用户名: 密码: 验证码:
汶川Ms 8.0地震后川西地区的气体地球化学
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
2008年5月12日汶川Ms8.0地震给人民生命财产带来巨大的损失。减轻地震灾害的关键之一是对地震作出准确的预测。准确地震预测需要对地震的孕育和发生机理有清楚的认识。深部流体对地震的孕育和发生起很重要的作用;溢到地表的流体携带了大量来自深部的信息。汶川Ms8.0地震后,开展震中及其周边地区的气体地球化学研究,获取与汶川Ms8.0地震相关的深部地球化学信息,对认识汶川Ms8.0地震及其余震具有重要的意义。
     于2008年6月、2008年10月和2009年6月,在川西地区32个温泉点进行3次气体重复采样,测量了96个温泉气体样品的气体组份、氦同位素和氖同位素比值(~3He/~4He(R)和~(20)Ne/~(22)Ne)、~(21)Ne/~(22)Ne)、二氧化碳的稳定碳同位素组成(δ~(13)C_(CO2) PDB‰);同期,在汶川Ms8.0地震地表破裂带上8个地点,三次重复测量了土壤气体中He、H_2、CO_2、CH_4、O_2、N_2、Rn和Hg的浓度(2008年7月、2008年11月、2009年7月),共取得828个土壤气测点浓度数据。
     根据三次测量的32个温泉气体的组分和氦、氖、碳同位素分析数据,对川西主要地震带进行了气体地球化学研究。为了讨论川西温泉气体地球化学演化,将所获数据与2001年测量的~3He/~4He值、δ~(13)C_(CO2)值进行了对比分析。利用~(20)Ne/~(22)Ne)-~(21)Ne/~(22)Ne、~3He/~4He-~4He/~(20)Ne、CO2/~3He-~3He/~4He、δ~(13)C_(CO2) -N_2、δ~(13)C_(CO2) -CO_2、和CH_4/~3He-~3He/~4He等指标判定了研究区温泉气体的来源;同时利用~3He/~4He值与大地热流值的关系,计算了川西地区大地热流值。研究表明:汶川Ms8.0地震时,在川西鲜水河断裂带和岷江断裂带,有含大量He和CO_2的幔源流体涌入地壳,与壳源流体混合,使温泉气体中~3He/~4He和δ~(13)C_(CO2)值大幅度上升。在康定地区R/Ra(Ra为大气的~3He/~4He)最高达到5.3Ra,幔源氦的贡献率最高达到44.1%;随着时间推移,幔源流体供给逐渐减少,壳源流体中放射成因的He和有机成因的CO_2在温泉气体中相对含量增加,~3He/~4He (Ra)值、δ~(13)C_(CO2)值逐渐减小。在第三次测量时,大部分温泉恢复到汶川Ms8.0地震前的地下流体的平衡状态;但是,在鲜水河断裂带上康定地区二道桥和灌顶温泉仍然有大量来自幔源的He和CO_2。~3He/~4He值和大地热流值的空间分布与川西下地壳的高导低速层的分布有很好的一致性。在龙门山断裂带上的汶川地震台测点,~3He/~4He值也有明显升高,幔源氦贡献率最高达到30%。根据以上结果推测,幔源流体上涌可能对汶川Ms8.0地震孕育和发生起到很重要的作用。
     汶川Ms8.0地震地表破裂带土壤气体中He、H_2、CO2、O_2、N_2、Rn和Hg的浓度存在明显的时空变化。结果表明:土壤气中He、H_2、CO_2、Rn浓度和N_2/O_2值在汶川Ms8.0地震陡坎的附近有明显高值异常。土壤气中He和H_2的浓度异常幅度随着余震强度的衰减而降低。在三次测量当中,土壤气中的He和H_2的最大浓度(40和279.4 ppm)都出现在靠近震中的地段。土壤气中的CO_2、Rn和Hg浓度的时空变化在地震破裂带南部和北部存在明显差异;土壤气中的He和H_2的浓度高的区域,地震陡坎垂直位移也较大。汶川Ms8.0地震破裂带土壤气中的He、H_2、CO_2、Rn和Hg的浓度异常可能与余震活动和区域应力场的变化有关。
The Wenchuan Ms 8.0 earthquake occurred on 12 May 2008 killed about 100 thousand people, left millions of homelessness and destroyed many towns. To accurately predict earthquake is one of the most important measurements for mitigating disaster of earthquakes, which demands to understand the genetic process of earthquake and genetic mechanism of precursors. The fluids in the deep earth play a very important role in the pregnancy and occurrence of earthquake. The hot spring fluids carry a lot of information of the inner earth. After the Wenchuan Ms 8.0 earthquake, it is very significant to conduct investigation of gas geochemistry in the epicenter region and vicinity, which can obtain the information related to the Wenchuan Ms 8.0 earthquake.
     The spring gases were repeatedly sampled three times from 32 hot springs in western Sichuan in June and October 2008 and June 2009. The concentrations of chemical components, isotopic ratios of helium and neon (~3He/~4He(R), ~(20)Ne/~(22)Ne), ~(21)Ne/~(22)Ne) and stable carbon isotope ratio of carbon dioxide (δ~(13)C_(CO2)) of ninety six gaseous samples were measured. In the corresponding period, the concentrations of He, H_2, CO_2, CH_4, Rn, Hg and N_2/O_2 ratio in soil gas were measured repetitionally three times in the field at 828 sampling sites in eight short profiles across the seismic rupture zones in June and December 2008 and July 2009.
     The gas geochemical characteristics were investigated at the seismic belts in the western Sichuan according to the data of the chemical components, isotopic ratios of helium, neon and carbon of 96 samples. The evolution of gas geochemistry in the western Sichuan was revealed by comparison between the data of this study and those of 2000 reported in the literature (XX et al., 2006). The parameters of ~(20)Ne/~(22)Ne)-~(21)Ne/~(22)Ne, ~3He/~4He-~4He/~(20)Ne, CO2/~3He-~3He/~4He,δ~(13)C_(CO2)-N_2,δ~(13)C_(CO2)-CO_2 and CH_4/~3He-~3He/~4He indicated that the spring gases have the multiple sources. The heat flow values in the western Sichuan were calculated by the equation of correlating helium isotope ratio with heat flow.
     The data showed that a lot of fluids derived from the mantle containing a great deal of He and CO2 migrated into the crust and mixed with fluid originated from the crust when the Wenchuan Ms 8.0 earthquake occurred, which resulted in obvious increase of ~3He/~4He andδ~(13)C_(CO2) values of the hot spring gases in the Xianshuihe and Minjiang fault zones in the western Sichuan. The maximum of helium isotope ratio was 5.3 Ra (Ra=1.4×10~(-6), atmospheric ~3He/~4He), indicating 44.1% helium derived from the mantle in the Kangding district. As time goes by, contribution of the mantle fluids to the hot spring gradually decreased, but the crustal gas components, radiogenic helium and CO_2 from organic origin increased relatively. In the third measurement, values of ~3He/~4He andδ~(13)C_(CO2) became as large as those of 2000 in most hot springs. However, there were still a lot of mantle He and CO_2 at the Erdaoqiao and Guanding hot springs in Kangding county located in the Xianshuihe fault zone. The higher values of ~3He/~4He and heat flow were found in the region where the layers of high conductivity and low wave velocity exist in the lithosphere. The ~3He/~4He value observed at the Wenchuan Seismic Station in the Longmenshan fault zone obviously increased, indicating 30% of total helium was derived from the mantle. The geochemical data indicated that the mantle fluids upwelling into crust could play an important role in generation and occurrence of the Wenchuan Ms 8.0 earthquake.
     The concentrations of He, H_2, CO_2, O_2, N_2, Rn and Hg in soil gas indicated obviously temporal and spatial variations. The concentration anomalies of He, H_2, CO_2, O_2, N_2, Rn and Hg in soil gas occurred near the seismic scarps produced by the Wenchuan Ms 8.0 earthquake. The magnitudes of the He and H_2 anomalies decreased significantly with decreasing strength of the aftershocks with time. The maximum concentrations of He and H_2 (40 and 279.4 ppm, respectively) were found in three replications at the south part of the rupture zone in the epicenter region. The spatio-temporal variations of CO_2, Rn, and Hg concentrations in the north parts of the seismic rupture zone differed apparently from those in the south parts. The higher concentrations of He and H_2 in soil gas occurred near the segments of the rupture zone where vertical displacements were larger. The anomalies of He, H_2, CO_2, Rn, and Hg concentrations could be related to the variation in the regional stress field and the aftershock activities.
引文
Amponsah P, Banoeng-Yakubo B, Andam A, et al. 2008. Soil radon concentration along fault systems in parts of south eastern Ghana[J]. Journal of African Earth Sciences, 51: 39-48.
    Bai D, Unsworth M J, Meju M A, et al. 2010. Crustal deformation of the eastern Tibetan plateau revealed by magnetotelluric imaging[J]. Nature Geoscience, 3: 358-362.
    Baixeras C, Erlandsson B, Font L L, et al. 2001.Radon emanation from soil samples [J]. Radiation measurements, 34: 441-443.
    Ball T K, Cameron D G, Colman T B, et al. 1991. Behaviour of radon in the geological environments: a review[J]. Quarterly Journal of Engineering Geology and Hydrogeology, 24:169-182.
    Ballentine C J, Burnard P. 2002. Production of noble gases in thecontinental crust[J]. Reviews in Mineralogy and Geochemistry, 47: 481–538.
    Baubron J C Rigo A Toutain J P. 2002. Soil gas profiles as a tool to characterize active tectonic areas: the Jaut Pass example (Pyrenees France) [J]. Earth and Planetary Science Letters, 196: 69-81.
    Benkart J P, Baur H, Signer P, et al. 1993. He Ne and Ar from the solarwind and solar energetic particles in lunar ilmenites and pyroxenes[J]. Journal of Geophysical Research, 98: 13147-13162.
    Br(a|")uer K, Kampf H, Str(a|")uch G et al. 2003. Isotopic evidence (3He/4He, 13C)of fluid triggered intraplate seismicity[J]. Journal of Geophysical Research,108: 2070.
    Br(a|")uer K, K(a|")mpf H, NiedermannS, et al. 2008. Natural laboratory NW Bohemia: Comprehensive fluid studies between 1992 and 2005 used to trace geodynamic processes [J]. Geochemistry Geophysics Geosystem, 9: Q04018.
    Burchfiel B C, Chen Z, Liu Y, et al. 1995.Tectonics of the Longmen Shan and adjacent regions central China[J]. International Geology Review, 37 (8) : 661-735.
    Cappa F, Rutqvist J, Yamamoto K. 2009. Modeling crustal deformation and rupture processes related to upwelling of deep CO2-rich fluids during the 1965–1967 Matsushiro earthquake swarm in Japan[J]. Journal of Geophysical Research, 114: B10304.
    Carapezza M L, Granieri D. 2004. CO2 soil flux at Vulcano (Italy): comparison betweenactive and passive methods[J]. Applied Geochemistry, 19: 73–88.
    Chiodini G C, Cardelli A, Amato E, et al. 2004. Carbon dioxide earth degassing and seismogenesis in central and southern Italy[J]. Geophysical Research Letters, 31: L07615
    Chiodini G, Frondini F, Kerrik D M, et al.1999.Quantification of deep CO2 fluxes from central Italy. Examples of carbon balance forregional aquifers and of soil diffuse degassing [J]. Chemical Geology, 159: 205–222.
    Choi H S, Koh Y K, Bae D S, et al. 2005. Estimation of deep-reservoir temperature of CO2-rich springsin Kangwon district South Korea [J]. Journal of Volcanology andGeothermal Research, 77: 77–89.
    Chyi L L, Quick T J, Yang T F, et al. 2005. Soil gas radon spectra and earthquakes[J]. Terrestrial Atmospheric and Oceanic Sciences, 16: 763-774.
    Cicerone R D, Ebel J E, Britton J. 2009. A systematic compilation of earthquake precursors[J]. Tectonophysics, 476(3-4):371-396.
    Cigolini C, Laiolo M, Coppola D. 2007. Earthquake–volcano interactions detected from radon degassing at Stromboli (Italy) [J]. Earth and Planetary Science Letters, 257(3-4):511-525.
    Ciotoli G, Guerra M, Lombardi E, et al.1998. Soil gas survey for tracing seismogenic faults: a case study in the Fucino basin Central Italy [J]. Journal of geophysical research, 103:23781–23794.
    Ciotoli G, Lombardi S, Annunziatellis A. 2007. Geostatistical analysis of soil gas data in a high seismic intermontane basin: Fucino Plain central Italy [J]. Journal of geophysical research, 112: B05407.
    Dai J, Ni Y, Zou C, et al. 2009. Stable carbon isotopes of alkane gases from the Xujiahe coal measuresand implication for gas-source correlation in the Sichuan Basin SW China[J]. Organic Geochemistry, 40:638–646.
    De Leeuw G A M, Hilton D R, Güle? N, et al. 2010.Regional and temporal variations in CO2/3He, 3He/4He andδ13C along the North Anatolian FaultZone Turkey[J]. Applied Geochemistry, 25: 524-539.
    Deincs P, Harris J, Robinson D N. 1991. Carbon and oxygen isotope variations in diamond and graphite eclogites from Orapa Botswana and the nitrogen content of their diamonds[J] . Geochimica et Cosmochimica Acta, 55:515-524. .
    Deines P, Harris J W, Gurney J J. 1993. Depth-related carbon isotope and nitrogen concentration variability in the mantle below the Orapa Kimberlite Botswana Africa[J] . Geochimica et Cosmochimica Acta,57:2781-2796.
    Deines P. 1995. Sulfids inclusion chemistry and carbon isotopes of Africa diamonds[J]. Geochimica et Cosmochimica Acta,59:3173-3188.
    Densmore A L, Ellis M A, Li Y, et al. 2007. Active tectonics of the Beichuan and Pengguan faults at the eastern margin of the Tibetan Plateau[J]. Tectonics, 26: TC4005.
    Deyo B G, Robbins G A, Binkhors G K.1993. Use of portable oxygen and carbon dioxide detectors to screen soil gas for subsurface gasoline contamination[J]. Ground Water, 31(4):598-604.
    Dodson A, DePaolo D J, Kennedy BM. 1998. Helium isotopes in lithospheric mantle: evidence from Tertiary basaltsof the western USA[J]. Geochimica et Cosmochimica Acta, 62: 3775–3787.
    Do(g|(?))an T H, Sumino K, Nagao K, et al. 2009. Adjacent releases of mantle helium and soil CO2 from active faults: Observations from the Marmara region of the North Anatolian Fault zone Turkey[J]. Geochemistry Geophysics Geosystems, 10: Q11009.
    XX J, Cheng W, Zhang Y, et al. 2006. Helium and carbon isotopic compositions of thermal springs in the earthquake zone of Sichuan Southwestern China [J]. Journal of Asian Earth Sciences, 26:533-539.
    Dunai T, Baur H. 1995. Helium neon and argon systematics of the European subcontinental mantle: implications for its geochemical evolution[J].Geochimica et Cosmochimica Acta, 59: 2767– 2783.
    Duchkov A D, Rychkova K M, Lebedev V I, et al. 2010. Estimation of heat flow in Tuva from data on helium isotopes in thermal mineral springs [J]. Russian Geology and Geophysics, 51:209-219.
    Evans W C, Sorey M L, Kennedy B M, et al. 2001. High CO2 emissionsthrough porous media: transport mechanisms and implicationsfor flux measurement and fractionation[J]. Chemical Geology,177: 15–29.
    Famin V, Nakashima S, Boullier A,et al.2008. Earthquakes produce carbon dioxide in crustal faults[J]. Earth and Planetary Science Letters, 265(3-4): 487-497.
    Fu C, Yang T F, Du J, et al. 2008.Variations of helium and radon concentrations in soil gases from an active fault zone in southern Taiwan [J]. Radiation Measurements, 43:S348-S352.
    F(u|")ri E, Hilton D R, Brown K M, et al. 2009. Helium systematics of cold seep fluids at Monterey BayCalifornia USA:Temporal variations and mantle contributions[J].Geochemistry Geophysics Geosystems, 10: Q08013.
    Fytikas M, Lombardi S, Papachristou M, et al.1999. Investigation of the 1867 Lesbos (NE Aegean) earthquake fault pattern based on soil-gas geochemical data[J]. Tectonophysics, 308:249–261.
    Giammanco S, Gurrieri S, Valenza M, et al. 1998. Anomalous soil CO2 degassing in relation to faults and eruptive fissures on Mount Etna (Sicily Italy) [J]. Bulletin of Volcanology, 60: 252-259.
    Giammanco S, Parello F, Gambardella B, et al. 2007. Focused and diffuse effluxes of CO2 from mud volcanoes and mofettes south of Mt.Etna (Italy)[J].Journal of Volcanology and Geothermal Research, 165: 46–63.
    Giammanco S, Palano M, Scaltrito A, et al. 2008. Possible role of fluid overpressure in the generation of earthquake swarms in active tectonic areas: The case of the Peloritani Mts. (Sicily Italy)[J]. Journal of Volcanology and Geothermal Research, 178: 795–806.
    G(u|")le(?) N, Hilton D R, Mutlu H. 2002. Helium isotope variations in Turkey:relationship to tectonics volcanism and recent seismic activities[J]. Chemical Geology, 187: 129–142.
    Hinkle M.1994. Environmental conditions affecting concentrations of He, CO2, O2, and N2 in soil gases[J]. Applied Geochemistry, 9:53-63.
    Hoke L, Lamb S, Hilton D R, et al. 2000. Southern limit of mantle-derived geothermal helium emissions in Tibet: implications for lithospheric structure[J]. Earth and Planetary Science Letters, 180:297-308.
    Honda M, Patterson D B. 1999.Systematic elemental fractionation of mantle-derived helium neon and argon in mid-oceanic ridge glasses[J].Geochimica et Cosmochimica Acta, 63: 2863–2874.
    Italiano F, Martinelli G, Nuccio P M. 2001.Anomalies of mantle-derived heliumduring the 1997–1998 seismic swarm of Umbria-Marche Italy[J].Geophysical Research Letters, 28: 839–842.
    Italiano F, D'Alessandro W, Martelli M. 2007. Gas geochemistry as a tool to investigate the Earth's degassing through volcanic and seismic areas: The soul of the 8th International Conference on Gas Geochemistry [J]. Journal of Volcanology and Geothermal Research,165:1-4.
    Italiano F, Bonfanti P, Ditta M, et al.2009. Helium and carbon isotopes in the dissolved gases of Friuli Region (NE Italy): Geochemical evidence of CO2 production and degassing over a seismically active area[J]. Chemical Geology, 266: 76–85.
    Kameda J, Saruwatari K, Tanaka H, et al. 2004. Mechanisms of hydrogen generation during the mechanochemical treatment of biotite within D2O media[J]. Earth Planets Space, 56:1241–1245.
    Kennedy B M,Van Soest M C.2007. Flow of mantle fluids through the ductile lower crust: Helium trends[J]. Science, 318: 1433–1436.
    King C Y. 1980. Episodic Radon changes in subsurface soil gas along active faults and possible relation to earthquakes[J]. Journal of Geophysical Research, 85(B6): 3065-3078.
    King C, King B, Evans W C, et al. 1996. Spatial radon anomalies on active faults in California [J]. Applied Geochemistry, 11(4): 497-510.
    King C, Zhang W, Zhang Z. 2006. Earthquake-induced groundwater and gas changes[J]. Pure and Applied Geophysics, 163(4): 633-645.
    Lewicki J L, Evans W C, Hilley G E, et al.2003. Shallow soil CO2 flow along the San Andreas and Calaveras Faults, California, Journal of Geophysical Research, 108(B4), 2187, doi:10.1029/2002JB002141.
    Li H, Bernardi F, Michelini A. 2010. Surface wave dispersion measurements from ambient seismic noise analysis in Italy[J]. Geophysical Journal International, 180: 1242–1252.
    Marty B, Zimmermann L. 1999. Volatiles (He,C,N,Ar) in mid-ocean ridge basalts: Assessment of shallow-level fractionation and char-acterization of source composition[J]. Geochimica et Cosmochimica Acta, 63(21): 3619-3633.
    McLennan S M, Taylor S R. 1996. Heat flow and the chemical composition of continental crust[J]. Journal of Geology,104:369 -377.
    Monhamed, M. 2003. Soil radon survey for tracing active fault: a case study along Qena-Safaga road, Eastern Desert, Egypt[J]. Radiation Measurements,37(3):211-216.
    Morgan P, Sawka W N, Furlong K P. 1987. Background and implications of the linear heat flow-heat production relationship[J]. Geophysical research letters,14(3):248-251.
    Novelli P C, Lang P M, Masarie K A, et al. 1999. Molecular hydrogen in the troposphere: Global distribution and budget[J]. Journal of Geophysical Research, 104(D23): 427–444.
    Paonita A, Favara R, Nuccio P M, et al.2002. Genesis of fumarolic emissions as inferred by isotope mass balances: CO2 and water at Vulcano Island Italy[J]. Geochimica et Cosmochimica Acta, 66: 759–772.
    Pinault J L, Baubron J C. 1997. Signal processing of diurnal and semidiurnal variations in radon and atmospheric pressure: a new tool for accurate in situ measurement of soil gas velocity pressure gradient and tortuosity[J]. Journal of geophysical research 102 (B8): 18101–18120.
    Polyak B G, Khutorskoi M D, Kamenskii I L, et al.1994. Mass heat flow from the mantle in the Mongolian area (from helium isotope and geothermal data). Geokhimiya, 12: 1693–1705.
    Ran Y K, Shi X, Wang H, et al. 2010. The maximum coseismic vertical surface displacement and surface deformation pattern accompanying the MS 8.0 Wenchuan earthquake[J]. Chinese Science Bulletin , 55(2): 154–162.
    Rosenberg C L, Handy M R. 2005. Experimental deformation of partially melted granite revisited: Implications for the continental crust[J]. Journal of Metamorphic Geology, 23(1):19-28.
    Sano Y, Nakamura Y, Notsu K, et al. 1988. Influence of volcanic eruptionson helium isotope ratios in hydrothermal systems induced by volcaniceruptions[J]. Geochimica et Cosmochimica Acta, 52: 1305–1308.
    Sano Y, Takahata N, Igarashi G, et al.1998. Helium degassing related to the Kobe earthquake[J].Chemical Geology, 150: 171-179.
    Shapiro M H, Melvin J D, Tombrello T A, et al. 1982. Correlated radon and CO2 variations near the San-Andreas fault[J]. Geophysical Research Letters, 9: 503–506.
    Sinclair A J. 1991. A fundamental approach to threshold estimation in exploration geochemistry: Probability plots revisited[J]. Journal of Geochemical Exploration, 41:1-22.
    Sorey M L, Kennedy B M, Evans W C, et a1. 1993. Helium isotope and gas discharge variations associated with crustal unrest in long Valley Caldra,California[J]. Journal of Geophysical Research, 98(B9): 15871-15889.
    (S|")pi(?)ák A, Horálek J. 2001. Possible role of fluids in the process of earthquake swarm generation in the west Bohemia/Vogtland area[J]. Tectonophysics ,336: 151– 161.
    Tedesco D, Scarsi P. 1999.Chemical (He, H2, CH4, Ne, Ar, N2) and isotopic (He, Ne, Ar, C) variations at the Solfatara crater (southern Italy): mixing ofdifferent sources in relation to seismic activity[J]. Earth and Planetary Science Letters, 171: 465–480.
    Toutain J P, Baubron J C, Le Bronec J, et al. 1992. Continuous monitoring of distal gas emanations at Volcano southern Italy[J]. Bulletin of Volcanology, 54:147–155.
    Toutain J P, Baubron J C. 1999. Gas geochemistry and seismotectonics: a review[J]. Tectonophysics ,304: 1-27.
    Trieloff M, Kunz J, Clague D, et al. 2000. The nature of pristine noble gases in mantle plumes[J].Science, 288(12):1036-1038.
    Trieloff M, Kunz J. 2003. Isotope systematics of noble gases in theEarth’s mantle: possible sources of primordial isotopes andimplications for mantle structure[J].Physics of the Earth and Planetary Interiors,148: 13–38.
    Trull T, Nadeau S, Pineau F. 1993. C, He systematies hot spot xenoliths :implications for mantle carbon contents and carbon recycling[J] . Earth and Planetary Science Letters, 118:43-64.
    Umeda K, Sakagawa Y, Ninomiya A, et al. 2007. Relationship between helium isotopes and heat flux from hot springs in a non-volcanic region Kii Peninsula southwest Japan[J]. Geophysical Research Letters, 34: L05310.
    Umeda K A, Ninomiy A, McCrank G F. 2008. High 3He emanations from the source regions of recent large earthquakes central Japan[J].Geochemistry Geophysics Geosystems, 9: Q12003.
    Unsworth M J, Jones A G, Wei W, et al. 2005. Crustal rheology of the Himalaya and southern Tibet inferred from magnetotelluric data[J]. Nature, 438: 78-81.
    Vinay M, Choubey B K S. 1999. Relation between soil-gas radon variation and different lithotectonic units Garhwal Himalaya India[J]. Applied Radiation and Isotopes, 51:587-592.
    Wakita H, Nakamura Y, Kita I, et al. 1980. Hydrogen release: new Indicator of fault activity[J].Science, 210: 188-190.
    Walia V, Yang T F, Hong W L, et al. 2009. Geochemical variation of soil–gas composition for fault trace and earthquake precursory studies along the Hsincheng fault in NW Taiwan[J]. Applied Radiation and Isotopes, 67:1855-1863.
    Wang G, Liu C, Wang J, et al. 2006. The use of soil mercury and radon gas surveys to assist the detection of concealed faults in Fuzhou City China[J]. Environmental Geology, 51: 83–90.
    Wang Q C, Chen Z L, Zheng S H. 2009. Spatial segmentation characteristic of focal mechanism of aftershock sequence of Wenchuan Earthquake[J]. Chinese Science Bulletin, 54:2263-2270.
    Wang Z, Wang J, Chen Z, et al.2011. Seismic imaging crustal stress and GPS data analyses: Implications for the generation of the 2008 Wenchuan Earthquake (M7.9) China[J]. Gondwana Research, 19: 202–212.
    Weinlich F H, Faber E, Bou?kováA, et al. 2006. Seismically induced variations in MariánskéLázněfault gas composition in the NW Bohemian swarm quake region Czech Republic-A continuous gas monitoring[J]. Tectonophysics, 421(1-2): 89-110.
    Weise S M, Br?uer K, K?mpf H, et al. 2001. Transport of mantle volatiles through the crust traced by seismically released fluids: a natural experiment in the earthquakeswarm area Vogtland/NW Bohemia Central Europe[J].Tectonophysics, 336:137-150.
    Zhang J P, Quay D, Wilbur D O. 1995 Carbon fractionation during gas-water exchange and dissolution of CO2[J]. Geochimica et Cosmochimica Acta, 59: 107– 114.
    Zhang Z J, Wang Y H, Chen Y, et al. 2009. Crustal structure across Longmenshan fault belt from passive source seismic profiling[J]. Geophysical Research Letters, 36: L17310.
    Zhang Z J, Yuan X H, Chen Y, et al. 2010. Seismicsignature of the collision between the East Tibetan escape flow and the Sichuanbasin[J]. Earth and Planetary Sciences Letters, 292: 254–264.
    Zhao G, Wang L, Chen X, et al.2010. The active fault belts in eastern Tibet margin inferred using magnetotellurics[J]. Geologica acta, 8: 99-110.
    Zhu M, Zhou R, Yin D, et al. 2003. Stress emission of helium and argon in coal seams[J]. Science in China (Series D),46(6):547-560.
    曹玲玲,高安泰.2010.汶川MS 8.0地震引起的甘肃数字化水位、水温同震响应特征分析[J].地震学报,32(3): 290-299.
    车用太,鱼金子.2006.地震地下流体学[M].北京:气象出版社.
    车用太,刘成龙,鱼金子,等.2008.汶川Ms8.0地震的地下流体与宏观异常及地震预测问题的思考[J].地震地质,30(4):828-838.
    陈桂华,徐锡伟,于贵华,等.2009.2008年汶川8.0地震多断裂破裂的近地表同震滑移及滑移分解[J].地球物理学报.52(5):1384-1394.
    陈国光,计风桔,周荣军,等.2007龙门山断裂带晚第四纪运动性分段的初步研究[J].地震地质,29(3):657-673.
    陈岳龙,杨忠芳,赵志丹.2005.同位素地质年代学与地球化学[M].北京:地质出版社.
    储雪蕾,樊祺诚,刘若新.1995.中国东部新生代玄武岩中超镁铁质捕虏体的CO2包裹体的碳氧同位素初步研究[J ].科学通报,40 (1) :62-64.
    戴金星.1993.天然气碳氢同位素特征和各类天然气鉴别[ J ].天然气地球科学,4 (2):1 - 40.
    戴金星,截春森,宋岩.1994.中国一些地区温泉中天然气的地球化学特征及碳、氮同位素组成[J].中国科学,B辑,24:426-433.
    戴金星.1995.中国含油气盆地的无机成因气及其气藏[J].天然气工业,15(3):22-27.
    邓起东,陈社发,赵小麟.1994.龙门山及其邻区的构造和地震活动及动力学[J].地震地质, 16(4): 389-403.
    XXX,康春丽.2000.强地震前兆异常特征与深部流体作用探讨[J].地震,20(3):95-101.
    段振豪. 2010.地质流体状态方程[J].中国科学:D辑,4:393-413.
    范雪芳,王吉易,陆明勇.2009.汶川8.0级地震前典型流体中期前兆异常的初步研究[J].地震,29(1):132-140.
    范金城,梅长林.2005.数据分析[M].北京:科学出版社,6:21-23.
    高翔,何宏林,魏占玉,等.2008.汶川地震白沙河段最大地表水平位移量的成因分析[J].地震地质,30(4):1004-1011.
    郭啟良,王成虎,马洪生,等.2009.汶川Ms 8.0级大震前后的水压致裂原地应力测量[J].地球物理学报,2009,52(5):1395-1401.
    谷懿,葛良全,王广西,等.汶川地震震后大成都地区断裂带活动性氡气测量分析评价[J].工程地质学报, 2009, 17(3):642-27.
    韩渭宾,蒋国芳.2003.川青块体及其向南东方向的新证据[J].地震学报,25(2):175-178.
    何宏林,孙昭民,王世元,等.2008.汶川MS 8.0地震地表破裂带[J].地震地质,30(2):359-361.
    何仲太,马保起,田勤俭,等.2008.汶川8.0地震地表破裂平通镇段的变形特征[J].第四纪研究,28(5): 789-795.
    黄汲清,陈炳蔚.1987.中国及邻区特提斯海的演化[M].北京:地质出版社,109.
    江小林,安明智.2004.四川省地震监测志[D].成都:成都地图出版社.
    江在森,牛安福,王敏,等.2005.活动断裂带构造变形定量分析[J].地震学报,27(6):610-619.
    康春丽,XXX.1999.汞的地球化学特征及其映震效能[J].地质地球化学,27(1): 79-84.
    孔令昌.2001.3He/4He比值质谱计的研制与应用[J].矿物岩石地球化学通报,20(4):434-436.
    雷建设,赵大鹏,苏金蓉,等.2009.龙门山断裂带地壳精细结构与汶川地震发震机理[J].地球物理学报,52(2):339-345.
    李传友,宋方敏,冉永康.2004.龙门山断裂系北段第四纪活动性讨论[J].地震地质,26(2):248-258.
    李传友,叶建青,谢富仁,等.2008.汶川MS 8.0地震地表破裂带北川以北段的基本特征[J].地震地质,30(3): 683-696.
    李月.2008.松潘-阿坝及东缘龙门山地区构造特征及动力学分析[D].博士学位论文.北京:中国石油大学.
    李勇,孙爱珍.2000.龙门山造山带构造地层学研究[J].地层学杂志,24 (3) : 201-206.
    李勇,周荣军,Densmore A L,等.2008.映秀—北川断裂的地表破裂与变形特征[J].地质学报,82(12): 1688-1706.
    林茂柄,吴山.1991.龙门山推覆构造变形特征[J].成都地质学院学报,18 (1):46-54.
    林元武,翟盛华.1993.断层气CO2快速侧定法及其在地展研究中的应用[J].地球科学进展,65-67.
    林元武,王基华,高松盛.1998.断层气CO2测定新方法与张北-尚义6.2级地震预报[J].地震, 18(4), 353-357.
    刘飞.2006.松潘-甘孜及龙门山地区碎屑沉积岩地球化学研究[D].硕士学位论文.北京:中国地质大学(北京).
    刘刚,王先彬,文启彬.1998.张家口大麻坪碱性玄武岩内深源岩包体流体的碳同位素组成[J].科学通报,43 (19) :2098-2100.
    刘和甫,梁慧社,蔡立国,等.1994.川西龙门山冲断系构造样式与前陆盆地演化[J].地质学报,68 (2):100-117.
    刘树根.1993.龙门山冲断带与川西前陆盆地的形成演化[J].成都:成都科技大学出版社, 17-21.
    刘耀炜,任宏微.2009.汶川8.0级地震氡观测值震后效应特征初步分析[J].地震,29(1):121-131.
    刘再华,袁道先,何师意,等.2000.地热CO2 -水-碳酸盐岩系统的地球化学特征及其CO2来源[J].中国科学(D辑),30 (2) :209- 214.
    龙学明.1991.龙门山中北段地史发展的若干问题.成都地质学院学报, 18 (1) : 8-14.
    楼海,王椿镛,吕智勇,等.2008.2008年汶川Ms 8.0级地震的深部构造环境—远震P波接收函数和布格重力异常的联合解释[J].中国科学D辑:地球科学,38 (10):1207-1220.
    鲁人齐,王多义,左银辉,等.2008.四川松潘卡卡沟出露温泉及其遥感地质特征分析[J].四川地质学报,28(1):74-76.
    陆明勇,房宗绯,赵丽葵.2010.汶川8.0级地震前地下流体长趋势变化特征讨论[J].地震, 30(1):61-72.
    罗一月,魏明基.1998.浅析康滇地轴构造运动与铀成矿的关系[J].铀矿地质,14(2):72-81.
    罗志立.1991.龙门山造山带岩石圈演化的动力学模式[J].成都地质学院学报,18 (1) : 1-7.
    马丽芳.2002.中国地质图集[M].北京:地质出版社.
    马保起,苏刚,侯治华,等.2005.利用岷江阶地的变形估算龙门山断裂带中段晚第四纪滑动速率[J].地震地质,27(2):234-242.
    裴锡瑜,王新民,张成贵.1997.晚第四纪安宁河断裂分段的基本特征[J].四川地震,4:52-61.
    钱洪,马声浩,龚宁.1995.关于岷江断裂若干问题的讨论[J].中国地震,11(2):140-146.
    上官志冠,孙明良.1996.长白山天池火山区幔源稀有气体释放特征[J].科学通报,41(l7):1695-1698.
    上官志冠,郑雅琴,董继川.1997.长白山天池火山地热区逸出气体的物质来源[J].中国科学(D辑),27(4):318-324.
    上官志冠,孙明良,李恒忠.1999.云南腾冲地区现代地热流体活动类型[J].地震地质, 21(4):436-442.
    上官志冠,白春华,孙明良.2000.腾冲热海地区现代慢源岩浆气体释放特征[J].中国科学D辑,30(4):407- 414.
    上官志冠,高清武,赵慈平.2004.腾冲热海地区NW向断裂活动性的地球化学证据[J].地震地质,26(l):46-51.
    沈立成.2007.中国西南地区深部脱气(地质)作用与碳循环研究[D].博士学位论文.重庆:西南大学.
    唐荣昌,文德华,黄祖智,等.1991.松潘-龙门山地区主要活动断裂带第四纪活动特征[J].中国地震,7(3):4-71.
    唐荣昌,韩渭宾.1993.四川活动断裂与地震[M].北京:地震出版社,1-305.
    陶明信,徐永昌,沈平,等.1996.中国东部幔源气藏聚集带的大地构造与地球化学特征及成藏条件[J].中国科学(D辑),26(6): 531-536.
    陶明信,徐永昌,史宝光,等.2005.中国不同类型断裂带的地幔脱气与深部地质构造特征[J].中国科学(D辑),35(5): 441-451.
    滕吉文,白登海,杨辉,等.2008.汶川Ms 8.0地震发生的深层过程和动力学响应[J].地球物理学报,51(5):1385-1402.
    王成善,丁学林.1998.青藏高原隆升研究新进展综述[J].地球科学进展,13(6):526-532.
    王二七,孟庆任,陈智粱,等.2001.龙门山断裂带印支期左旋走滑运动及其大地构造成因[J].地学前缘,8(2):375-383.
    王广才,张作辰,汪民,等.2003.延怀盆地地下热水与稀有气体的地球化学特征[J].地震地质, 25(3):421-429
    王虎,冉勇康,陈立春,等.2008.地表破裂型逆断层地表缩短量计算方法探讨:以汶川Ms 8.0地震地表变形为例[J].地震地质,30(4): 1033-1045.
    王卫民,赵连锋,李娟,等.2008.四川汶川8.0级地震震源过程[J].地球物理学报,51(5): 1403-1410.
    王先彬,徐胜,陈践发,等.1993.腾冲火山区温泉气体组分和氦同位素组成特征[J].科学通报,38(9):814-817.
    王绪本,朱迎堂,赵锡奎等.2009.青藏高原东缘龙门山逆冲构造深部电性结构特征[J].地球物理学报,52(2):564-57.
    汪成民,李宣瑚,魏柏林.1991.断层气测量在地震科学中的应用[D].北京:地震出版社, 1-197.
    汪洋.2000.利用地下流体氦同位素比值估算大陆壳幔热流比例[J].地球物理学报,43(6):762-770.
    温静.2010.汶川地震断裂带科学钻探地下流体气体组分异常与余震的关系研究[D].中国地质大学(北京)硕士学位论文.
    闻学泽,Allen C R,罗灼礼,等.1989.鲜水河全新世断裂带的分段性、几何特征及其地震构造意义[J].地震学报,11(4) : 362-372.
    闻学泽,杜平山,龙德雄.2000.安宁河断裂带小相岭段古地震的新证据及最晚事件的年代[J].地震地质,22(1): 1-8.
    闻学泽,徐锡伟,郑荣章,等.2003.甘孜-玉树断裂的平均滑动速率与近代大地震破裂[J].中国科学(D辑),33(增刊): 199-208.
    闻学泽,张培震,杜方,等.2009.2008年汶川8.0级地震发生的历史与现今地震活动背景[J].地球物理学报,52(2):444-454.
    吴山,赵兵,苟宗海,等.1999.龙门山中—南段构造格局及其形成演化[J].矿物岩石,19 (3) : 82-85.
    谢学锦.2002.面向21世纪的应用地球化学:谢学锦院士从事地球化学研究50周年[M].北京:地质出版社.
    徐永昌,沈平,陶明信,等.1994.中国含油气盆地天然气中氦同位素分布[J].科学通报, 39(16): 1505-1508.
    徐锡伟,闻学泽,郑荣章,等.2003.川滇地区活动块体最新构造变动样式及其动力来源[J].中国科学(D辑),33(增刊): 151-162.
    徐锡伟,闻学泽,郑荣章,等.2003.川滇地区活动块体最新构造变形样式及其动力来源[J].中国科学(D辑),33(4):151-162.
    徐锡伟,张培震,闻学泽,等.2005.川西及其邻近地区活动构造基本特征与强震复发模型[J].地震地质,27(3):446-461.
    徐锡伟,闻学泽,叶建青,等.2008.汶川MS8.0地震地表破裂带及其发震构造[J].地震地质,30(3);597-629.
    杨宗让.2002.川西松潘-甘孜弧前盆地的形成及演化[J].沉积与特提斯地质,22(3):53-58.
    叶先仁,吴茂炳,孙明良.2001.岩矿样品中稀有气体同位素组成的质谱分析[J].岩矿测试,20(3): 174-178.
    叶先仁,陶明信,余传螯,等.2007.用分段加热法测定的雅鲁藏布江蛇绿岩的He、Ne同位素组成:来自深部地幔的信息[J].中国科学(D辑),37(5):573-583.
    易桂喜,闻学泽,范军等.2004.由地震活动参数分析安宁河-则木河断裂带的现今活动习性及地震危险性[J].地震学报,26(30):294-303.
    易桂喜,范军,闻学泽.2005.由现今地震活动分析鲜水河断裂带中南段活动习性与强震危险地段[J].地震,25(1):58-65.
    殷跃平.2008.汶川八级地震地质灾害研究[J].工程地质学报,16(4):433-445.
    应维华,黄良汉.1989.湘西北桑植—石门复向斜下古生界天然气保存条件研究[J].石油与天然气地质[J],1(2):170-181.
    张培震,王敏,甘卫军,等.2003.GPS观测的活动断裂滑动速率及其对现今大陆动力作用的制约[J].地学前缘,10(增刊): 81-92.
    张培震,徐锡伟,闻学泽,等.2008.2008年汶川8.0级地震发震断裂的滑动速率、复发周期和构造成因[J].地球物理学报,51(4):1066-1073.
    张勇,冯万鹏,许力生,等.2008.2008年汶川大地震的时空破裂过程[J].中国科学(D辑),38(10):1186-1194.
    张岳桥,杨农,陈文,等.2003.中国东西部地貌边界带晚新生代构造变形历史与青藏高原东缘隆起过程初步研究[J].地学前缘,10(4):599-609.
    张岳桥,杨农,孟晖,等.2004.四川攀西地区晚新生代构造变形历史与隆升过程初步研究[J].中国地质,31(1): 23-33.
    赵坷,姜光辉,杨瑛,等.2005.滇东主要断裂带温泉CO2成因浅析[J].地球与环境[J].2005,33(2):11-15.
    赵小麟,邓起东,陈社发,等.1994.龙门山逆断裂带中段的构造地貌学研究[J].地震地质,16(4):422-428.
    郑文俊,李传友,王伟涛,等.2008.汶川8.0级地震陡坎(北川以北段)探槽的记录特征[J].地震地质,30(3):697-709.
    中国地震局监测预报司.2009..汶川8.0级地震科学研究报告[M].北京,地震出版社.
    周庆,徐锡伟,于贵华,等.2008.汶川8.0级地震地表破裂带宽度调查[J].地震地质,30(3): 778-788.
    周晓成,郭文生,XXX,等.2007.呼和浩特隐伏断层土壤气氡、汞地球化学特征[J].地震, 27(1):70-76.
    周晓成,易丽,刘雷.2008.川西地区流体地球化学异常与2009年度地震趋势分析[J].中国大陆强震趋势预测研究[M].北京:《地震》编辑部.
    周晓成,王传远,柴炽章,等.2011.海原断裂带东南段土壤气体地球化学特征研究[J].地震地质,2011,33(1):123-132.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700