用户名: 密码: 验证码:
大兴安岭北部晚古生代岩浆作用及其构造意义
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
大兴安岭地区位于中亚造山带的东段,夹持于西拉木伦-延吉缝合带和蒙古-鄂霍茨克缝合带之间,自北向南依次划分为额尔古纳地块、兴安地块和松嫩地块。中亚造山带古生代的构造演化与古亚洲洋的闭合密切相关。目前,关于大兴安岭北部地区晚古生代构造演化一直存在较大争议,有裂谷或坳拉槽、“佳-蒙地块”北部大陆边缘及弧-盆体系等构造模型。由于缺少系统的年代学、地球化学研究,大兴安岭北部晚古生代岩浆岩和海相地层形成的构造环境一直不清楚。因此,论文对晚古生代具有代表性的岩浆岩进行了详细的岩石学、年代学及地球化学研究,同时对6个沉积岩样品进行了碎屑锆石年代学研究,旨在为区域构造演化提供依据。
     大兴安岭北部晚泥盆世火山岩沿牙克石-兴隆一带呈北东向断续带状展布,其中牙克石地区发育钙碱性系列的玄武岩、安山岩、英安岩、流纹岩和凝灰岩。玄武岩和凝灰岩的锆石U-Pb年龄分别为373.2±5.3Ma和383.1±2.1Ma。岩石富集大离子亲石元素(LILE)、轻稀土元素(LREE),亏损高场强元素(HFSE),具有俯冲带火山岩的地球化学特征。玄武岩具有较高的锆石εHf(t)值(+14.67~+18.67),类似于大洋中脊玄武岩和现代俯冲带玄武岩的Hf同位素特征,可能起源于俯冲板片流体交代的亏损地幔楔,形成于活动大陆边缘。
     早石炭世岩浆岩亦呈北东向带状展布,形成阿荣旗-嫩江和乌尔其汗-塔河岩浆岩带。阿荣旗-嫩江岩浆岩带(~353Ma)中,嫩江火山岩以钙碱性-高钾钙碱性系列的中酸性熔岩和凝灰岩为主,锆石U-Pb年龄在355~352Ma之间,与海相地层伴生。阿荣旗音河岩体由钙碱性系列的堆晶辉长岩和石英闪长岩组成。石英闪长岩侵位于351.4±1.4Ma,富集大离子亲石元素、轻稀土元素,亏损高场强元素,类似于活动大陆边缘花岗岩的地球化学特征。乌尔其汗-塔河深成侵入岩带(~330Ma)中,乌尔其汗岩体主要由花岗闪长岩组成,侵位于331.2±3.7Ma。岩石高Sr、高Sr/Y比值,富集轻稀土元素,亏损重稀土元素、Y及高场强元素,铕异常基本不明显,具备埃达克岩的地球化学特征。花岗闪长岩的锆石εHf(t)值较高,在+12.78~+14.54之间,可能起源于早期加厚的岛弧玄武-安山质下地壳。结合区域沉积特征认为,阿荣旗-嫩江岩浆岩带形成可能与大洋板片的俯冲作用有关,乌尔其汗岩体形成与俯冲带前移引起的早期加厚岛弧区下部软流圈上涌、幔源岩浆底侵作用有关。
     晚石炭世岩浆岩呈面形分布,小兴安岭西北部出露高钾钙碱性-钾玄岩系列的中、酸性熔岩和凝灰岩,锆石U-Pb年龄在307~306Ma之间,与陆相地层伴生。区域上发育大量高钾钙碱性和少量钾玄岩系列的花岗岩,锆石U-Pb年龄在320~300Ma之间。火山岩和花岗岩的地球化学特征结合区域地层学,认为它们可能形成于后碰撞环境。
     碎屑锆石年代学研究显示,罕达气原定泥鳅河组砂岩的碎屑锆石有四个年龄区间:382~407Ma(n=42)、440~508Ma(n=14)、820~939Ma(n=7)和1295~2447Ma(n=5)。根头河林场大民山组泥质板岩的碎屑锆石年龄集中在361~383Ma(n=31)和432~527M(an=6)两个年龄区间。两个样品中最小的峰值年龄分别为384M(an=16)和373Ma(n=31),与区域弧火山岩的年龄范围一致。碎屑锆石年龄特征说明,两个样品的沉积上限分别为384Ma和373Ma,物源区主要为晚泥盆世岩浆弧,少量早古生代岩浆岩和部分裸露的前寒武陆壳,晚泥盆世碎屑岩可能为弧前沉积。
     早石炭世红水泉组和洪湖吐河组沉积岩的碎屑锆石年代学显示,额尔古纳右旗红水泉组砂岩的碎屑锆石年龄主要有四个年龄区间:353~379Ma(n=16)、428~449Ma(n=14)、492~514Ma(n=9)和1235~2594Ma(n=13)。特尼河苏木红水泉组砂岩的碎屑锆石年龄主要在335~376Ma(n=43)、400~541(n=11)和735~1866Ma(n=13)三个年龄区间。根头河林场红水泉组砂岩的碎屑锆石年龄在456~1876Ma(n=23)之间。黑河洪湖吐河组千枚岩的碎屑锆石年龄单一,集中在334~393Ma(n=24)之间,年龄峰值为353Ma和385Ma。锆石年龄特征说明,四个样品的沉积上限分别为364、339、366和353Ma。从额尔古纳右旗-黑河,碎屑锆石来源从复杂变单一,红水泉组很可能为弧后-弧间盆地沉积,洪湖吐河组可能为弧前盆地沉积。
     综上所述,大兴安岭北部晚古生代构造演化特征如下:晚泥盆世大洋板片向北俯冲,形成了牙克石-兴隆火山弧和弧前沉积。早石炭世俯冲带前移,岩浆弧迁至黑河-阿荣旗一带,形成了弧岩浆岩带和弧后、弧间及弧前沉积建造。早石炭世末期额尔古纳-兴安地块与松嫩地块沿贺根山-嫩江缝合带闭合。晚石炭世大量碰撞后岩浆岩侵位,沉积陆相地层。早中二叠世(290~260Ma)A2型花岗岩出现,标志大兴安岭北部进入造山后的伸展阶段。可见,晚古生代也是大兴安岭北部地壳增生的重要时期,增生方式既包括与俯冲作用有关的侧向增生,也包括与幔源岩浆底侵有关的垂向增生。
The Great Xing’an Range, located within the eastern part of the Central Asian Orogenic Belt and between Xar Moron River-Yanji suture and Mongolia-Okhotsk suture, is composed of Ergun, Xing’an and Songnen blocks from north to south. Recent studies show that the history of the Central Asian Orogenic Belt is closely related to the closing of Paleo-Asian Ocean. However, the Late Paleozoic tectonic development of the northern Great Xing’an Range has long been a subject of controversy, including rift valley or aulacogen, the northern continental margin of Jiameng block and arc-basin system, etc. Until now, only a few detailed chronological and geochemical data were available and thus the tectonic setting of magmatic rocks and marine sediments was poorly constrained. In this paper, we condected petrology, U-Pb chronology and geochemistry on representative Late Paleozoic magmatic rocks from the eastern Great Xing’an Range, meanwhile, performed U-Pb chronological analyses on detrital zircon obtained from six sedimentary rock samples.The results shed light on the tectonic evolution of Late Palaeozoic in the eastern Great Xing’an Range.
     Late Demonian volcanic rocks, along Yakeshi-Xinglong belt in the northern Great Xing’an Range, extend as a long strip in NE direction. The volcanic rocks in Yakeshi area consist of calc-alkaline series basalt, andesite, dacite, rhyolite and tuff. Zircon U-Pb istopic dating reveals that the basalt and tuff were formed at 373.2±5.3Ma and 383.1±2.1Ma respectively. The rocks are rich in LILE, LREE, and poor in HFSE, and have the subduction zone volcanic geochemistry characteristics. The zirconεHf(t) values of basalt are within a range from+14.67 to +18.67, which are similar to the Hf isotope features of mid-oceanic ridge basalt and modern subduction zone basalt. These characteristics suggest that the basalts were derived probably from a depeleted mantle wedge modified by predominant slab fluids and formed in an active continental margin.
     Early Carboniferous magmatic rocks also extend as a long strip in NE direction in study area and present Nengjiang-Arongqi and Wuerqihan-Tahe magmatic rock zones. The volcanic rocks in Nengjiang area, belonged to Nengjiang-Arongqi magmatic rock zone, mainly consist of calc-alkalic-high-K calc-alkalic series medium acidic lava and tuff, and grow together with marine sediments, have been proven to be formed during Early Carboniferous(355~352Ma) based on zircon U-Pb dating. Arongqiyinhe rock mass consists of calc-alkalic cumulate gabbro and quartzdiorite. Quartzdiorites yield age of 351.4±1.4Ma, enrichment in LILE, LREE and depletion in HFSE, and similar to the geochemistry characteristics of active continental margin granite. Wuerqihan rock mass, belonged to Wuerqihan-Tahe magmatic rock zones, mainly consists of granodiorite.The U-Pb age indicates that the pluton was emplaced at 331.2±3.7Ma.The rocks show adakitic geochemical features, marked with high Sr, Sr/Yr ratios, enrichment in LREE and strong depletion in HREE, Y and HFSE, either with no obvious negative or positive Eu anomaly. The positiveεHf(t) values(+12.78~+14.54) indicate that the granodiorites were derived from an underplated, basalt-andesite crust under the early-stage island arc. Combined with sedimentary characteristics, we think the formation of Arongqi-Nengjiang magmatic rocks were probably related to the underthrusting of oceanic slab, and the formation of Wuerqihan granite body was related to the upwelling of the under asthenosphere of early-stage thicken island arc area and the mantle-derived magma underplating.
     Late Carboniferous magmatic rocks present surface shape in the northern Great Xing’an Range. The volcanic rocks, situated in the northwestern Lesser Xing’an Range, consist plenty of high-K calc-alkalic-shoshonite series medium and acidic lava and tuff whose zircon U-Pb ages are from 307 Ma to 306Ma, and grow together with continental sediments. The granites are manily of high-K calc-alkalic series, including a few of shoshonite series, widely distribut in the northern Great Xing’an Range, have been proven to be emplaced at 320~300Ma. The geochemistry and regional stratigraphy demonstrates that these granites and studied volcanic rocks were probably formed in the post-collision environment.
     The detrital zircon chronology of Devonian sedimentary rocks in the northern Great Xing’an Range shows that detrital zircons from sandstone of Niqiuhe Formation in Handaqi area yield four age intervals: 382~407Ma(n=42), 440~508Ma(n=14), 820~939Ma(n=7) and 1295~2447Ma(n=5). Zircons from slate of Daminshan Formation in Gentouhelinchang are yield age populations of 361~383Ma(n=31) and 432~527Ma(n=6). The smallest peak age values of two samples are 384Ma(n=16) and 373Ma(n=31) respectively, identical to those of the Late Devonian arc magmas from the northern Great Xing’an Range.These age date indicate that rocks from the Niqiuhe Formation and Daminshan Formation were deposited after 384Ma and 373Ma, and these rocks were sourced mainly from the Late Devonian volcanic arc, including a few of Early Paleozoic magmatic rocks and partial naked Precambrian continental crust.The clasolite samples of late Devonian probably represented forearc sediments.
     The detrital zircon chronology of sedimentary rocks from Early Carboniferous Hongshuiquan Formation and Honghutuhe Formation in the northern Great Xing’an Range shows that zircons from sandstone of Hongshuiquan Formation in Erguna area yield four age intervals: 353~379Ma(n=16),428~449Ma(n=14),492~514Ma(n=9) and 1235~2594Ma(n=13). Zircons from sandstone of Hongshuiquan Formation in Tenihesumu area yield four age populations of 353~379Ma(n=16),428~449Ma(n=14), 492~514Ma(n=9) and 1235~2594Ma(n=13). Zircons from sandstone of Hongshuiquan Formation in Gentouhelingchang area with age results between 456 Ma and 1876Ma(n=23). Zircons from phyllite of Honghutuhe Formation in Heihe area are age dated between 334 and 393Ma(n=24), with the peak age values 353Ma and 385Ma. These age date suggest that deposition of four samples had started by 364Ma, 339Ma, 366Ma and 353Ma respectively. In Ergun area, zircons show several modal age peaks,and in Hehei area, zircons show a unimodal age peak. Associated with sedimentary characteristics, we believe that Hongshuiquan Formation may represented backarc and interarc basin sediments, Honghutuhe Formation represented forearc sediments.
     In summary, the Late Paleozoic tectonic evolution in the northern Great Xing’an Range is as follows. In the Late Devonian, a north-dipping subduction zone induced the development of the Yakeshi-Xinglong arc volcanic rock belt and forearc sequence. In the Early Carboniferous, the suducted slab migrated laterally and thus the magmatic arc zone moved from Yakeshi-Xinglong to Arongqi-Heihe belt, a wide magmatic rock zone and back-arc, interarc and forearc basins were formed in this process. The collision between the Ergun-Xing’an block and Songnen block took place in the late of Early Carboniferous along the Nenjing-Hegenshan suture zone.Then post-collisional magmatic rocks were widely developed, while the sedimentary strata recorded continental deposit during the Late Carboniferous. In the Early-Middle Permian, the occurrence of A-type granites means that the northern Great Xing’an Range entered the extensional stage of post-orogeny. Our studies also show that the late Paleozoic is also an important period in continental crust growth in the northern Daxinganling, and the accretion mechanism includes the lateral related to subduction and the vertical related to underplating of mantle-derived magma.
引文
[1] Atherton M P and Petford N. Generation of sodium-rich magmas from newly underplated basaltic crust[J]. Nature, 1993, 326:144-146.
    [2] Andersen T. Correction of common lead in U-Pb analyses that do not report 204Pb [J]. Chemical Geology, 2002, 92(1-2): 59-79.
    [3] Boynton W V. Cosmochemistry of the rare earth elements: Meteorite studies. In: Henderson P(ed.). Rare earth element geochemistry[M]. Amsterdam: Elsevier, 1984: 63-114.
    [4] Barbarin B. A review of the relationships between granitoid types, their origins and their geodynamics environments[J]. Lithos, 1999, (46): 605-626.
    [5] Badarch G, Cunningham W D, Windley B F. A new terrane subdivision for Mongolia:Implication for the Phanerozoic crustal growth of Central Asia[J]. Journal of Asian Earth Sciences, 2002, 21(1):87-110.
    [6] Batchelor R A, Bowden P. Petrogenetic interpretation of graniitoid rock series using multicationic parameters[J]. Chemical Geology, 1985, 48: 43-55.
    [7] Cabanis B and Lecolle M. The La/10-Y/15-Nb/8 diagram: A tool for discrimination volcanic series and evidencing continental crust magmatic mixtures and/or contamination[J]. Comptes Rendus Academie Sciences, Séries, 1989, 309(20): 2023-2029.
    [8] Chen B, Jahn B M, Wilde S, et al. Two contrasting Paleozoic magmatic belts in northern Inner Mongolia, China: Petrogenesis and tectonic implications[J]. Tectonophysics, 2000, 328(1-2): 157-182.
    [9] Chen B, Jahn B M, Tian W. Evolution of the Solonker suture zone: Constraints from zircon U-Pb ages, Hf isotopic ratios and whole-rock Nd–Sr isotope compositions of subduction-and collision-related magmas and forearc sediments [J]. Journal of Asian Earth Sciences, 2009, (34) 245-257.
    [10] Condie K C. Episodic continental growth models: afterthoughts and extensions [J]. Tectonophysics, 2000, 322(1-2): 153-162.
    [11] Chauvel C and Blichert-Toft J. A hafnium isotope and trace element perspectiveon melting of the depleted mantle[J]. Earth and Planetary Science Letters, 2001, 190(3-4):137-151.
    [12] Claeson D T and Meurer W P. Fractional crystallization of hydrous basaltic arc-type magmas and the formation of amphibole-bearing gabbroic cumulates[J]. Contributions to Mineralogy and Petrology, 2004, 147: 288- 304.
    [13] Debari S M. Petrogenesis of the Fiambla gabbroic intrusion, northwestern Argentina, a deep crustal syntectonic pluton in a continental magmatic arc[J]. Journal of Petrology, 1994,35(3): 679-713.
    [14] Defant M J and Drummond M S. Derivation of some modern arc magmas by melting of young subducted Lithosphere[J]. Nature, 1990: 662-665.
    [15] Defant M J, Xu J F, Kepezhinskas P, et al. Adakites: Some variations on a theme[J]. Acta Petrologica Sinica, 2002, 18(2): 129-142.
    [16] Fedo C M,Sircombe K N,Rainbird R H. Detrtial zireon analysis of the sedimentary record[J]. Reviews in Mineralogy and Geochemistry, 2003, 53(1):277-303.
    [17] Ge W C, Wu F Y, Zhou C Y , et al. Emplacement age of the Tahe granite and its constraints on thetectonic nature of the Eguna block in the northern part of the Da Hinggan Mts[J]. Chinese Science Bulletin, 2005b, 50(18): 2097-2105.
    [18] Ge W C, Wu F Y, Zhou C Y , et al. Porphyry Cu-Mo deposits in the eastern Xing'an-Mongolian Orogenic Belt: Mineralization ages and their geodynamic implications[J]. Chinese Science Bulletin, 2007b, 52 (24): 3416- 3427.
    [19] Guo F, Fan W M, Li C W, et al. Early Paleozoic subduction of the Paleo-Asian Ocean: Geochronological and geochemical evidence from the Dashizhai basalts, Inner Mongolia[J]. Science in China(Series D), 2009,52(7): 940-951.
    [20] Hyndman D W. Petrology of igneous and metamorphic rocks[M]. New York: McGraw -Hill,1985.
    [21] Hanyu T, Tatsumi Y ,Nakai S. A contribution of slab-melts to the formation of high-Mg andesite magmas: Hf isotopic evidence from SW Japan [J]. Geophysical Research Letters, 2002, 29(22): 2051.
    [22] Jahn B M, Wu F Y, Hong D W. Important crustal growth in the Phanerozoic: Isotopic evidence of granitoids from East central Asia[J]. Proceedings of the Indian National Science Academy. (Earth Planet Science), 2000a, 109: 5-20.
    [23] Jahn B M, Wu F Y, Chen B. Massive granitoid generation in Central Asia: Nd isotope evidence and implication for continental growth in the Phanerozoic [J]. Episodes, 2000b, 23: 82-92.
    [24] Jian P, Liu D Y, Kr?ner A, et al. Time scale of an early to mid-Paleozoic orogenic cycle of the long-lived Central Asian Orogenic Belt, Inner Mongolia of China: Implications for continental growth [J]. Lithos, 2008, 101(3-4): 233-259.
    [25] Kay R W and Kay S M. Andean adakites: Three ways to make them[J]. Acta Petrologica Sinica, 2002, 18(3): 303-311.
    [26] Kelemen P B, Hangh K, Greenem A R. One view of t he geochemistry of subduction-related magmatic arcs , with an emphasis on primitive andesite and lower crust[M]. In : Rudnick RL( ed. )Treatise On Geochemistry, 2003,3 : 593-659.
    [27] Kelty T K, Yin A, Dash B, et al. Detrital-zircon geochronology of Paleozoic sedimentary rocks in the Hangay-Hentey basin, north-central Mongolia: Implications for the tectonic evolution of the Mongol-Okhotsk Ocean in central Asia[J].Tectophsics,2008,451:290-311.
    [28] Khain E V, Bibikova E V, Kr?ner A, et al. The most ancient ophiolites of the Central Asian fold belt: U-Pb and Pb-Pb zircon ages for the Dunzhugur complex, Eastern Sayan, Siberia, and geodynamic implications[J]. Earth and Planetary Science Letters, 2002, 199(3-4):311-325.
    [29] Kocak K, Isik F, Arslan M, et al. Petrological and source region characteristics of ophiolitic hornblende gabbros from the Aksaray and Kayseri regions, central Anatonlian crystalline complex, Turkey[J]. Asian Earth Science, 2005, 25: 883-891.
    [30] Kr?ner A, Windley B F, Badarch G, et al. Accretionary growth and crust-formation in the Central Asian Orogenic Belt and comparison with the Arabian-Nubian shield[C]. Geological Society of America, Memoirs, 2007.
    [31] Lamb M A and Badarch G. Paleozoic sedimentary basins and volcanic arc systems of southern Mongolia: New stratigraphic and sedimentologic constraints[J].International Geology Review, 1997, 39(6): 542-576.
    [32] Lamb M A and Badarch G. Paleozoic sedimentary basins and volcanic arc systems of southern Mongolia: New geochemical and petrographic constraints[M]. In: Hendrix MS (eds.), Paleozoic and Mesozoic Tectonic Evolution of Central and Eastern Asia: From Continental Assembly to Intracontinental Deformation. Geological Society of America, 2001,117-149.
    [33] Li R W, Wan Y S, Cheng Z Y et al. Provenance of Jurassic sediments in the Hefei Basin, east-central China and the contribution of high-pressure and ultrahigh-pressure metamorphic rocks from the Dabie Shan [J]. Earth and Planetary Science Letters, 2005,231(3-4):279-294.
    [34] Li J Y. Permian geodynamic setting of Northeast China and adjacent regions: Closure of the Paleo-Asian Ocean and subduction of the Paleo-Pacific Plate[J]. Journal of Asian Earth Sciences, 2006, 26(3-4): 207-224.
    [35] Li D P, Chen Y L, Wang Z, et al. Detrital zircon U-Pb ages, Hf isotopes and tectonic implications for Palaeozoic sedimentary rocks from the Xing-Meng Orogenic Belt, Middle-East Part of Inner Mongolia, China[J]. Geological Journal, 2011, 64(1): 63-81.
    [36] Liu Y S, Hu Z C, Gao S, et al. In situ analysis of major and trace elements of anhydrous minerals by LA-ICP-MS without applying an internal standard[J]. Chemical Geology, 2008, 257(1-2): 34 - 43.
    [37] Liu Y S, Gao S, Hu Z C, et al. Continental and oceanic crust recycling-induced melt-peridotite interactions in the Trans-North China Orogen: U-Pb dating, Hf isotopes and trace elements in zircons from mantle xenoliths[J]. Journal of Petrology, 2010, 51(1-2):537-571.
    [38] Liegeois J P. Some words on the post-collisional magmatism [J]. Lithos, 1998, 45: 15-17.
    [39] Miyashiro A. Volcanic rock series in island arcs and active continental margins[J]. American Journal of Science, 1974, 274: 321-355.
    [40] Maniar P D and Piccoli P M. Tectonic discrimination of granitoids [J]. Bulletin of the Geological Society of America, 1989, 101(5): 635-643.
    [41] Mo X X, Lu F X, Deng J F. Volcanism in Sanjiang Tethyan orogenic belt: New facts and concepts[J]. Journal of China University of Geosciences, 1991, 2(1):58-74.
    [42] McCulloch M T and Camble J A. Geochemical and geodynamical constrains on subduction zone magmatism [J]. Earth and Planetary Science Letters, 1991, 102(3-4): 358-374.
    [43] Mossakovsky A A, Ruzhentsev S V, Samygin S G, et al. Central Asian fold belt: geodynamic evolution and history of formation[J]. Geotectonics, 1993, 6: 3-33.
    [44] Martin H. Adakitic magmas: Modern analogues of Archean granitoids[J]. Lithos, 1999, 46(3): 411-429.
    [45] Meng E, Xu W L, Pei F P, et al. Detrital-zircon geochronology of Late Paleozoic sedimentary rocks in eastern Heilongjiang Province, NE China: Implications for the tectonic evolution of the eastern segment of the Central Asian Orogenic Belt[J]. Tectonophysics, 2010, 485:42-51.
    [46] Miao L C, Fan W M, Zhang F Q, et al. Zircon SHRIMP geochronology of the Xinkailing-Kele complex in the northwestern Lesser Xing’an Range, and its geological implications[J]. Chinese Science Bulletin, 2004,49(2), 201-209.
    [47] Miao L C, Liu D Y, Zhang F Q, et al. Zircon SHRIMP U-Pb ages of the“Xinghuadukou Group”in Hanjiayuanzi and Xinlin areas and the“Zhalantun Group”in Inner Mongolia, Great Xing’an Range[J]. Chinese Science Bulletin, 2007, 52(8), 1112-1124.
    [48] Miao L C, Fan W M, Liu D Y, et al. Geochronology and geochemistry of the Hegenshan ophiolitic complex: Implications for late-stage tectonic evolution of the Inner Mongolia-Daxinganling Orogenic Belt, China[J]. Journal of Asian Earth Sciences, 2008, 32(5-6): 348-370.
    [49] Nelson D R. An assessment of the determination of depositional ages for Precambrian detrital sedimentary roeks by U-Pb dating of detrital zircon[J]. Sedimentary Geology, 2001,141-142: 37-60.
    [50] Nokleberg WJ. Merallogensis and tectonics of northeast Asian [M]. US Geological Surveryprofessional paper 1765, 2010.
    [51] Pearce J A, Harris N B W,Tindle A G. Trace element discrimination diagrams for the tectonic interpretation of granitic rocks [J]. Journal of Petrology, 1984, (25): 956-983.
    [52] Pearce J A, Lippard S J, Roberts S. Characteristics and tectonic significance of supra-subduction zone ophiolites[M]// Kokelaar B P and Howells M F. Marginal basin geology. Geological Society of London Special Publication 16. London: Blackwell Scientific Publications, 1984b: 77-94.
    [53] Patchett P J. Hafnium isotope results from mid-ocean ridges and Kerguelen[J]. Lithos, 1983,16(1): 47-51.
    [54] Peacock S M, Rushmer T, Thompson A B. Partial melting of subducting oceanic-crust[J]. Earth and Planetary Science Letters, 1994, 121(1-2): 227-244.
    [55] Pearce J. Sources and settings of granitic rocks [J]. Episodes, 1996, 19(4): 120-125.
    [56] Perello J, Cox D, Garamjav D, et al. Oyu Tolgoi, Mongolia Siluro-Devonian porphyry Cu-Au-(Mo) and high-sulfidation Cu mineralization with a Cretaceous chalcocite blanket[J]. Economic Geology, 2001, 96(6):1407-1428.
    [57] Rollinson H. Using geochemical data: Evaluation, presentation, interpretation[M]. London: Longman Scientific and Technical, 1993.
    [58] Sun S S and McDonough W F. Chemical and isotopic systematics of ocean basalts: Implications for mantle composition and processes. In: Saunders AD and Norry MJ(eds.). Magmatism in Oceanic Basins [J]. Geological Society, London, Special Publications, 1989, 42: 313-345.
    [59] Seng?r A M C, Natal’in B A, Burtman VS. Evolution of the Altaid tectonic collage and Paleozoic crustal growth in Eurasia [J]. Nature, 1993, 364: 209-307.
    [60] Seng?r A M C, Natal’in B A. Paleotectonics of Asia: Fragments of a synthesis[M]//Yin A, Harrison M. The Tectonic Evolution of Asia. Cambridge University Press, Cambridge, 1996: 486-640.
    [61] Stern C R and Killian R. Role of the subducted slab, mantle wedge and continental crust in the generation of adakites from the Andean Austral Volcanic Zone[J]. Contributions to Mineralogy and Petrology, 1996, 123(3):263-281.
    [62] Salnikova E B, Sergeev S A, Kotov A B, et al. U-Pb zircon datingof granulite metamorphism in the Sludyanskiy Complex, eastern Siberia[J]. Gondwana Res, 2000, 1(2): 195-205.
    [63] Sun D Y, Wu F Y, Li H M, et al. Emplacement age of the post-orogenic A-type granites in Northwestern Lesser Xing'an Range, and its relationship to the eastward extension of Suolushan-Hegenshan-Zhalaite collisional suture zone[J]. Chinese Science Bulletin, 2001, 46 (5): 427-432.
    [64] Sorokin A A, Kudryashov N M, Sorokin A P. Fragment of Paleozoic active margins at the southern periphery of the Mongolia-Okhotsk foldbelt: evidence from the northeastern Argun terrane, Amur River region[J]. Doklady Earth Sciences, 2002, 387A: 1038-1042.
    [65] Sorokin A A, Kudryashov N M, Li J Y, et al. Early Paleozoic granitoids in the eastern margin of the Argun’terrane, Amur area: first geochemical and geochronologic data[J]. Petrology, 2004, 12(4): 367-376.
    [66] Shi G H, Liu D Y, Zhang F Q, et al. SHRIMP U-Pb zircon geochronology and its implications on the Xilin Gol Complex, Inner Mongolia, China[J]. Chinese Science Bulletin, 2003, 48(24): 2742-2748.
    [67] Shi G H, Miao L C, Zhang F Q, et al. The age and its district tectonic implications on the Xilinhot A-type granites, Inner Mongolia[J]. Chinese Science Bulletin, 2004, 49(7): 723-729.
    [68] Stevenson R K, David J, Parent M. Crustal evolution of the western Minto Block, northernSuperior Province, Canada[J]. Precambrian Research, 2006,145(3-4):229-242.
    [69] Taylor S R and McLennan S M. The geochemical evolution of the continental crust [J]. Reviews of Geophysics, 1995, 33(2): 241-265.
    [70] Vervoort J D, Patchett P J, Blichert-Toft J et al. Relationships between Lu-Hf and Sm-Nd isotopic systems in the global sedimentary system[J]. Earth and Planetary Science Letters, 1999, 168 (1-2) :79-99.
    [71] Winchester J A and Floyd P A. Geochemical discrimination of different magma series and their differentiation products using immobile elements[J]. Chemical Geology, 1977, 20: 325-343.
    [72] Wilson M. Igneous petrogenesis: A global tectonic approach [M]. London: Unwin Hyman, 1989.
    [73] Williams I S. Response of detrital zircon and monazite, and their U-Pb isotopic systems, to regional metamorphism and host- rock partial melting, Cooma Complex,southeastem Australia. Aust [J] Journal of Earth Sciences, 2001, 48(4): 557-580.
    [74] Wu F Y, Sun D Y, Li H M et al. The nature of basement beneath the Songliao Basin in NE China: Geochemical and isotopic constraints[J]. Physics and Chemistry of the Earth (part A), 2001, 26(9-10): 793-803.
    [75] Wu F Y, Sun D Y, Li H M, et al. A-type granites in northeastern China: Age and geochemical constraints on their petrogenesis[J]. Chemical Geology, 2002, 187(1-2): 143-173.
    [76] Wu F Y, Jahn B M, Wilde S A, et al. Highly fractionated I-type granites in NE China(I): geochronology and petrogenesis [J]. Lithos, 2003(66): 241-273.
    [77] Wu F Y, Sun D Y, Jahn B M, et al. A Jurassic garnet-bearing granitic pluton from NE China showing tetrad REE patterns [J]. Journal of Asian Earth Sciences, 2004, 23(5): 731-744.
    [78] Wu F Y, Yang Y H, Xie L W, et al. Hf isotopic compositions of the standard zircons and baddeleyites used in U-Pb geochronology[J]. Chemical Geology, 2006, 234 (1-2):105-126.
    [79] Wu F Y, Sun D Y, Ge W C, et al. Geochronology of the Phanerozoic granitoids in northeastern China[J]. Journal of Asian Earth Sciences, 2011, 41(1):1-30.
    [80] Wilde S A, Wu F Y, Zhang X Z. Late Pan-African magmatism in northeastern China: SHRIMP U-Pb zircon evidence from granitoids in the Jiamusi Massif[J]. Precambrian Reseach, 2003, 122(1): 311-327.
    [81] Wan Y S, Li R W, Wilde S A, et al. UHP metamorphism and exhumation of the Dabie Orogen:Evidence from SHPIMP dating of zircon and monazite from a UHP granitic gneiss cobble from the Hefei Basin,China [J]. Geochimica et Cosmochimica Acta, 2005,69(17): 4333-4348.
    [82] Wan Y S,Song T R, Liu D Y, et al. Mesozoic monazite in Neoproterozoic metasediments:Evidence for low-grade metamorphism of Sinian sediments during Triassic continental collision, Liaodong Peninsula, NE China[J]. Geochemical Journal, 2007,41(1):47-56.
    [83] Windley B F, Alexeiev D, Xiao W J, et al. Tectonic models for accretion of the Central Asian Orogenic Belt[J]. Journal of the Geological Society, 2007, 164(1): 31-47.
    [84] Wang C W, Jin W, Zhang X Z. et al. Jiameng Block-new conception of the Late Paleozoic tectonics in northeastern China and ad-jacent areas. In: Wang Y, Zhang H, Wang X (ed). Abstracts of 16th International Congress on the Carboniferous and Permian[C]. J Stratigr, 2007, 31(SupplⅠ): 140.
    [85] Wang C W, Sun Y W, Li N, et al. Tectonic implications of Late Paleozoic stratigraphic distribution in Northeast China and adjacent region[J]. Science in China Series D: Earth Sciences, 2009, 52(5): 619-626.
    [86] Wen D R, Chung S L, Song B, et al. Late Cretaceous Gangdese intrusions of adakiticgeochemical characteristics, SE Tibet: Petrogenesis and tectonic implications[J]. Lithos, 2008, 105 (1-2): 1-11.
    [87] Xiao W J, Windley B F, Hao J, et al. Accretion leading to collision and the Permian Solonker suture, Inner Mongolia, China: Termination of the central Asian orogenic belt[J]. Tectonics, 2003, 22(6), 1069: 1-21.
    [88] Xiong X L, Adam J, Gree T H, et al. Trace element characteristics of partial produced by melting of metabasalts at high pressures: Constraints on the formation condition of adakitic melts[J]. Science in China(Series D), 2006,49(9): 915-935.
    [89] Yasushi W and Hilly J S. Re-Os ages for the Erdenet and Tsagaan Suvarga porphyry Cu-Mo deposits, Mongolia, and tectonic implication[J]. Economic Geology, 2000, 95(7):1537-1542.
    [90] Yakubchuk A, Seltmann R, Shatov V, et al. The Altaids:Tectonic evolution and metallogeny[J]. Society of Economic Geologists, Newsletter, 2001, 46:7-14.
    [91] Yakubchuk A, Shatov V, Kirwin D, et al. Gold and base metal metallogeny of the Central Asian orogenic supercollage[C]. In : Society of econmic geologists 100th anniversary volume, 2005:1035-1068.
    [92] Zanvilevich A N, Litvinovsky B A, Andreev G V. Alkaline granitic province in Mongolia- Transbaikalia (in Russian)[M].Nauka, Moscow,1985.
    [93] Zonenshain L P, Kuzmin M I, Natapov M. Geology of the USSR: A Plate-tectonic synthesis[M]. American Geophysical Union, Geodynamic Series, 1990, 21.
    [94] Zorin Y A, Belichenko V G, Turutanov E K. The east Siberia Transects [J]. International Geol Review, 1995,37(2):154-175.
    [95] Zorin Y A. Geodynamics of the western part of the Mongolia-Okhotsk collisional belt Trans-Baikal region (Russia) and Mongolia[J]. Tectonophysics , 1999 , 306(1) : 33-56.
    [96] Zhu Y F, Sun S H, Gu L B, et al. Permian volcanism in the Mongolian orogenic zone, northeast China: Geochemistry, magma sources and petrogenesis[J]. Geological Magazine, 2001, 138(2): 101-115.
    [97] Zhou J B, Wilde S A, Zhao G C, et al. Detrital zircon U-Pb dating of low-grade metamorphic rocks in the Sulu UHP belt: Evidence for overthrusting of the North China block above the South China block during continental subduction [J]. Journal of the Geological Society, London, 2008, 165(1):423-433.
    [98] Zhou J B, Wilde S A, Zhou J B et al. Early Paleozoic metamorphic rocks of the Erguna block in the Great Xing’an Range, NE China:Evidence for the timing of magmatic and metamorphic events and their tectonic implications[J]. Tectonophysics, 2011,499:105-117.
    [99] Zhang X H, Zhang H F, Tang Y J, et al. Geochemistry of Permian bimodal volcanic rocks from central Inner Mongolia, North China: implication for tectonic setting and Phanerozoic continental growth in Central Asian Orogenic Belt[J]. Chemical Geology, 2008, 249(3-4): 262-281.
    [100] Zhao Z H, Xiong X L, Wang Q, et al. Underplating-related adakites in Xingjiang Tianshan, China[J]. Lithos, 2008, 102(1-2): 374-391.
    [101]表尚虎,李仰春,何晓华,等.黑龙江省塔河绿林林场一带兴华渡口群岩石地球化学特征[J].中国区域地质,1999,18(1):28-33.
    [102]崔革.小兴安岭西北部奥陶纪大陆边缘岛弧的确定及其演化[C].中国北方板块构造文集(第一集).北京:地震出版社,1994:293-314.
    [103]崔根,王金益,张景仙,等.黑龙江多宝山花岗闪长岩的锆石SHRIMP U-Pb年龄及其地质意义[J].世界地质,2008,27(4):387-397.
    [104]迟效功.大兴安岭重石山钼矿床地质、地球化学、地球物理特征及找矿方向[J].自然科学. 2010,8:8-13.
    [105]邓晋福,赵海玲,莫宣学,等.中国大陆根-柱构造-大陆动力学的钥匙[M].北京:地质出版社,1996.
    [106]邓晋福,莫宣学,罗照华,等.火成岩构造组合与壳幔成矿系统[J].地学前缘,1999,6(2):259-269.
    [107]邓晋福,肖庆辉,苏尚国,等.火成岩组合与构造环境讨论[J].高校地质学报,2007, 13(3):392-402.
    [108]丁雪.满洲里-额尔古纳地区佳疙疸组变质岩系变质变形研究[D].长春:吉林大学硕士学位论文,2010.
    [109]葛文春,吴福元,周长勇,等.大兴安岭中部乌兰浩特地区中生代花岗岩的锆石U-Pb年龄及地质意义[J].岩石学报,2005a,21(3):749-762.
    [110]葛文春,吴福元,周长勇,等.大兴安岭北部塔河花岗岩体的时代及对额尔古纳地块构造归属的制约[J].科学通报,2005b,50(12):1239-1247.
    [111]葛文春,隋振民,吴福元,等.大兴安岭东北部早古生代花岗岩锆石U-Pb年龄、Hf同位素特征及地质意义[J].岩石学报,2007a,23(02):423-440.
    [112]葛文春,吴福元,周长勇,等.兴蒙造山带东段斑岩型Cu,Mo矿床成矿时代及其地球动力学意义[J].科学通报,2007b,52(20):2407-2417.
    [113]郭锋,范蔚茗,李超文,苗来成,等.早古生代古亚洲洋俯冲作用:来自内蒙古大石寨玄武岩的年代学与地球化学证据[J].中国科学D辑:地球科学,2009,39(5):569-579.
    [114]黑龙江省地质矿产局.黑龙江省岩石地层[M].武汉:中国地质大学出版社,1997.
    [115]黑龙江省地质矿产局.黑龙江省区域地质志[M].北京:地质出版社,1993.
    [116]黑龙江省地质矿产局. 1:20万区域地质调查报告卧都河幅[R],1975.
    [117]黑龙江省地质矿产局. 1:20万区域地质调查报告幅[R],1977.
    [118]黑龙江省地质矿产局. 1:20万区域地质调查报告喜桂图旗幅-塔尔其幅-绰尔幅[R],1981.
    [119]黑龙江省地质矿产局. 1:20万区域地质调查报告奈吉公社幅-乌尔其汗幅-博克图幅[R],1981.
    [120]黑龙江省地质矿产局. 1:20万区域地质调查报告霍龙门幅[R],1984.
    [121]黑龙江省地质矿产局. 1:20万区域地质调查报告沐河屯幅[R],1984.
    [122]黑龙江省地质矿产局. 1:20万区域地质调查报告罕达气幅[R],1984.
    [123]黑龙江省地质矿产局. 1:20万区域地质调查报告嫩江县幅[R],1990.
    [124]黑龙江省地质调查研究总院. 1:25万区域地质调查报告阿荣旗幅[R],2005.
    [125]黄汲清,任纪舜,姜春发,等.中国大地构造基本轮廓[J].地质学报,1977,51(2): 117-135.
    [126]洪大卫,黄怀曾,肖宜君,等.内蒙古中部二叠纪碱性花岗岩及其地球动力学意义[J].地质学报,1994,68(3):219-230.
    [127]洪大卫,王式洸,谢锡林,等.兴蒙造山带正εNd(t)值花岗岩的成因和大陆地壳生长[J].地学前缘,2000,7(2):441-456.
    [128]洪大卫,王式洸,谢锡林,等.试析地幔来源物质成矿域-以中亚造山带为例[J].矿床地质,2003a,22(1):41-55.
    [129]洪大卫,王式洸,谢锡林,等.从中亚正εNd(t)值花岗岩看超大陆演化和大陆地壳生长的关系[J].地质学报,2003b,77(2):203-209.
    [130]何会文.大兴安岭北部扎兰屯群的解体及构造意义探讨[D].北京:中国地质大学硕士学位论文,2007.
    [131]姜春潮.小兴安岭北西部的前震旦系—黑龙江流域及毗邻地区地质[M].北京:地质出版社,1963.
    [132]李春昱,王荃,张之孟,等.中国板块构造的轮廓[J].地球学报,1980,00 (1):1-15.
    [133]李文国,成嘉余,董得源.内蒙古达尔茂明安联合旗巴特敖包地区志留-泥盆纪地层与动物群[M].呼和浩特:内蒙古人民出版社,1983:1-184.
    [134]李双林,欧阳自远.兴蒙造山带及邻区的构造格局与构造演化[J].海洋地质与第四纪地质,1998,18(3):45-54.
    [135]李锦轶,张进,杨天南,等.北亚造山区南部及其毗邻地区地壳构造分区与构造演化[J].吉林大学学报(地球科学版),2009,39(4):584-605.
    [136]刘建峰,迟效国,张兴洲,等.内蒙古西乌旗南部石炭纪石英闪长岩地球化学特征及其构造意义[J].地质学报,2009,83(3):365-376.
    [137]刘建峰.内蒙古林西-东乌旗地区晚古生代岩浆作用及其对区域构造演化的制约[D].长春:吉林大学博士学位论文,2009.
    [138]刘敦一,简平,张旗,等.内蒙古图林凯蛇绿岩中埃达克岩SHRIMP测年:早古生代洋壳消减的证据[J].地球学报,2003,77(3): 317-327.
    [139]罗毅,王正邦,周德安.额尔古纳超大型火山热液型铀成矿带地质特征及找矿前景[J].华东地质学院学报,1997,20(1):1-10.
    [140]吕志诚,段国正,郝立波,等.大兴安岭中段二叠系大石寨组细碧岩的岩石地球化学特征及其成因探讨[J].岩石学报,2002,18(2):212-222.
    [141]郎嘉彬,王成源.内蒙古大兴安岭乌奴耳地区泥盆纪的两个牙形刺动物群[J].微体古生物学报,2010,27(1):13-37.
    [142]苗来成,范蔚茗,张福勤,等.小兴安岭西北部新开岭-科洛杂岩锆石SHRIMP年代学研究及其意义[J].科学通报,2003,48(22):2315-2323.
    [143]苗来成,刘敦一,张福勤,等.大兴安岭韩家园子和新林地区兴华渡口群和扎兰屯群锆石SHRIMP U-Pb年龄[J].科学通报,2007,52(5):591-601.
    [144]莫宣学,路凤香,沈上越,等.“三江”特提斯火山作用与成矿[M].北京:地质出版社,1993.
    [145]内蒙古自治区第一区域地质调查队. 1:20万区域地质调查报告上护林幅-恩和村幅-建设屯幅[R],1985.
    [146]内蒙古自治区地质矿产局. 1:20万区域地质调查报告一二五公里幅-索伦军马场幅[R],1990.
    [147]内蒙古自治区地质矿产局.内蒙古自治区区域地质志[M].北京:地质出版社,1991:7-498.
    [148]内蒙古自治区地质矿产局.全国地层多重划分对比研究-内蒙古自治区岩石地层[M].武汉:中国地质大学出版社,1996:39-40.
    [149]宁奇生,唐克东,曹从周,等.大兴安岭及其邻区区域地质与成矿规律[M]//大兴安岭区域地质,北京:地质出版社,1959:16-22.
    [150]南润善,朱慈英,郑月娟,等.内蒙古兴安区奥陶纪生物组合和古地理某些特征[J]//南润善、郭胜哲等,内蒙古东北地槽区古生物地层及古地理.北京:地质出版社,1992:1-70.
    [151]彭玉鲸,赵成弼.古吉黑造山带的演化与陆壳的增生[J].吉林地质,2001,20 (2):1-9.
    [152]秦秀峰,尹志刚,汪岩,等.大兴安岭北段漠河地区早古生代埃达克质岩特征及地质意义[J].岩石学报,2007,23(6):1501-1511.
    [153]任纪舜,牛宝贵.软碰撞叠覆造山和多旋回缝合作用[J].地学前缘,1999,6(3):85-93.
    [154]隋振民,葛文春,吴福元,等.大兴安岭东北部哈拉巴奇花岗岩体锆石U-Pb年龄及其成因[J].世界地质,2006,5(3):229-236.
    [155]隋振民.大兴安岭东北部花岗岩类锆石U-Pb年龄、岩石成因及地壳演化[D].长春:吉林大学博士学位论文,2007.
    [156]隋振民,葛文春,徐学纯,等.大兴安岭十二站晚古生代后造山花岗岩的特征及其地质意义[J].岩石学报,2009,25(10): 2679-2686
    [157]苏养正.兴安地层区的古生代地层[J].吉林地质,1996,15(3-4):23-34.
    [158]孙德有,吴福元,李惠民,等.小兴安岭西北部造山后A型花岗岩的时代及与索伦山-贺根山-扎赉特碰撞拼合带东延的关系[J].科学通报,2000,45(20):2217-2222.
    [159]孙德有,吴福元,张艳斌,等.西拉木伦河-长春-延吉板块缝合带的最后闭合时间-来自吉林大玉山岩体的证据[J].吉林大学学报(地球科学版),2004,34(2):174-181.
    [160]孙广瑞,李仰春,张显,等.额尔古纳地块基底地质构造[J].地质与资源,2002,11(3):129-139.
    [161]施光海,刘敦一,张福勤,等.中国内蒙古锡林郭勒杂岩SHRIMP锆石U-Pb年代学及意义[J].科学通报,2003,48(20):2187-2192.
    [162]施光海,苗来成,张福勤,等.内蒙古锡林浩特A型花岗岩的时代及区域构造意义[J].科学通报,2004,49(4):384-389.
    [163]石玉若,刘敦一,张旗.内蒙古苏左旗地区闪长-花岗岩类SHRIMP年代学[J].地质学报,2004,78(6):789-799.
    [164]石玉若,刘敦一,简平,等.内蒙古中部苏尼特左旗富钾花岗岩锆石SHRIMP U- Pb年龄[J].地质通报,2005a,24(5):424-428.
    [165]石玉若,刘敦一,张旗,等.内蒙古苏左旗白音宝力道Adakite质岩类成因探讨及其SHRIMP年代学研究[J].岩石学报,2005b,21(1):143-150.
    [166]尚庆华.北方造山带内蒙古中、东部地区二叠纪放射虫的发现及意义[J].科学通报,2004,49(24):2574-2579.
    [167]宋彪,李锦轶,牛宝贵,等.黑龙江省东部麻山群黑云斜长片麻岩中锆石的年龄及其地质意义[J].地球学报,1997,18(3):306-312.
    [168]宋彪,张玉海,万渝生,等.锆石SHRIMP样品靶制作、年龄测定及有关现象讨论[J].地质论评,2002,8(增刊):26-30.
    [169]童英,洪大卫,王涛,等.中蒙边境中段花岗岩时空分布特征及构造和找矿意义[J].地球学报,2010,31(3):395-412.
    [170]唐克东.中朝陆台北侧褶皱带构造发展的几个问题[J].现代地质,1989,3(2):195-204.
    [171]唐克东,王莹,何国琦,等.中国东北及邻区大陆边缘构造[J].地质学报,1995,69: 16-30.
    [172]王玉净,樊志勇.内蒙古西拉木伦河北部蛇绿岩带中二叠纪放射虫的发现及其地质意义[J].古生物学报,1997,36(1):58-68.
    [173]王成善,李祥辉,万晓樵,等.西藏南部江孜地区白垩纪的厘定[J].地质学报,2000,74(l):97-107.
    [174]王守光,黄占起,苏新旭.一条值得重视的跨国境成矿带-南戈壁-东乌旗铜多金属成矿带[J].地学前缘,2004,11(1):249-255.
    [175]王成文,金巍,张兴洲,等.东北及邻区晚古生代大地构造属性新认识[J].地层学杂志,2008,32(2):119-136.
    [176]王成文,孙跃武,李宁,等.中国东北及邻区晚古生代地层分布规律的大地构造意义[J].中国科学D辑:地球科学,2009,39(10):1429-1477.
    [177] Wilde SA,吴福元,张兴洲.中国东北麻山杂岩晚泛非期变质的锆石年龄证据及全球大陆再造意义[J].地球化学,2001,30(1):35-50.
    [178]吴福元,Wilde SA,孙德有.佳木斯地块片麻状花岗岩的锆石离子探针U-Pb年龄[J].岩石学报,2001,17(3):443-452.
    [179]吴福元,李献华,杨进辉,等.花岗岩成因研究的若干问题[J].岩石学报,2007a,23(6):1217-1238.
    [180]吴元保,郑永飞.锆石成因矿物学研究及其对U-Pb年龄解释的制约[J].科学通报,2004, 49(16):1589-1604.
    [181]武广.大兴安岭北部区域成矿背景与有色、贵金属矿床成矿作用[D].长春:吉林大学博士学位论文,2005a.
    [182]武广,孙丰月,赵财胜,等.额尔古纳地块北缘早古生代后碰撞花岗岩的发现及其地质意义[J].科学通报,2005b,50(20):2278-2288.
    [183]谢鸣谦.拼贴板块构造及其驱动机理-中国东北及其邻区的大地构造演化[M].北京:科学出版社,2000.
    [184]肖庆辉.花岗岩构造环境判别方法.见肖庆辉等著.花岗岩研究思维与方法[M].北京:地质出版社,2002:12-52.
    [185]薛怀民,郭利军,侯增谦,等.中亚-蒙古造山带东段的锡林郭勒杂岩:早华力西期造山作用的产物而非古老陆块?-锆石SHRIMP U-Pb年代学证据[J].岩石学报,2009,25(8):2001-2010.
    [186]叶茂,张世红,吴福元.中国满洲里-绥芬河地学断面域古生代构造单元及其地质演化[J].长春地质学院学报,1994,24(003):241-245
    [187]余金杰,徐志刚,徐凤山.小兴安岭西北部奥陶系火山岩形成环境[J].地球学报,1996,17(1):54-64.
    [188]余和中,李玉文.松辽盆地古生代构造演化[J].大地构造与成矿学,2001,25(4):389-396.
    [189]杨现力.扎兰屯浅变质岩系地质特征及碎屑锆石年代学研究[D].长春:吉林大学硕士学位论文,2007.
    [190]张梅生,彭向东,孙晓猛.中国东北古生代构造古地理格局[J].辽宁地质,1998,2:91-96.
    [191]张贻侠,孙运生,张兴洲,等.中国满洲里-绥芬河地学断面1:1000000说明书[M].北京:地质出版社,1998.
    [192]张兴洲,杨宝俊,吴福元,等.中国兴蒙-吉黑地区岩石圈结构基本特征[J].中国地质,2006,33(4):816-823.
    [193]张连昌,英基丰,陈志广,等.大兴安岭南段三叠纪基性火山岩时代与构造环境[J].岩石学报,2008,24(4):911-921.
    [194]张彦龙,葛文春,高妍,等.龙镇地区花岗岩锆石U-Pb年龄和Hf同位素及地质意义[J].岩石学报,2010,26(4):1059-1073.
    [195]章凤奇,陈汉林,曹瑞成,等.海拉尔盆地基底晚古生代adakite的发现及其地质意义[J].岩石学报,2010,26(2):633-641.
    [196]周长勇,吴福元,葛文春,等.大兴安岭北部塔河堆晶辉长岩体的形成时代、地球化学特征及其成因[J].岩石学报,2005,21(03):763-775.
    [197]周建波,张兴洲,Simon AW,等.黑龙江杂岩的碎屑锆石年代学及其大地构造意义[J].岩石学报,2009,25(8):1924-1936.
    [198]周建波,张兴洲,郑常青.中国东北~500Ma泛非期孔兹岩带的确定及其意义[J].岩石学报,2011,27(4):1235-1245.
    [199]赵芝,迟效国,刘建峰,等.内蒙古牙克石地区晚古生代弧岩浆岩:年代学及地球化学证据[J].岩石学报,2010,26(11):3245-3258.
    [200]赵芝,迟效国,潘世语,等.小兴安岭西北部石炭纪地层火山岩的锆石LA-ICP-MS U-Pb年代学及其地质意义[J].岩石学报,2010,26(8):2452-2464.
    [201]郑常青,周建波,金巍,等2009.大兴安岭地区德尔布干断裂带北段构造年代学研究[J].岩石学报,25(8):1989-2000.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700