用户名: 密码: 验证码:
基于高阶统计量理论的地震层位自动拾取与油气检测技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着油气勘探开发程度的深入,油气勘探难度也在不断加大。由于勘探条件的复杂,获得的地震资料的信噪比和分辨率往往都很低,从而严重影响了其处理与解释的效果。因此在弱信号条件下,提出检测信号的新方法,解决勘探目标显得尤为重要。高阶统计量理论作为一种描述随机信号特征的数学工具,目前在地震勘探领域已经有了初步的应用;本文在此理论的基础上论述的两类方法以抑制高斯噪声对地震层位拾取的影响和应用地震分频技术进行油气检测为目的。
     作为油气检测的基础,地震层位自动拾取的工作显得越来越重要。为了提高层位拾取的工作效率,人们提出了许多地震层位自动拾取方法,如人工神经网络方法、模式识别方法、互相关方法等。上述方法中互相关方法稳定性最好,应用也最广泛。但是当地震资料中的噪声具有强相关性时,互相关方法会拾取噪声间的时间延迟值,致使层位拾取结果出现误差。本文充分利用地震层位横向波形相似性原理以及四阶累积量一维切片对高斯噪声免疫的特点,提出了基于四阶累积量一维切片的地震层位自动拾取方法,具体有如下创新点:
     1、1993年Tugnait给出了基于四阶累积量一维切片的信号时间延迟估计公式,公式中采用的是可变长度的分析时窗。在地震勘探数据处理中,采用可变长度分析时窗计算时,存在受坏道影响大、计算结果失稳、时移量拾取不足等问题;因此为了避免上述问题,本论文采用稳健性更好的固定长度的分析时窗,并且根据实际需要对延迟时参数的位置作了相应的改变。
     2、当地下介质是分层比较均匀的情况下,地震信号是一种近似于广义高斯分布的、偏度为零的具有对称分布的随机信号。对于对称分布的随机信号,其三阶累积量为零,因此三阶累积量已经不适合进行这种信号的处理。而本文采用的四阶累积量一维切片时延迟估计函数不存在三阶累积量的局限性。
     3、在地震层位拾取过程中需要合理设定相关参数,这些参数关系到层位拾取的准确性,其中参考道的选择尤为重要。在分析研究两种传统的参考道选择方式的基础上,设计了一种新的参考道选择方式;这种方式在地震数据局部波形相似性较强的情况下,既克服了固定参考道方式由于横向波形变化大产生计算误差的问题;也改正了非固定参考道方式容易产生大量累计误差的缺点。
     源于B P Amoco(英国石油阿莫科)公司的分频技术是通过数学变换将地震数据变换到频率域或时频域,然后沿其频率轴作频率切片,最后利用单频切片进行储层预测的一种解释技术。目前从各类文献资料来看,已有的分频技术算法主要有:傅氏变换方法、线性时频分析方法、时频分布方法等。本论文首次提出了基于Wigner双谱对角切片的分频技术,并将其应用在油气检测中,取得如下成果:
     1、为了解决Wigner双谱对角切片存在的交叉干扰项问题,采用模糊域核函数滤波抑制交叉项,并推导了Wigner双谱对角切片的模糊函数计算公式。
     2、在充分研究锥形核函数与指数核函数的基础上,利用锥形核函数表达式中的指数函数与指数核函数结合,给出了一个新的核函数。数值模拟结果表明新核函数兼具上述两种核函数的优点,对时延轴上及坐标轴外的交叉项都有很强的抑制作用。
     3、通过坐标移动的方法,使Wigner双谱对角切片的模糊函数信号项的中心点与新核函数中心点重合。从而解决了直接进行模糊域滤波致使新核函数对交叉项抑制能力下降的问题。
     4、为了解决Wigner双谱对角切片三维数据体数据量太大,致使matlab程序报错:“内存溢出”的问题。对分频技术的流程进行了改进,避免了分频过程中生成Wigner双谱对角切片三维数据体。
     结合国内外的研究基础以及本人对这一领域的认识,本文论述的两类方法还需要在以下三个方面进行深入研究:
     1、本文所给出的四阶累积量一维切片是基于非参数化估计方法得到的。该方法具有简单易实现的优点,但是在有限数据长度的情况下,存在估计方差较大的缺点。估计方差直接影响到计算结果的准确性,因此可以采用估计方差较小的参数化方法给出相应的地震信号时延估计算子。
     2、由Wigner双谱对角切片模糊函数图可以看出,有效信号与交叉项的间距比较近,两信号分量的延迟时越小,间距越近,这不利于薄层的分辨。因此可以对Wigner双谱对角切片模糊函数的计算公式进行改造,加大信号项与交叉项的间距,提高对薄层的分辨能力。
     3、模糊域核函数滤波法在有效抑制交叉项的同时降低了时频分辨率。因此可以利用重排理论或自适应最优核设计等时频分布理论抑制交叉项,在兼顾交叉项抑制能力的同时进一步提高时频聚集性。
As the oil and gas exploration level deepens, the oil and gas exploration difficulties are increasing. Owing to the complicated conditions of exploration, the SNR and resolution of data are very low. thereby seriously impact on effect of processing and interpretation. On the condition that weak signal, there is particularly important to propose a new method of signal detection for the new exploration object. As a mathematical tool describe random signal HOS theory has been initial applied in the exploration area; based on this theory, two kinds of methods were discussed by this article with the view of inhibit coherent gauss noise to interfere with the seismic horizon extracting and mend frequency-divided technique and improve the time-frequency resolution.
     As the base of oil and gas detection, seismic horizon extracting appears more and more important. To improve the efficiency, people propose many ways, such as artificial neural network, pattern recognition and cross-correlation, etc. The cross-correlation way has the best stability and applies the most widely. But when the noise of the data has strong relevance, cross-correlation way pick up the time delay of noise, bring about the error of seismic horizon extracting. This paper is the full use of the transverse wave comparability and one-dimensional slice of cross-fourth-order cumulants is immune to Gaussian noise, and propose a method of automatic extracting seismic horizon based on one-dimensional slice of fourth-order cumulants, there are the following specific innovation points:
     1, in 1993 tugnait gave the time delay formula based on one-dimensional slice of fourth-order cumulants, the formula uses of variable length analyzing window. When data processing uses of this variable length analyzing window, there is a problem of producing great influence by bad trace, the instability calculation results, and inadequate time-delay. To avoid above problems, this paper uses the more robust and fixed length analysis window, and according to the actual need to change the location of delay the parameter.
     2, when the underground media is even, the seismic signal is a kind random signal of symmetry distribution of bordering on generalized Gaussian distribution, skewness is zero. The three order cumulant of symmetrical distribution random signal snooze is zero, so it is not fit for processing such signals. But the time delay formula based on one-dimensional slice of fourth-order cumulants doesn't has this limitation.
     3. in process of extracting seismic horizon needs to reasonably setup parameters, these parameters concern the accuracy of horizon extracting, and the choice of referenced trace is especially important. Based on the study of traditional choice pattern of referenced trace, a new choice pattern of referenced trace has been devised; this way overcome the problem that the fixed referenced trace pattern leads calculation error because of transverse wave change:and also correct the shortcoming of floating referenced trace leads cumulative error.
     Frequency-divided technique deriving from B P Amoco is a resolution technique to transforms seismic data to frequency domain or time-frequency domain through mathematical transform, through it. cut frequency axis into slices, make use of slices to predicate reservoirs finally. At present sorts of document considered, existing frequency-divided technique include:The information from various sources, the existing businesses of technology are mainly:Fourier transformation, linear frequency analysis, the frequency distribution.etc. This paper in order to mend frequency-divided technique and improve the time-frequency resolution, make use of the high time-frequency resolution specialty of Wigner bispectrum diagonal slice, first propose the frequency-divided technique based on the Wigner bispectrum diagonal slice and apply it on the oil and gas detection, achieved following results:
     1, in order to solve the problem of cross-term interference in Wigner bispectrum diagonal slice, through fuzzy fields'kernel wave-filtering method for restraining cross-term interference and derivate formula of Wigner bispectrum diagonal slice fuzzy functions.
     2, based on fully studying cone-shaped kernel and exponential kernel, through combine exponential function in cone-shaped kernel with exponential kernel and give a new kernel. Numerical simulations indicated that the new kernel function has the advantages of above two kernels, and has a strong inhibition to cross-term interference in delay axis and beyond axis.
     3, by way of moving coordinate to superpose the center point between fuzzy functions signal terms and new kernel. Thereby solve a problem that the new kernel couldn't be capable of restraining cross-term interference because of filtering in fuzzy fields directly.
     4, in order to solve the problem of program error messages:"memory overflow' because that datasize of 3D data volume is too massive. So the frequency-divided technique procedure is improved, avoiding generating Wigner bispectrum diagonal slice3D data volume.
     In accordance with research base from home and abroad as well as this field knowledge of myself, two kinds of methods were discussed by this article need to be intensive studied from following three areas:
     1, one-dimensional slice of fourth-order cumulants of this paper is based on non-parametric estimation method. This method is simple to implement, but its estimation variance is excessive, in the case of finite length of data. Estimation variance directly impact on the accuracy of the results, therefore it can make us of little variance parametric estimation method to give seismic signal delay estimation operator.
     2, it can be seen from Wigner bispectrum diagonal slice fuzzy functions that space between effective signal and cross-term is closer, the delay is the less. This goes against resolving the thin bed. The formula of Wigner bispectrum diagonal slice fuzzy functions, and increases the space between effective signal and cross-term, improving ability of resolving the thin bed.
     3, while effectively restraining cross-term, fuzzy field's wave-filtering method reduces the time-frequency resolution. So may make us of rearrangement theory or adaptive optimal-kernel and so on to restrain cross-term, and further improve time-frequency aggregation.
引文
[1]何樵登.应用地球物理教程[M].北京:地质出版社,1991:1-2.
    [2]李志华.高阶统计量方法在地球物理学中的应用[J].工程地球物理勘探,2006,3(5):386-391.
    [3]尹成,伍志明,邓怀群.高阶统计量方法在地震勘探中的应用[J].地球物理学进展,2003,18(3):546-550.
    [4]杜宁平,史军,朱红涛.高阶统计量分析在油气预测中的应用[J].海洋地质动态,2004,20(8):27-29.
    [5]熊晓军,贺振华,尹成.高阶统计量在油气地球物理勘探中的新应用[J].地质科技情报,2005,24(2):77-84.
    [6]R.Peraldi, A.Clement.Digital processing of refraction data study first arrivals [J]. Geophysical Prospecting,1972,20(3):529-548.
    [7]S.Y.Lu.A string-to-string correlation algorithm for image skeletonization[R].6th International Conference on Pattern Recoznition, 1982.
    [8]许建华,王世库,赵延寿.用链匹配算法自动拾取同相轴[J].石油物探,1990,29(2):13-23.
    [9]杨立强,郝天珧,宋海斌等.应用小波变换和C3相干算法检测地震剖面同相轴[J].物探化探计算技术,2004,26(4):302-305.
    [10]Chen Y C, Li S Y. The binary consistency checking scheme and its applications to seismic horizon detection [J]. IEE Trans.Pattern Analysis.1989,11(4):439-447.
    [11]董恩清,朱光明,吴文奎.应用模式识别自动追踪地震剖面同相轴[J].西安石油大学学报:自然科学版,1998,13(2):12-16.
    [12]刘财,冯智慧,谢金娥.基于四阶累积量的同相轴自动拾取方法[J].吉林大学学报(地球科学版).2010,40(5):1188-1193.
    [13]冯智慧,刘财,冯晅等.基于高阶累积量一维切片的地震信号初至自动拾取方法[J].吉林大学学报(地球科学版),2011,41(2):559-564.
    [14]冯智慧,刘财,冯晅等.基于互四阶累积量一维切片的地震层位自动拾取方法[J].石油地球物理勘探,2011,46(1):58-63.
    [15]xuewei Liu, Ping Xue, Yanda Li.Network method for tracing seismic events[R]. the 59th SEG annual meeting,1989.
    [16]Kouyuan Huang, William R.I.Chang, H.T.Yen.Self-organizing neural network for picking seismic horizons[R]. the 60th SEG annual meeting, 1989.
    [17]陆凯文,牟永光.用自组织神经网络实现地震同相轴自动追踪[J].石油物探,1998,37(1):77-83.
    [18]柳开洋,韩道范,濮剑锋.断层两侧层位识别中同相轴定位和提取的实现[J].石油仪器,2001,15(6):55-56,59.
    [19]石玉梅,刘天放,谢桂生等.基于小波分析及CB形态滤波的地震同相轴检测[J].石油地球物理勘探,2000,35(5):565-570.
    [20]俞燕浓,方广有.基于隐Markov模型和Bresenham算法的层位追踪法[J].电子与信息学报,2009,31(5):1140-1143.
    [21]赵成喜,李文平,肖为国.线性插值法地震剖面反射层位追踪[J].西部探矿工程,2007年第4期:94-97.
    [22]Bondar I.Seismic horizon detection using image processing algorithm [J]. Geophysical Prospecting,1992,40(7):785-800.
    [23]周冠雄,胡志成.地震剖面图同相轴的AR自动追踪方法[J].自动化学报,1991,17(3):359-362.
    [24]高美娟,田景文,高兴友等.利用边缘检测法检测地震反射同相轴[J].大庆石油学院学报,2000,24(3):8-11.
    [25]李红星,刘财,陶春辉.图像边缘检测方法在地震剖面同相轴自动检测中的应用研究[J].地球物理学进展,2007,22(5):1607-1610.
    [26]魏明果.信号奇异性仿真及其在反射波同相轴检测中的应用[J].三峡大学学报(自然科学版),2007,29(5):464-465.
    [27]李月,杨宝俊,赵雪平等.检测地震勘探微弱同相轴的混沌振子算法[J].地球物理学报,2005,48(6):1428-1433.
    [28]徐而英,徐鸣洁,陈振岩.利用谱分解技术进行薄储层预测[J].石油地球物理勤探,2006,41(3):299-302.
    [29]张进铎,杨平,王云雷.地震信息的谱分解技术及其应用[J].勘探地球物理进展,2006,29(4):235-238.
    [30]Lopez J A et al.Identification of deltaic facies with 3-D seismic coherency and spectral decomposition cube [J]. Abstract of Istanbul'97International Geophysical Conference and Exposition,1997,7-10.
    [31]Lynn Peyton, Rich Bottjer, Greg Partyka. Interpretation of incised valleys using new 3-D seismic techniques a case history using spectral decomposition and coherency[J]. The Leading Edge, Sep 1998,17(9):1294-1298.
    [32]Partyka G, Gridley J, Lopez J. Interpretational applications of spectral decomposition in reservoir characteization[J]. The Leading Edge,1999, 18(3):353-360.
    [33]Castagna J P, Sun S, Siegfried R W. Instantaneousspectral analysis:Detection of low-frequency shadowsassociated with hydrocarbons [J]. The Leading Edge,2003,22(2):120-127.
    [34]韩申庭,杨华,王大兴等.鄂尔多斯盆地榆林区山西组砂岩气藏岩性地震勘探[J].天然气工业,1998,18(5):10-13.
    [35]朱红涛,冉崎.分频吸收系数技术在莺歌海盆地乐东地区储层横向预测中的应用[J].天然气勘探与开发,2002,25(4):62-67.
    [36]胡光义,王加瑞,武士尧.利用地震分频处理技术预测河流相储层[J].中国海上油气,2005,17(4):237-241.
    [37]王云高,周夏丽,于湘海等.多目标储层地震分时频处理技术[J].勘探地球物理进展,2004,27(4):274-279.
    [38]张延庆,魏小东,王亚楠等.谱分解技术在QL油田小断层识别与解释中的应用[J].石油地球物理勘探,2006,41(5):584-586,591.
    [39]Sinha S, Routh P S, Anno P D and Castagna J P.Spectral decomposition of seismic data with continuous-wavelet transforms [J]. Geophysics, Nov-Dec 2005,70(6):19-25.
    [40]马朋善,王继强,刘来祥等.Morlet小波分频处理在提高地震资料分辨率中的应用[J].石油物探,46(3),2007,283-287.
    [41]马志霞,孙赞东.Gabor-Morlet小波变换分频技术及其在碳酸岩储层预测中的应用[J].石油物探,2010,49(1):42-45.
    [42]冯磊,姜在兴.基于匹配追踪的谱分解方法及其应用[J].勘探地球物理进展.2009,32(1):33-36.
    [43]陈学华,贺振华,黄德济.基于广义S变换的地震资料高效时频谱分解[J]石油地球物理勘探,2008,43(5):530-534.
    [44]杨海涛,朱仕军,文中平等.基于Wigner-Ville的谱分解效果分析[J].勘探地球物理进展,2009,32(1):37-39.
    [45]Dandong Li and Xuedong Zheng. Spectral decomposition using Wigner-Ville distribution with applications to carbonate reservoir characterization[J]. The Leading Edge,2008,27(8):1050-1057.
    [46]Xiaoyang Wu and Tianyou Liu. Seismic spectral decomposition and analysis based on Wigner-Ville distribution for sandstone reservoir characterization in West Sichuan depression [J]. Journal of Geophysics and Engineering.2010, 7(2):126-134.
    [47]吴小羊,刘天佑.基于时频重排的地震信号Wigner-Ville分布时频分析[J].石油地球物理勘探,2009,44(2):201-205.
    [48]赵迎月,顾汉明,李宗杰等.Wigner-Ville高阶时频谱及其在塔中奥陶系缝洞型储层预测中的应用[J].石油地球物理勘探,2010,45(5):688-694.
    [49]张贤达.时间序列分析-高阶统计量方法[M].北京:清华大学出版社1996:1,312.
    [50]邢贞贞,韩立国,王宇.高阶统计量方法在地震信号分析中的应用[J].吉林大学学报:地球科学版,2007,37(增刊):139-142.
    [51]黄健英.信号高阶谱分析及在地震堪探中的应用[D].成都:成都理工大学,2006.
    [52]孙颖.时间延迟估计的高阶谱矩估计算法[J].长春大学学报,2003,13(6):13-14.
    [53]石玉梅,刘天放,谢桂生.三阶累积量法在断层检测及落差估算中的应用[J].地质与勘探,2001,37(4):73-75.
    [54]谢桂生,石玉梅.双相干相关法在断层检测及落差估算中的应用[J].石油地球物理勘探,2000,35(6):719-722.
    [55]曹艳玲,王修田.一种地震子波提取的高阶累积量方法[J].中国海洋大学学报,2008,38(3):461-467.
    [56]肖长安.高阶统计量在河道解释上的应用实例[J].探地球物理进展.2004,27(5):363-366.
    [57]尹成,熊晓军,张白林等.四阶累积量在剩余静校正中的应用研究[J].天然气工业,2004,24(12):48-50.
    [58]邱天爽,张旭秀,李小兵,等.统计信号处理[M].北京:电子工业出版社,2004:76-77.
    [59]董建华.分数谱与高阶谱估计技术在地震储层预测中的应用研究[D].武汉:中国地质大学,2008.
    [60]霍志勇.基于高阶统计量和混沌遗传算法地震子波提取方法的研究[D].东营:中国石油大学,2004.
    [61]殷保忠.基于小波高阶统计量和最小分类错误概率的纹理分类算法研究[D].合肥:合肥工业大学,2007.
    [62]符新伟.基于高阶统计量和小波分析的特征提取[D].西安:西北工业大学,2004.
    [63]刘福声.统计信号处理[M].长沙:国防科技大学出版社,1999:218-219.
    [64]韩露佳.基于高阶统计量的MIMO系统盲估计[D].长春:吉林大学,2006.
    [65]李翠萍.基于高阶统计量的非高斯ARMA模型辨识方法的研究[D].长沙:国防科技大学,2002.
    [66]沈凤麟.信号统计分析与处理[M].长沙:中国科学技术大学出版社,2001:119.
    [67]李廷伟.高阶统计量及在阵列信号处理中的应用[D],长沙:国防科技大学出版社,2005.
    [68]王书明.地球物理学中的高阶统计量方法[M].北京:科学出版社,2006:1471-48.
    [69]Rodriguez Fonollosa J. Nikias CL. Transient signal detection using the Wigner bispectrum [J]. IEEE Trans on Signal Processing,1991,39 (2): 1087-1092.
    [70]Fonollosa J R, Nikias C L.Wigner higher-order moment spectra:definitions, p roperties, computation and application to transient signal detection[J]. IEEE Trans, SP,1993,7:842-853.
    [71]姚姚.用人工神经网络实现同相轴自动拾取[J].石油地球物理勘探,1994,29(1):111-116.
    [72]燃料化学工业部石油地球物理勘探局计算中心等.地震勘探数字技术,第三册[M].北京:科学出版社,1978:415-416.
    [73]燃料化学工业部石油地球物理勘探局计算中心.地震勘探数字技术,第二册[M].北京:科学出版社,1978:158.
    [74]张伟,何卫.柯西-施瓦茨不等式的三种证明[J].重庆教育学院学报,2007,20(3):33-34.
    [75]石殿祥,陈树凯,郑天才等.用高阶统计量估算非最小相位地震子波[C].西安:1998年中国地球物理学会第十四界学术年会论文集,1998:89.
    [76]戴永寿,郑德玲,魏磊等.高阶统计量地震子波估计建模[J].石油地球物理勘探,2006,41(5):514-518,540.
    [77]熊晓军,尹成,张白林等.基于四阶互累积量的小断层自动识别方法[J].石油地球物理勘探,2004,39(增刊):158-164.
    [78]张安清,章新华.四阶累积量的递推估计及其应用[J].信号处理,2002,18(1):88-90.
    [79]赵清明,陈西宏,张敏.基于四阶累积量一维切片谱线增强方法[J].弹箭与制导学报,2004,24(3):236-238.
    [80]柯宏发,陈永光,张哲峰.基于四阶累积量对角切片的短波自适应通信信号检测[J].电子学报,2006,34(3):419-423.
    [81]J.M., Mendel. Tutorial on higher-order statistics in signal processing and system theory:theoretical results and some applications.Proc [J]. IEEE, 79(3):278-305.
    [82]Chrysostomos L.Nikias, Jerry M.Mendel. Signal processing with higher-order spectra [J]. IEEE Trans Signal Processing,1993,10(3):10-37.
    [83]Tugnait J K. Time delay estimation with unknown spatially correlated Gaussian noise [J]. IEEE Trans Signal Processing,1993,41(2):549-558.
    [84]张伟,何卫.柯西-施瓦茨不等式的三种证明[J].重庆教育学院学报,2007,20(3):33-34.
    [85]覃天.多属性相干方法识别微小断层[J].工程地球物理学报,2008,5(5):538-542.
    [86]赵倩,李宏伟,余绍权.基于高阶统计量的对称分布信号检测[J].信号处理,2005,21(6):565-569.
    [87]陆基孟.地震勘探原理(第二版)(上册)[M],东营:石油工业出版社,2001:151-152.
    [88]邹文,陈爱萍,顾汉明等.S-变换初至拾取技术及其在复杂山区中的应用[J].石油天然气学报,2006,28(2):63-65.
    [89]边国柱.自动拾取地震数据中的初至[J].石油地球物理勘探,1987,22(4):461-464.
    [90]袁志云,孔令洪,王成林.频谱分解技术在储层预测中的应用[J].石油地球物理勘探,2006,41(增刊):11-15.
    [91]吴正国.现代信号处理技术:高阶谱、时频分析与小波变换[M].武汉:武汉大学出版社,2002:108-109.
    [92]张贤达.现代信号处理[M]二版.北京:清华大学出版社,2002:449.
    [93]Wigner E P.On the quantum correction for thermodynamic equilibrium [J].Phys.Rev.1932,40:749-759.
    [94]Ville J.Theorie et applications de la notion de signal analytique[J]. Cables et Transmission,1948,2A:61-74.
    [95]李耀东,冯涛,袁超伟.基于自项窗的WVD交叉项抑制技术[J].无线电通信技术.2010,36(4):39-42.
    [96]初孟,邱天爽.时频分布中交叉项抑制的研究进展[J].世界科技研究与发展.2005,27(4):14-20.
    [97]胡明顺,潘冬明,徐红利.几种时频分析方法对比及在煤田地震勘探中的应用[J].物探与化探,2009,33(6):691-695.
    [98]殷勤业,黄朝云.时-频分析中的不确定性原理[J].西安交通大学学报,1996,30(9):1-7.
    [99]段雪江,陈逢时.多分量信号的最优时频表示[J].信号处理,1996,12(3):280-284.
    [100]Gerr N L.Introducing a third-order Wigner distribution [J]. Proc IEEE,1988, 3:290-292.
    [101]S.K.Lee, P.R.White.Higer-order time-fpequecncy analysis and its application to fault detection in rotating machinery [J]. Mechanical Systems and Signal Processing,1997,11(4):637-650.
    [102]刘波MATLAB信号处理[M].北京:电子工业出版社,2006:330.
    [103]王军,李亚安.多分量信号时频分析交叉项抑制研究[J].探测与控制学报,2004,26(4):13-17.
    [104]秦太龙,程珩,薛松.抑制Wigner-Ville分布交叉项方法的比较[J].太原理工大学学报,2008,36(9):548-550.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700