.A., Leeman, W.P., Hawkesworth, C.J., 1983. Isotope geochemistry of Cenozoic volcanic rocks reveals mantle heterogeneity below western USA. Nature 303, 205– 209.
    Menzies M A, Kyle P R. 1990. Continental volcanism: a crust-mantle probe. In: Nixon P H, ed. Continental mantle. Oxford Science publications, 157-177.
    Menzies, M.A., Fan, W.M., Zhang, M., 1993. Palaeozoic and Cenozoic lithoprobes and the loss of N120 km of Archaean lithosphere, Sino–Korean craton, China. In: Prichard, H.M., Alabaster, T., Harris,
    N.B.W., Neary, V.R. (Eds.), Magmatic Processes and Plate Tectonics, Geol. Soc. Spel. Pub., vol. 76, pp. 71– 78.
    Menzies, M.A., Xu, Y.G., 1998. Geodynamics of the North China Craton. In: Flower, M., Chung, S.L., Lo, C.H., Lee, T.Y. (Eds.), Mantle Dynamics and Plate Interactions in East Asia, Am. Geophys. Union. Geody. Series, vol. 27, pp. 155-165.
    Menzies, M., Xu, Y.G., Zhang, H.F., Fan, W.M., 2007. Integration of geology, geophysics and geochemistry: a key to understanding the North China Craton. Lithos 96, 1-21.
    Mohlzahn, M., Reisberg, L., W?rner, G., 1996. Os, Sr, Nd, Pb, O isotope and trace element data from the Ferrar flood basalts, Anartica: evidence for an enriched subcontinental lithospheric source. Earth and Planetary Science Letters 144, 529-546.
    Muenker, C., Weyer, S., Scherer, E. and Mezger, K., 2001. Separation of high field strength elements (Nb, Ta, Zr, Hf) and Lu from rock samples for MC-ICPMS measurements. Geochem. Geophys. Geosyst. 2, No. 2001GC000183
    Myse B O, kushiro I. 1977. Compositional variations of coexisting phases with degree of melting of peridotite in the upper mantle. Am. Mineral., 62:843-865.
    Nicholson, N. and D. Latin., 1992. Olivine tholeiites from Krafla, Iceland: evidence for variations in melt fraction within a plume. J. Petrol, 33, 1105-1124.
    Nowell, G.M., Kempton, P.D., Noble, S.R., Fitton, J.G., Saunders, A.D., Mahoney, J.J., Taylor, R.N., 1998. High precision Hf isotope measurements of MORB and OIB by thermal ionisation mass spectrometry: insights into the depleted mantle. Chemical Geology 149, 211-233.
    O'Neil J R.1987. Preservation of H,C,and O isotopic ratios in the low temperature environment. In: T K Kyser (editor), Stable Isotope Geochemistry of Low Temperature Fluids. Short Course Handbook, Mineral. Assoc.Can., 13:85-128.
    O'Reilly, S.Y., Griffin, W.L., 2006. Imaging chemical and thermal heterogeneity in the sub-continental lithospheric mantle with garnets and xenoliths: geophysical implications. Tectonophysics 416, 289–309.
    Parman, S.W., Grove, T.L., 2004. Harzburgite melting with and without H2O: Experimental data and predictive modeling. Journal of Geophysical Research 109(B02201), 1-20.
    Paul, D. and Skrzypek, G., 2006. Flushing time and storage effects on the accuracy and precision of caron and oxygen isotope ratios of sample using the GasbenchⅡtechnique. Rapid Commun. Mass Spectr. 20, 2033-2040.
    Peng, Z.C., Zartman, R.E., Futa, K., Chen, D.G., 1986. Pb-, Sr- and Nd-isotopic systematics and chemical characteristics of Cenozoic basalts, eastern China. Chemical Geology 59, 3-33.
    Pertermann, M., Hirschmann, M.M., 2003. Partial melting experiments on a MORB-like pyroxenite between 2 and 3 GPa; constraints on the presence of pyroxenite in basalt source regions from solidus location and melting rate. Journal of Geophysical Research B108, No.2125.
    Qi, Q., Taylor, L.A., Zhou, X.M., 1994. Geochemistry and petrogenesis of three series of Cenozoic basalts from southeastern China. International Geology Review 36, 435-451.
    Paul D , Skrzypek G., 2006. Flushing time and storage effects on the accuracy and precision of carbon and oxygen isotope ratios of sample using the Gasbench II technique .Rapid commun. Mass Spectrom.,20:2033-2040.
    Rapp, R.P., Watson, E.B., Miller, C.F., 1991. Partial melting of amphibolite/eclogite and theorigin of Archean trondhjemites and tonalites. Precambrian Research 51, 1-25.
    Rapp, R.P., Shimizu, N., Norman, M.D., Applegate, G.S., 1999. Reaction between slab-derived melts and peridotite in the mantle wedge: experimental constraints at 3.8 GPa. Chemical Geology 160, 335-356.
    Rapp, R.P., Shimizu, N., Norman, M.D., 2003. Growth of early continental crust by partialmelting of eclogite. Nature 425, 605-609.
    Ray J S, Ramesh R, Pande K. 1999. Carbon isotopes in Kerguelen plume-derived carbonatites:evidence for recycled inorganic carbon. EPSL, 170:205-214.
    Révész K M and Landwehr J M. 2002.δC~(13) andδO~(18) isotopic composition of CaCO_3 measured by continuous flow isotope ratio mass spectrometry: statistical evaluation and verification by application to Devils Hole core DH-11 Calcite. Rapid commun. Mass Spectrom. 16:2102.
    Renne, P.R., Swisher, C.C., Deino, A.L., Karner, D.B., Owens, T.L., DePaolo, D.J., 1998. Intercalibration of standards, absolute ages and uncertainties in Ar~(40)/Ar~(39) dating. Chemical Geology 145, 117-152
    Reyes E., Villar L.P.d., Delgado A., Cortecci G. et al., 1998. Carbonatation processes at the El Berrocal natural analogue granitic system(Spain): inferences from mineralogical and stable isotope studies. Chemical Geology, 150:293-315.
    Rudnick, R. and Gao, S., 2003. Composition of the Continental Crust. Treatise on Geochemistry 3, 1-64. Salters, V.J.M., Stracke, A., 2004. Composition of the depleted mantle. Geochemistry Geophysics Geosystems 5, Q05004, doi: 10.1029/2003GC000597.
    Santos R V, Clayton R N. 1995. Variations of oxygen and carbon isotopes in carbonatites: A study of Brazilian alkaline complexes. Geochim. Cosmochim. Acta 59, 1339-1352.
    Scambelluri M, Vannucci R, Stefano A D, Preite-Martinez M, Rivalenti G. 2009. CO_2 fluid and silicate glass as monitors of alkali basalt/peridotite interaction in the mantle wedge beneath Gobernador Gregores, Southern Patagonia. Lithos 107,121-133.
    Schimidberger, S.S., Simonetti, A., Francis, D., Gariepy, C., 2002. Probing Archean lithosphere using theLu-Hf isotope systematics of peridotite xenoliths from Somersel Island Kimnerlites, Canada. Earth and Planetary Science Letters 197, 245-259.
    Sen C. and Dunn T. 1994. Dehydration melting of a basaltic composition amphibolite at 1.5 and 2.0 Gpa: implications for the origin of adakites. Contrib. Mineral. Petrol. 117, 394-409.
    Shirey S. B. and Walker R. J., 1998. The Re–Os isotope system in cosmochemistry and high-temperature geochemistry. Ann. Rev. Earth Planet. Sci. 26, 423–500.
    Silver, P.G., Behn, M.D., Kelley, K., Schmitz, M., Savage, B., 2006. Understanding cratonic flood basalts. Earth and Planetary Science Letters 245, 190–201.
    Singer, B.S., Brophy, J.G. and O'Neill, J.R., 1992. Oxygen isotope constraints on the petrogenesis of Aleutian arc magmas. Geology 20, 367-370.
    Skrzypek G and Paul D., 2006.δC~(13) analysis of calcium carbonate:comparison between the Gasbench and elemental analyzer techiques. Rapid Commun. Mass Spectrom. 20, 2915-2920.
    Song, Y., Frey, F.A., Zhi, X., 1990. Isotopic characteristics of Hannuoba basalts, eastern China: Implications for their petrogenesis and the composition of subcontinental mantle. Chemical Geology 88, 35-52.
    Sobolev, A.V., Hofmann, A.W., Sobolev, S.V., Nikogosian, I.K., 2005. An olivine-free mantle source of Hawaiian shield basalts. Nature 434, 590-597.
    Sobolev, A.V., Hofmann, A.W., Kuzmin, D.V., Yaxley, G.M., Arndt, N.T., Chung, S.-L., Danyushevsky, L.V., Elliott, T., Frey, F.A., Garcia, M.O., Gurenko, A.A., Kamenetsky, V.S., Kerr, A.C., Krivolutskaya, N.A., Matvienkov, V.V., Nikogosian, I.K., Rocholl, A., Sigurdsson, I.A., Sushchevskaya, N.M., Tekley, M., 2007. The amount of recycled crust in sources of mantle-derived melts. Science 316, 412-417.
    Spotl C, Vennemann T W. 2003. Continuous-flow isotope ratio mass spectrometric analysis of carbonate minerals. Rapid commun. Mass Spectrom. 17, 1004.
    Steiger, R.H., Jaeger, E., 1977. Subcommission on geochronology: convention on the use of decay constants in geo- and cosmochronology. Earth and Planetary Science Letters 36, 359-362.
    Stewart, K., Rogers, N., 1996. Mantle plume and lithospheric contributions to basalts from southern Ethopia. Earth and Planetary Science Letters 139, 195-211.
    Sun, S.-s., McDonough, W.F., 1989. Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes. Geological Society Special Publications 42, 313-345.
    Takahashi, E., Kushiro, I., 1983. Melting of a dry peridotite at high pressures and basalt magma genesis. American Mineralogist 68, 859-879.
    Taylor H P, Frechen J, Degens E T. 1967. Oxygen and carbon isotope studies of carbonatites from the Laacher See district, West Germany, and the Aln? district ,Sweden. Geochim.Cosmochim. Acta 31, 397-430.
    Taylor, S.R., McLennan, S.M., 1985. The Continental Crust: Its Composition and Evolution. Blackwell Scientific Publication, pp. 209-230.
    Tang, Y.-J., Zhang, H.-F., Ying, J.-F., 2006. Asthenosphere-lithospheric mantle interaction in an extensionalregime: Implication from the geochemistry of Cenozoic basalts from Taihang Mountains, North China Craton. Chemical Geology 233, 309-327.
    Tatsumi, Y., Eggins, S., 1995. Subduction Zone Magmatism. Blackwell Science, Oxford.211 pp.
    Thirlwall, M.F., Jenkins, C., Vroon, P.Z. and Mattey, D.P., 1997. Crustal interaction during construction of ocean islands: Pb-Sr-Nd-O isotope geochemistry of the shield basalts of Gran Canaria, Canary Islands. Chem. Geol. 135, 233-262.
    Tiepolo, M., Vannucci, R., Oberti, R., Foley, S., Bottazzi, P., Zanetti, A., 2000. Nb and Ta incorporation and fractionation in titanian pargasite and kaersutite: crystal-chemical constraints and implications for natural systems. Earth and Planetary Science Letters 176, 185-201.
    Turner, S., Hawkesworth, C., 1995. The nature of the sub-continental mantle: constraints from the major-element composition of continental flood basalts. Chemical Geology 120, 295-314.
    Turner S., Hawkesworth C. J., Gallagher K., Stewart K., Peate D. W., and Mantovani M., 1996. Mantle plumes, flood basalts, and thermal models for melt generation beneath continents: assessment of a conductive heating model and application to the Parana0. J. Geophys. Res. 101, 11503–11518.
    Valley, J.W., Kitchen, N., Kohn, M.J., Niendorf, C.R., Spicuzza, M.J., 1995. UWG-2, a garnet standard for oxygen isotope ratio: strategies for high precision and accuracy with laser heating. Geochimica et Cosmochimica Acta 59, 5223-5231.
    Van Keken P.E, Hauri E.H, Ballentine C.J., 2002. Mantle mixing: the generation, preservation, and destruction of chemical heterogeneity. Ann. Rev. Earth Planet. Sci. 30, 493-525
    Wallace, M., Green, D.H., 1999. The effect of bulk rock composition on the stability of amphibole in the upper mantle: Implications for solidus positions and mantle metasomatism. Mineralogy and Petrology 44, 1-19.
    Walter, M.J., 1998. Melting of garnet peridotite and the origin of komatiite and depleted lithosphere. Journal of Petrology 39, 29-60.
    Walter, M.J., 1998. Melting of garnet peridotite and the origin of komatiite and depleted lithosphere. J. Petrol. 39, 29-60.
    Wang, Z.R., Kitchen, N.E., Eiler, J.M., 2003. Oxygen isotope geochemistry of the second HSDP core. Geochemistry Geophysics Geosystems 4, No. 8712
    Weaver B L. 1991. The origin of ocean island basult end-member compositon: trace element and isotopic constraints. Earth planet. Sci. Lett. 104, 381-397
    White W M. 1985. Sources of oceanic basalts: radiogenic isotopic evidence. Geology 13, 115-118
    White, W.M., Hofmann, A.W., Puchelt, H., 1987. Isotope geochemistry of Pacific mid-ocean ridge basalt. Journal of Geophysical Research 92, 4881-4893.
    White R. S., 1988. The Earth’s crust and lithosphere. J. Petrol. (Spec. Lithosphere Issue), 1–10.
    Wilson M. 1989. Igneous Pertrogenesis: A Global Tectonic Approach. London: Chapman and Hall.
    Winter J. D., 2001. An Introduction to Igneous and Metamorphic Petrology. NJ: Prentice Hall, Upper Saddle River.
    Workman, R.K., Hart, S.R., 2005. Major and trace element composition of the depleted MORB mantle (DMM). Earth and Planetary Science Letters 231, 53– 72.
    Wu, F.Y., Walker, R.J., Yang, Y.H., Yuan, H.L., Yang, J.H., 2006. The chemical-temporal evolution of lithospheric mantle underlying the North China Craton. Geochimica et Cosmochimica Acta 70, 5013-5034.
    Wu, Y.-B., Hanchar, J.M., Gao, S., Sylvester, P.J., Tubrett, M., Qiu, H.-N., Wijbrans, J.R., Brouwer, F.M., Yang, S.-H., Yang, Q.-J., Liu, Y.-S., Yuan, H.L., 2009. Age and nature of eclogites in the Huwan shear zone, and the multi-stage evolution of the Qinling-Dabie-Sulu orogen, central China. Earth and Planetary Science Letters, 277, 345-354
    Wyllie, P.J., 1984. Constraints imposed by experimental petrology on pissible and impossible magma sources and products. Philosophical Transaction of the Royal Society A310, 439-456.
    Xiong, X.L., Adam, T.J., Green, T.H., 2005. Rutile stability and rutile/melt HFSE partitioning during partial melting of hydrous basalt: implications for TTG genesis. Chemical Geology 218, 339-359.
    Xu, J.W., Zhu, G., Tong, W.x., Cui, K.R.m., Lui, Q., 1987. Formation and evolution of the Tangcheng-Lujiang wrench fault system: A major shear to the northwest of the Pacific Ocean. Tectonophysics 134, 273-310.
    Xu, J W., Zhu, G., 1994. Tectonic models of the Tan-Lu fault zone, eastern China. International Geology Review 36, 771-784.
    Xu, Y.G., Ma, J.L., Frey, F.A., Feigenson, M.D., Liu, J.F., 2005. Role of lithosphere-asthenosphere interaction in the genesis of Quaternary alkali and tholeiitic basalts from Datong, western North China Craton. Chemical Geology 224, 247-271.
    Yaxley, G.M., Green, D.H., 1998. Reactions between eclogite and peridotite: mantle refertilisation by subduction of oceanic crust. Schweizerische Mineralogische et Petrologische Mitteilung 78, 243-255.
    Yaxley, G.M., 2000. Experimental study of the phase and melting relations of homogeneous basalt + peridotite mixtures and implications for the petrogenesis of flood basalts. Contributions to Mineralogy and Petrology 139, 326-338.
    Zeng, G., Chen, L.-H., Xu, X.-S., Jiang, S.-Y., Hofmann, A.W., 2010. Carbonated mantle sources for Cenozoic intra-plate alkaline basalts in Shandong, North China. Chemical Geology 273, 35-45.
    Zha X.-P., Zhao Y.-Y., Zheng Y.-F., 2010. An online method combining a Gasbench II with continuous flow isotope ratio mass spectrometry to determine the content and isotopic compositions of minor amounts of carbonate in silicate rock. Rapid Commun. Mass Spectrom. 24, 2217-2226.
    Zhai, X., Day, H.W., Hacker, B.R., You, Z., 1998. Paleozoic metamorphism in the Qinling orogen, Tongbai mountains, central China. Geology 26, 371-374.
    Zhang, H.-F., Gao, S., Zhang, B.-R., Luo, T.-C., Ling, W.-L., 1997. Pb isotopes of granitoids suggest Devonian accretion of the Yangtze (South China) craton to the North China craton. Geology 25, 1015-1018.
    Zhang, J.-J., Zheng, Y.-.F., Zhao Z.-F. 2009. Geochemical evidence for interaction between oceanic crust and lithospheric mantle in the origin of Cenozoic continental basalts in east-central China, Lithos 110,305-326.
    Zheng, J.P., O’Reilly, S.Y., Griffin, W.L., et al., 1998. Nature and evolution of Cenozoic lithospheric mantle beneath Shandong peninsula, Sino–Korean craton, eastern China. Int. Geol. Rev. 40, 471-499.
    Zheng, Y-F. 1991. Calculation of oxygen isotope fractionation in metal oxides. Geochim. Cosmochim. Acta 55, 2299-2307.
    Zheng, Y.-F., 1993a. Calculation of oxygen isotope fractionation in anhydrous silicates. Geochimica et Cosmochimica Acta 55, 2299-2307.
    Zheng, Y-F. 1993b. Calculation of oxygen isotope fractionation in anhydrous silicate minerals. Geochim. Cosmochim. Acta 57, 1079-1091.
    Zheng, Y.-F., 1997. Prediction of high-temperature oxygen isotope fractionation factors between mantle minerals. Physics and Chemistry of Minerals 24, 356-364.
    Zheng, Y.-F., Fu, B., 1998. Estimation of oxygen diffusivity from anion porosity in minerals. Geochemical Journal 32, 71-89.
    Zheng, Y.-F., Fu, B., Li, Y., Xiao, Y., and Li, S., 1998a. Oxygen and hydrogen isotope geochemistry of ultrahigh-pressure eclogites from the Dabie Mountains and the Sulu terrane. Earth Planet. Sci. Lett. 155, 113-129.
    Zheng, Y.-F., Fu, B., Gong, B., Wang, Z.-R., 1998b. Carbon-isotope anomaly in marble associated with eclogites from the Dabie Mountains in China. J. Geol. 106, 97-104.
    Zheng, Y.-F., Gong B., Li Y.-L., Wang Z.R., Fu B., 2000. Carbon concentrations and isotopic ratios of eclogites from the Dabie and Sulu terranes in China. Chemical Geology 168, 291-305.
    Zheng, Y.-F., Wang, Z.-R., Li, S.-G., Zhao, Z.-F., 2002. Oxygen isotope equilibrium between eclogite minerals and its constraint on mineral Sm–Nd chronometer. Geochim. Cosmochim. Acta 66, 625-634.
    Zheng, Y.-F., Fu, B., Gong, B., Li, L., 2003. Stable isotope geochemistry of ultrahigh pressure metamorphic rocks from the Dabie-Sulu orogen in China, implications for geodynamics and fluid regime. Earth Science Review 62, 105–161.
    Zheng, J.P., Griffin, W.L., O'Reilly, S.Y., Yang, J.S., Li, T.F., Zhang, M., Zhang, R.Y., Liou, J.G., 2006a. Mineral chemistry of peridotites from Paleozoic, Mesozoic and Cenozoic lithosphere: Constraints on mantle evolution beneath eastern China. Journal of Petrology 47, 2233-2256.
    Zheng, Y.-F., Zhao, Z.-F., Wu, Y.-B., Zhang, S.-B., Liu, X.M., Wu, F.-Y., 2006b. Zircon U-Pb age, Hf and O isotope constraints on protolith origin of ultrahigh-pressure eclogite and gneiss in the Dabie orogen. Chemical Geology 231, 135-158.
    Zheng, Y.-F., 2008. A perspective view on ultrahigh-pressure metamorphism and continental collision in the Dabie–Sulu orogenic belt. Chinese Science Bulletin 53, 3081-3104.
    Zheng, Y.-F., Wu, F.-Y., 2009. Growth and reworking of cratonic lithosphere. Chinese Science Bulletin 54, 3347-3353.
    Zheng, Y.-F., Chen, R.-X., Zhao, Z.-F., 2009a. Chemical geodynamics of continental subduction-zone metamorphism: insights from studies of the Chinese Continental Scientific Drilling (CCSD) core samples. Tectonophysics 475, 327-358.
    Zheng, Y.-F., Ye, K., Zhang, L.-F., 2009b. Developing the plate tectionics from oceanic subduction to continental collision. Chinese Science Bulletin 54, 2549-2555.
    Zhi, X., Song, Y., Frey, F.A., Feng, J., Zhai, M., 1990. Geochemistry of Hannuoba basalts, eastern China: constraints on the origin of continental alkalic and tholeiitic basalt. Chemical Geology 88, 1-33.
    Zhou, X.-H., Armstrong, R.L., 1982. Cenozoic volcanic rocks of eastern China, secular and geographic trends in chemistry and strontium isotopic composition. Earth and Planetary Science Letters 58, 301-329.
    Zindler, A., Hart, S., 1986. Chemical geodynamics. Annual Review on Earth and Planetary Sciences 14, 493-571.
    Zou, H., Zindler, A., Xu X.S., Qi, Q., 2000. Major, trace element, and Nd, Sr and Pb isotope studies of Cenozoic basalts in SE China; mantle sources, regional variations, and tectonic significance. Chemical Geology 171, 33-47.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700