用户名: 密码: 验证码:
生态高值农业技术创新模式研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
我国生态农业产业化建设还处于起步阶段,需要大尺度生态经济优化的技术创新与制度创新。本文属于问题驱动型研究,致力于生态农业资源节约型、环境清洁型与经济安全型等“三型”产业化技术体系的设计与节能降耗、减排治污与循环自生的新型模式的构建,以便缓解我国中亚热带区域近50a来工业化农业的负效应与近年盲目追求GDP导致的生态农业发展低迷,农药、化肥、灌溉水、劳动力等4项投入迅猛增长,种粮比较效益明显偏低,种养结构失衡,轻种重养,种粮副业化,稻衰猪盛,以猪为首的人畜禽鱼粪尿严重污染流体环境,形成妨碍水资源、耕地、粮食等农产品安全与生态安全的恶性循环。
     在本研究区域自然环境、社会经济与当地农业实际情况的长期跟踪调研中,借鉴国内外生态农业理论与经验,特别是在对景观模式、循环模式、立体模式、食物链模式、品种搭配模式等5种基本类型及其18种分类型的生态农业模式进行比较研究与综合创新的基础上,尝试以“节约、环保、多产、高值”为构建生态农业新型模式的目标与价值取向,与良田良种良法配套研究和“种三产四”丰产工程相结合,以生态过程工程为技术手段,以生物多样性关系重建、景观生态规划、循环体系设计为核心,以种-养-沼-加四联产循环与农-林-牧-渔-加-游六业结合的5个生态过程工程为框架主体的产业化技术体系,包括产前、产中、产后全过程清洁生产和农业、工业及城镇废弃物污染治理,含流体污浊链源头控制、过程阻断与末端治理。其核心任务是产前创造水、土、生物质、气候光热资源与废弃物资源生态高值化利用的条件;产中实现农产品的生态高值化生产;产后实现生态高值化加工与市场销售额攀升;以及创建清洁高效的工艺流程和设备,解决农业产业化-高值化生态过程与流体污染控制工程耦合技术创新与相关制度创新问题。主要研究结果如下:
     (1)基于生物多样性利用原理、能源高效率和物料全利用、流体环境一体及科技经济一体与城乡一体等“节约、环保、多产、高值”的目标和价值理念,提出了中国生态农业发展的“生态-循环-高值3阶段论”与生态农业新型模式——生态高值农业技术创新模式;界定了“生态高值农业”及其辅助概念“城乡四维污染”“流体环境系统”与“环境痕量污染物”;在其应用案例“同一气候变量条件下旱涝环境数据代表性及准确性的局地水、土、气监测相关性试验”中研究发现,以大气为主、以土壤为辅、以环境污染遥感监测4S技术集成系统为参照的监测数据可以表征地表水污染程度。可以借鉴成云过程中云水pH参数化的方法,实施地表水中SO42-、NO3-、TN、NH3-N等,土壤中硫与氮,以及大气中SO2、NOx、NH3等污染物的参数化,包括水、土、气污染物监测数据的相关系数。其阶段性研究成果与权威文献的结论相符合。
     (2)“生态高值农业”的实践体验:稻糠深加工小试、中试与肌醇工业性试验中的系统模拟分析应用案例。
     ①设计思路。在确定的清洁生产任务下,选取设备单元与最佳流程,使固定资本及流动资本投资最少,对此混合整数非线性规划模型(MINLP)在计算机上求解。将模拟退火法与启发法相结合,得到一种混合优化算法,可兼顾算法全局最优与加快局部寻优进程。该法与严格数学规划法相比,相对误差<0.5%,被认为是最优设计。
     ②流程模拟与工艺流程设计。应用由物料平衡、能量平衡与相平衡等方程组成的能足够准确描述整个生产过程的数学模型,在计算机上求解,以便得到该过程的全部信息后进行工艺流程设计。
     ③设备设计,以及生态高值化工艺与传统工艺的比较。经浙、冀两厂试产证实,60t/a肌醇工程水解釜容积设计为6m3已有裕度。肌醇收率可由传统工艺的6.0%-9.1%提升到生态高值化工艺的10.0%~12.5%;代表流动资本且占成本2/3的菲汀消耗量从17t/t~11t/t肌醇下降为l0t/t-8t/t肌醇;代表固定资本的不锈钢水解釜容积由6.5m3~4.2m3节减为3.8m3~3.0m3。肌醇收率达到12.5%时,产能可由60t/a提升为120t/a。
     ④试产启示。生产流程模拟软件应用于肌醇生产关键设备及全流程数学模拟、设计计算与工况分析,可获先进可靠的硬件和软件与全流程简化及“三型”产业化技术,以及良好的社会-经济-生态综合效益。肌醇等“4联产”及其经济评价结果显示,大力发展生态高值农业是必要的,也是可行的。
     (3)构建了包括系统科学方法论、研究方式、具体方法技术3要素在内的研究方法体系。其精髓是后者的3项分析,即系统模拟分析、能值分析与生命周期分析。
     (4)新型模式与产业化技术体系中3项分析应用案例:
     ①测土配方施肥与系统模拟分析应用案例。2007a育塅乡应用晚稻肥效模型,NPK最佳施肥量分别为121.50kg/hm2,25.05kg/hm2,70.35kg/hm2,最佳产量为7378.5kg/hm2;全市累计实施2.93万hm2,施NPK配方专用肥1.08万t/a,平均施有机肥3t/hm2,比以往施有机肥增加0.75t/hm2,节省化肥折纯1.34万t/a,增产稻谷8790t/a,平均0.3t/hm2,共增收1674.56万元/a,平均572元/hm2。
     ②牛-沼-草“3联产”循环农业模式与能值分析应用案例。联产循环农业是循环经济系统的一个子系统,其通过系统整合达到自然资源利用效率最大化、购买性资源投入最低化、可再生资源高效循环化、有害生物和污染物可控制化的产业目标。研究结果表明,牛业子系统与牛-沼-草联产全系统比较,能值自给率(ESR)从0增加到0.041%;净能值产出率(EYR)由1.90增加到2.11;可持续发展指数(ESI)由0.76增加到1.03;而环境负载率(EIR)由1.32降低到1.08,降低了18.18%。
     ③零排放区域控制与生命周期分析应用案例:生态高值化稻草制甲醇(5万t/a)项目。在搜集半径50km范围内为碳减排区域,稻草不再废弃焚烧。生命周期分析(LCA)结果,其环境影响成本为284.99元/t甲醇,且集中于生产与消费过程。其中水稻种植过程净碳固定值为负值(-152.79元/t甲醇),总环境影响负荷为负(-35.49元/t)。稻草制甲醇的实际成本比煤制甲醇降低76.84元/t。
     ④零排放区域控制与清洁发展机制(CDM)案例:2006a湘阴引进ICPC推荐的生态高值化“大型沼气发电及生态肥”项目。用地6.67hm2,有机废物搜集半径3km,输入畜禽粪便300t/d、废液200t/d,热-电-生态肥“3联产”,经厌氧发酵产沼气供热且发电600万kWh/a、产生态肥5万t/a,减排8万t/a二氧化碳当量。
     ⑤超级杂交稻与绿色超级稻的融合及风险与兼顾社会-经济-生态效益案例。转基因技术的运用是先进育种技术发展的方向,是大幅度减少农药、化肥、灌溉水、劳动力等4项投入、提升种粮比较效益的重大技术对策。超级杂交稻是转基因技术非常好的材料;转基因技术的运用有益于超级杂交稻在产业化的大规模种植中更好地实现超高产潜力。但学界不能预知对生物进行转基因改造的危害,不能排除“生物放大”现象,这是许振成提出的“环境痕量污染物”新概念的启示之一。
Safety of fluid body and its water environment is an imperative condition for the safety of arable land and agricultural products including food. Based on practical demands of the county-level ecological hi-value agriculture's development, water and air treatment, residential and working sufficiency, production and yield increase and biological safety, this Dissertation, tries to relieve the vicious recycle of speedy increase of 4 inputs as farm chemicals, fertilizers, irrigated water and labor force, apparent low comparative efficiency of cereal production, marginalization of cereal production, disbalance of planting-animal husbandry structure, over-emphasing animal husbandry while despising planting, bump harvest in swine while dropoff in rice caused by the negative efficiency of industrialized agriculture in mid-subtropical areas in China for near 50 years and blind GDP pursuit in recent years. This practice has caused serious pollution of fluid body enviornment by dungs of human being, livestock, foultry and fish with pig dung as main contents and led to vicious cycle which badly affects the safety of water source, arable land food and ecology. This Dissertation, in combination with the comprehensive study of quality field, quality breed and fine methodoloty, and the "planting-three-harvesting-four" bump harvest project, with agricultural ecological process engineering as core technologic means, with combination of six industries as agriculture-forestry-stockraising-tourism-processing and ecological industrial chain with combination and recycling of planting-stockraising-sewage gas-processing as main attention, with landscape ecological planning, recycling system design and biodiversity relationship reconstruction as the core, is dedicated for construction of conceptual/theoretical, methodologic and industrial systems and its core "technological innovation mode", among which, the industrial system mainly contains "4-Constructions" with the safety of agricultural products and sustainable agricultural construction as main body, with intelligent agriculture and hi-value agricultural construction as two wings, and pre-production, mid-production and post-production whole-process clean production and agricultural, industrial and urban waste pollution treatment, including fluid body pollution chain's source control, process hindrance and end-treatment. Its core mission is to realize ecological hi-value utilization of water, soil, live substance, climatic light and heat resources and waste resources; to realize the ecological hi-value production of agricultural products; to realize post-production ecological hi-value processing and marketing; and to create clean hi-efficiency process, flow and equipment to solve the motivation issue of innovation in the ecological process of agricultural industrialization and hi-value orientation and in the fluid body pollution control engineering coupling technology innovation and in the industrial system operational mechanism. The main findings are as follows:
     (1) Based on three concepts as biodiversity, energy hi-efficiency and full use of substances, urban and rural integration, and fluid environment integration, this Dissertation has put forward the "Ecological-Recycling-Hi-value 3 Stage Theory" and "Ecological Hi-Value Agricultural Technology Innovation Mode" for the development of China's ecological agriculture, defined "Urban-Rural-4-Dimension Pollution" and "Fluid Body Environment System" as the auxiliary new concepts of "Ecological Hi-Value Agriculture". In its application case of "Local Water, Soil and Air Monitoring Corelation Test for Representation and Precision of Drought and Flood Environment Data under the Same Climatic Variable Conditions", monitoring data with atmospheric data as main contents, with soil data as supporting data, with 4S technical integrated system in environmental pollution remote monitoring as reference, can represent the degree of pollution of surface water. Cloud-water pH parameter-oriented methodology in cloud-forming process can be referred to in achieving the parameter orientation of pollutants as SO42-,NO3-,TN,NH3-N etc, S and N in soil, and SO2,NOx and NH3 in atmosphere, including related coefficients in monitoring data of pollutants in water, soil and atmosphere. The phased research findings are in compliance with results carried in authoritative literatures.
     (2) Practice of "Ecological Hi-Value Agriculture":rice chaff deep processing lab test, pilot test and inositol industrial test".
     ①Design thread:Under fixed production task, select equipment units and optimal flow to minimize the fixed capital and the floating capital investment including environmental cost as energy conversion, consumption reduce, emission abatement and water treatment. The solution can be sought through summarizing it into a Mixed Integer Non-Linear Planning Model (hereinfater called MINLP) via computer. Combining simulated annealing and heuristic method can lead to a fixed optimized algorithm wich can enjoy both global optimum and speed up seeking process of local optimum. This method, compared with strict mathmatic planning method, enjoys the relative error lower than 0.5% and it is deemed as optimal design.
     ②Flow simutation and process design. Adopt material balance equation, energy balance equation and phase balance equation to form a mathetical model which can accurately describe the whole production process to seek solution via computer, so that all information of this process can be acquired.
     ③Equipment design and comparison between traditional process and ecological hi-value process:Practically proved in two factories respectively in Zhejiang Province and Hebei Province, the capacity of 60 tons/year of inositol project can be optimally designed with autoclave volume as 6m3, among which, the inositol yield (%) can be improved from 6.0%-9.1% in traditional process to 10.0%-12.5% in ecological hi-value process; phytine consumption, which stands for floating capital and accounts for 2/3 of the total cost can be reduced from 17-11 to 10-8t/t inositol; while the hydrolysis autoclave volume which stands for fixed capital and accounts for dominant cost can be reduced from 6.5-4.2m3to 3.8-3.0m3. While when the yield rate reaches 12.5%, the capacity can be expanded to 120t/a.
     ④Enlightenment of trial production:applying production flow simulation software into the key production equipment, whole-flow mathematical simulation, design calculation and production status analysis can help find advanced and reliable hardware and software and lead to whole-flow simplication, and social-economic-ecologic comprehensive efficiency.
     (3) Constructed the research methodological system including three elements as system science methodology, research mode and detailed mthod technique, of which the essence is 3 items of analysis of the latter, i.e. system simulation analysis, emergy analysis and life cycle analysis.
     (4) 3 analysis & application cases in construction of Ecological Hi-Value Agriculture's Industrial System and its Technological Innovation Mode:
     ①Soil Formula Fertilizer Application and System Simulation Analysis & Application Case. In the fertilizer-effect model applied in Yuduan Village in 2007, the optimal amount of fertilizer application is respectively 121.50,25.05 and 70.35kg/hm2, the optimal yield is 7378.5 kg/hm; the accumulative amount applied in the whole city is 29.3 thousand hm2, the special NPK fertilizers applied is 10.8 thousand t/a, the organic fertilizers applied is 3t/hm2,0.75t/hm2 increased than those applied hi-carbon fertilizers, saved chemical fertilizers are 13.4 thousand t/a, paddy rice increased at 8 790t/a, at average 0.3t/hm2, total increased amount is RMB16.7456 million/a, RMB 572/hm2 at average.
     ②Cattle-Sewage Gas-Grass Joint-Production Recycling Agricultural Mode and Emergy Analysis Application Case. The result indicates that the efficiency of use of natural resources is increased from 0 to 0.041%; the rate of output of whole-system net energy and the index of sustainable development are respectively 2.11 and 1.03, increased at the rates of 10.5% and 71.05% compared with single cattle raising industry; the load rate of environment is 1.08,18.18% decreased.
     ③Zero-Emission Area Control and Life Cycle Analysis Application Case:Ecological Hi-Value Straw-Made Methanol Project (50,000 t/a). The reduced carbon emission area is set within the searched radium of 50km, straw will not be wasted and burned. Life Cycle Analysis shows that the cost of environment effect is RMB284.99/t of methanol, and is concentrated on the process of production and consumption, among which, the fixed value of net carbon in the planting of paddy rice is minus (RMB-152.79/t methanol), the total environmental effect load is minus (RMB-35.49/t). The actual cost of straw-made methanol is RMB 76.84/t less than coal-made methanol.
     ④Zero Emission Area Control and Clean Development Mechanism (CDM) Case: ICPC-recommended ecological hi-value"Large-Scaled Sewage Gas Power Generation and Ecological Fertilizer" Project introduced in Xiangyin County. With a land of 6.67hm2 used, within the area of searched radium of 3km of organic waste,300t/d dungs of foultry and livestock and 200t/d waste liquid are input, "3 joint-products" of thermal-power-ecological fertilizer take place. Upon anaerobic fermentation, sewage gas produced can produce heat and generate power of 6,000,000 kWh/a, produce 50,000 t/a ecological fertilizers, reduce emission of carbon equivalent at 80000t/a.
     ⑤Merger of super hybrid rice and green super rice and related risk, social-economic-ecological combined efficiency case. Application of transgenosis technology is the development direction of advanced breeding technology, and the major technological solution of reducing 4 inputs as farm chemicals, fertilizers, irrigated water and labor force in great margin and thus improving rice-planting's comparative efficiency. Super hybrid rice is a very good material for transgenosis technology; and the application of transgenosis technology is beneficial to better realizing super-high yield potential in planting super hybrid rice in a large scale. However, scientists cannot foresee the harms of transgenic transformation over live substance, and cannot exclude the occurrence of "live substance enlargement" phenomenon in future, which is an enlightenment of the new concept of "environmental trace pollutants".
引文
[1]王莉萍.农业生产可巧妙利用气候变暖[N].科学时报,2009-11-02,B3
    [2]中国科学院生态与环境领域战略研究组.中国至2050年生态与环境科技发展路线图[M].北京:科学出版社,2010,73,148
    [3]Zhou Nianqing, Zhu Xueyu, Qian Jiazhong. The status of water resource exploitation and utilization and the environmental problems in China [C]. Editors:Wang Yanxin, Liang Xin.Proceedings of the International Symposium on Hydrogeology and the Environment [M]. Beijing:Chinese Environmental Science Press,2000:488-493.
    [4]钱家忠,李如忠,汪家权,李昱霞.城市供水水源地水质健康风险评价.水利学报,2004,8:90-93
    [5]郑丙辉,张远,付青.中国城市饮用水源地环境问题与对策[J].水工业市场,2007,(10):31-35
    [6]中国科学院水资源领域战略研究组.中国至2050年水资源领域科技发展路线图[M].北京:科学出版社,2009,96
    [7]袁隆平.实施超级杂交稻“种三产四”丰产工程的建议[J].杂交水稻,2007,22(4):1
    [8]章家恩,骆世明.现阶段中国生态农业可持续发展面临的实践和理论问题探讨[J].生态学杂志,2005,(11):1365-1370
    [9]潘希.赵其国院士:我国须走生态高值农业之路[N].科学时报,2010-09-06[A1]
    [10]李长春.走农业产业化经营的路子[N].人民日报,2000年08月09日第二版
    [11]谢兵,斐又良.论超级杂交水稻优质高产兼容发展的机理及其栽培对策Ⅰ.超级杂交水稻优质高产可兼容发展的机理[J].湖南农业科学,2007,(5):84-86
    [12]官雪芳,林斌,方志坚等.福建省养猪业的环境问题与防治对策[J].能源与环境,2009(4):59-61
    [13]钱易,唐孝炎.环境保护与可持续发展(第二版)[M].北京:高等教育出版社,2000,60-62
    [14]何强,井文涌,王翊亭.环境学导论(第二版)[M].北京:清华大学出版社,1994,233-236
    [15]王如松,欧阳志云.生态整合——人类可持续发展的科学方法[J].科学通报,1996,41(增刊):47-67
    [16]洪华生,黄金良,曹文志.九龙江流域农业非点源污染机理与控制研究.北京:科学出版社,2008,1,109
    [17]章力健,周晓震,杨正礼等.我国水稻生产中的立体污染及防治[J].中国稻米,2005,(5):1-4
    [18]许振成.营养水体的流域控制[J].重庆环境科学.2003,25(11).pp.3,4,15
    [19]许振成.主动环保战略构建分析[J].中国环境管理.2006(12).pp.1-4
    [20]朱万斌,王海滨,林长松等.中国生态农业与面源污染减排[J].中国农学通报.2007(10):184-187
    [21]边蔚,王路光,胡晓波等.水产养殖对水域环境的影响及污染防治对策[J].河北农业科学,2009,13(6):91-93
    [22]焦荔,方志发,朱淑君等.千岛湖网箱养鱼对水质的影响[J].环境监测管理与技术,2007,19(4):32-34
    [23]刘潇波,高殿森.浅析淡水网箱养鱼对水环境的影响及对策[J].重庆工业高等专科学校]学报,2004,19(6):50-57
    [24]江林源,邓潜,黄光华等.网箱养鱼与水库水质的相互关系研究[J].现代农业科技,2008,(20):222-224
    [25]陈丁,郑爱榕.网箱养殖的氮、磷和有机物的污染及估算[J].福建农业学报,2005,20(增刊):57-62
    [26]刘鹰,王玲玲.集约化水产养殖污水处理技术及应用[J].淡水渔业,1999,(11):22-24
    [27]Brown J R.Gowen R J.McLusky D S.The effect of salmon Fishing on the benthos of a Scottish sea loch [J].ExpMarBiolEcol.1987,109,39-51.
    [28]周兴华,向枭,陈建.浅谈网箱养鱼水体的有机负荷[J].北京水产,2000,(3):12-13
    [29]刘顺科,蒋卫世,田晓民等.水磨滩水库网箱养鲤水质恶化的原因及对策[J].水利渔业,1991,(6):37-40
    [30]熊国中,戴自福,沈兵.洱海湖滨区鱼塘污染状况调查研究[J].云南环境科学,2000,19(3):32-24
    [31]吴庆龙.东太湖养殖渔业可持续发展的思考[J].湖泊科学,2001,13(4):338-346
    [32]William,et al.J Air & Waste Manage Assoc,1999,49:1060-1067
    [33]吴忠标.大气污染控制工程.北京:科学出版社,2002,25
    [34]张慧勤,过孝民.环境经济系统分析-规划方法与模型.北京:清华大学出版社,1993,29
    [35]赵德山.城市大气污染问题控制方法手册.北京:中国环境科学出版社,1991,141
    [36]宁平,易红宏,周连碧.有色金属工业大气污染控制[M].北京:中国环境科学出版社,2007,1-4,180
    [37]宋国君.论中国污染物排放总量控制和浓度控制.环境保护,2000(6):11-13
    [38]范绍佳,黄志兴,刘嘉玲.大气污染物排放总量控制A-P值法及其应用.中国环境科学.1994,12(6):407-410
    [39]方栋,王雅秋,王晓东.城市大气污染传递函数矩阵表-定量现状分析工具.中国环境科学,1995,15(2):113-117
    [40]范长忠.城市大气污染物总量控制最大排放量模型法及其应用.环境保护科学,1996,12(1):67-70
    [41]Dudhia J,Gill D,Guo Y R,et al.PSU/NCAR mesoscale modeling system tutorial class guide:MM5 modeling system version 3.NCAR,2000.122
    [42]Cotton W R,Pielke R A,Walko R L,et al.RAMS 2001:current status and future directions.Meteorology and Atmospheric Physics,2003,82:5-29
    [43]桑建国,温市耕.大气扩散的数值计算.北京:中国气象出版社,1992,372
    [44]Lei X, Zhang M, Han Z,et al.Physical, Chemical, Biological Processes and Mathematical Model on Air Pollution.Beijing:China Meteorological Press,1998,321
    [45]陈锡康.经济数学方法与模型.北京:中国财政经济出版社,1985
    [46]叶雪梅,郝吉明,段雷等.应用动态模型确定酸沉降临界负荷的探讨.环境科学,2002,23(4):18-23
    [47]Schmieman S,Vries W,Hordijk L,et al.Dynamic cost-effective reduction strategies for acidification in Europe:an application to Ireland and the United Kingdom. Environmental Modeling and Assessment,2002,7(3):163-178
    [48]钱学森,宋健.工程控制论.北京:科学出版社,1980
    [49]涂序彦.大系统控制论.北京:国防工业出版社,1994
    [50]曾庆存.自然控制论.中国科学院院刊,1996(1):16-21
    [51]蔡宣三.最优化与最优控制.北京:清华大学出版社,1983,646
    [52]袁亚湘.非线性规划数值方法.上海:上海科学技术出版社,1993,267
    [53]朱江,曾庆存.控制大气污染的一个数学理论框架.中国科学(B辑)
    [54]梁逸曾,吴海龙,沈国励等.分析化学计量学的若干新进展.中国科学B辑化学,2006,36(2):93-100
    [55]Blifford I H, Meeker G O. A factor analysis model of large scale pollution[J]. Atmospheric Environment,1967,1 (1):147-158.
    [56]John G W, Norman F R, Judith C C, et al. Receptor model technical series, volumeⅢ (1989 revision) CMBT user's manual [EB/OL]. http://www.epa.gov/scramool/ userg/other/cmb7ug.pdf,1990-01.
    [57]冯银厂.关于化学质量平衡受体模型应用中若干技术问题的研究.[博士论文]南开大学,2002
    [58]李德禄,张元勋,李爱国等.冬季上海吴淞地区大气颗粒物PM10的元素主成分分析[J].核技术,2005,28(2):109-112
    [59]戴树桂,朱垣,曾幼生等.天津市区采暖期飘尘来源的解析.中国环境科学,1986,6(4):24-30
    [60]李祚泳,彭茄红.基于遗传算法的大气颗粒物的源解析[J].环境科学研究,2000,13(6):19-21.
    [61]鲁磊,张卫东,蒋昌潭等.大气颗粒物源解析的遗传算法模型的改进.安徽农业科学,2007,35(16):4823-4825
    [62]Shaffer R E,Small G M. Chemometrics Intell Lab Syst,1996,35:87-104
    [63]唐立山,谢云,尤矢勇等.非数值并行算法(第一册)——模拟退火算法.北京:科学出版社,1994
    [64]朱尔一,杨芃原.化学计量学技术及应用.北京:科学出版社,2001
    [65]范志平,曾德慧,余新晓.生态工程理论基础与构建技术[M].北京:化学工业出版社,2006,31-33
    [66]陈英旭.农业环境保护[M].北京:化学工业出版社,2006,196
    [67]王卉.华南农大教授章家恩:中国农业不能盲目低碳化[N].科学时报,2010-08-25
    [68]马世骏,李松华.中国的农业生态工程[M].北京:科学出版社,1987,2,8
    [69]Li Wenhua.Agro-ecological Farming Systems in China.Parthenon Publishing,2001.
    [70]Li Wenhua,Min Qingwen,Miao Zewei.Eco-county construction in China,Journal of Environmental Sciences,1999,11(3),p.283-289.
    [71]Li Wenhua,Min Qingwen.Integrated farming system:An important approach toward sustainable agriculture in China.AMBIO,1999,28(8),p.655-662.
    [72]Li Wenhua.Agro-Ecological Farming Systems in China-man and the Biosphere series.Volume 26.Paris:the Parthenon Publishing Croup,2001
    [73]中国科学院农业领域战略研究组.中国至2050年农业科技发展路线图[M].北京:科学出版社,2009,39
    [74]杨京平.农业生态工程与技术.北京:化学工业出版社,2001,pp.25
    [75]王志刚工作室.城变——一个中国传统城市的细胞再造[M].北京:人民出版社,2007,pp.32
    [76]周玲强,黄祖辉.我国乡村旅游可持续发展问题与对策研究[J].经济地理,2004,24(4):572-576
    [77]李团胜,王萍.绿道及其生态意义[J].生态学杂志,2001,20(6):59-61.
    [78]Little C E.Greenways for American[M].London:The Johns Hopkins Press Ltd,1990.
    [79]Form an R T T.Land M osaic the Ecology of Landscape and Region [M].Cambridge: Cambridge University Press,1995.
    [80]俞孔坚,李伟,李迪华,等.快速城市化地区遗产廊道适宜性分析方法探讨——以台州市为例[J].地理研究,2005,24(1):69-76.
    [81]刘滨谊,余畅.美国绿道网络规划的发展与启示[J].中国园林,2001(6):77-81.
    [82]刘滨谊,徐文辉.生态浙江绿道建设的战略设想[J].中国城市林业,2004(6):14-20.
    [83]徐文辉.生态浙江省域绿道网规划实践[J].规划师,2005,21(5):69-72.
    [84]彭方仁,郝明灼,王改萍等.绿道理论在江苏沿海地区生态环境建设中应用[J].林业科技开发,2009,23(5):1-5.
    [85]翁伯琦,胡习斌,翁志辉.低碳农业导论[M].北京:中国农业出版社,2010,470,463,379-383,459,444,470,463,382,459
    [86]郭铁民,王永龙.福建发展循环农业的战略规划思路与模式选择[J].福建论坛(人文社科版),2004(11):83-87
    [87]李荣生.中国必须发展农业循环经济[J].中国农村科技,2006,(5):1
    [88]徐云.绿色新概念——21世纪经济与环境发展大趋势[M].北京:中国科学技术出版社,2004,62,63
    [89]衣俊卿.现代性的维度及其当代命运[J].中国社会科学,2004,(4):13-24
    [90]檀学文.现代农业、后现代农业与生态农业[J].中国农村经济,2010,(2):92-95
    [91]田大伦.高级生态学[M].北京:科学出版社,2008,7,215,245,484
    [92]卞有生.生态农业中废弃物的处理与再生利用(第二版)[M].北京:化学工业出版社.2005.2.
    [93]赵其国,钱海燕.低碳经济与农业发展思考[J].生态环境学报,2009,18(5):1609-1614
    [94]程序.生物质能与节能减排与低碳经济[J].中国生态农业学报,2009(2):177-180
    [95]蒋高明.农业与低碳经济:生态学主导的新农业革命与大粮食安全.载:张坤民,潘家华,崔大鹏主编.低碳经济论.中国环境科学出版社,2008
    [96]王卉.骆世明:生态农业,能多大程度保证食品安全[N].科学时报,2007-06-11
    [97]骆世明.生态农业的模式与技术[M].北京:化学工业出版社,2009,5,6,10,21-24,47
    [98]陈洪章.秸秆资源生态高值化理论与应用[M].化学工业出版社,2006,43-50,61
    [99]陈洪章,邱卫华.秸秆发酵燃料乙醇关键问题及其进展[J].化学进展.2007,19(7/8):1116-1121.
    [100]Shen L.,Courtois B.,McNally K.L.,Robin S.,and Li Z.,2001,Evaluation of near-isogenic lines of rice introgressed with QTLs for root depth through marker-aided selection,Theor.Appl.Genet.,103 (1):75-83
    [101]Paterson A.H.,Lander E.S.,Hewitt J.D.,Peterson S.,Lincoln S.E.,and Tanksley S.D.,1988,Resolution of quantitative traits into Mendelian factors using a complete linkage map of restriction fragment length polymorphisms,Nature,335:721-726
    [102]Cho Y.G.,Eun M.Y.,McCouch S.R.,and Chae Y.A.,1994,The semidwarf gene,sd-l,of rice (L.). Ⅱ.Molecular mapping and marker-assisted selection, Theor. Appl. Genet.,89:54-59
    [103]罗继景,黄巍,林鸿宣,等.栽培稻抗旱性相关性状QTL的定位[J].植物生理学通讯,2005,41(2):260-265
    [104]袁隆平.发展杂交水稻,保障粮食安全[J].杂交水稻,2010,25(专辑):1,2
    [105]邹应斌.超级稻的适宜种植区域与“三定”栽培法[J].作物研究,2006(1):17-19
    [106]谢华安.超级稻作再生稻高产栽培特性的研究[J].杂交水稻,2010,25(专辑):17-26.
    [107]周显青,张玉荣,钱向明.稻谷精深加工技术[M].北京:化学工业出版社,2006,1
    [108]姚惠源.稻米深加工[M].北京:化学工业出版社,2004,236
    [109]骆世明.农业生物多样性利用的原理与技术[M].北京:化学工业出版社,2010,7-11,62
    [110]严斧.生物多样性研究进展.首届全国生物多样性保护与持续利用研讨会论文集,1994,8-12
    [111]骆世明.生态农业的景观规划、循环设计及生物关系重建[J].中国生态农业学报,2008,16(4):805-809
    [112]薛惠锋,董会忠,宋红丽等.环境系统工程[M].北京:国防工业出版社,2008,37-41
    [113]戈峰.现代生态学[M].北京:科学出版社,2008,2-4,455-457,594
    [114]Odum H T. Environmental Accounting:Emergy and Environmental Decision Making[M]. New York:John Wiley&Sons,1996
    [115]严茂超.生态经济学新论[M].北京:中国致公出版社,2001:11-13
    [116]Jorge L Hau, Bhavik R. Bakshi Promise and problems of emergy analysis [J]. Ecological Modelling,2004,178:215-225
    [117]Hall CAS. Maximum Power-The Idea and Applications of Odum HT[M]. Niwot:Univ of Colrado Press,1995:32-39
    [118]王闰平,荣湘民,侯希红.能值分析在农业生态系统中的应用[J].湖南农业大学学报(自然科学版),2009,35(3):331-334
    [119]李寒娥,蓝盛芳,陆宏芳.HT奥德姆与中国的能值研究[J].生态科学,2005,24(2):182-187
    [120]陆宏芳,沈善瑞,陈洁,等.生态经济系统的一种整合评价方法:能值理论与分析方法[J].生态环境,2005,14(1):121-126
    [121]蓝盛芳,钦佩.生态系统的能值分析[J].应用生态学报,2001,12(1):129-131
    [122]Lan S-F, Odum H T,Liu X-M. Energy flow and emergy analysis of the agro-ecosystems of China[J]. Ecologic Science,1998,17(1):32-39.
    [123]中国国家统计局.中国统计年鉴2005[M].北京:中国统计出版社,2007:128-135
    [124]骆世明.农业生态学[M].北京:中国农业出版社,2001:65-74
    [125]张耀辉.农业生态系统能值分析方法[J].中国生态农业学报,2004,12(3):181-183
    [126]蓝盛芳,钦佩,陆宏芳.生态经济系统能值分析[M].北京:化学工业出版社,2002:12-78.
    [127]ISO 14040. Environmental management life cycle assessment principles and framework[S].1997.
    [128]Hua Z,Tan P,Yan X,et al.Life cycle energy,environment and economic assessment of soybean-based biodiesel as an alternative automotive fuel in China[J].Energy, 2008,33:1654-1658.
    [129]Luo L,van der Voet E,Huppes G.Life cycle assessment and life cycle costing of bioethanol from sugarcane in Brazil [J].Renewable and Sustainable Energy Reviews,2009,13:1613-1619.
    [130]Kumabe K,Fujimoto S,Yanagida T,et al.Environmental and economic analysis of methanol production process via biomass gasification[J].Fuel,2008,87:1422-427.
    [131]潘志祥.湖南省防汛抗旱决策气象服务手册[M].北京:气象出版社,2005,82,83
    [132]谢贤群,王立军.水环境要素观测与分析[M].北京:中国标准出版社,1998,31
    [133]戴树桂.环境化学[M].北京:高等教育出版社,1997,73-75
    [134]徐新华,李金龙.成云过程中云水pH值的参数化[J].环境科学研究,1998,11(2):12-14
    [135]陈旦华,孙庆瑞,王美蓉,等.湖南省酸性降水的研究[J].环境科学研究,1998,11(2):8-11,14
    [136]王美蓉,唐孝炎,孙庆瑞,等.华南地区高山酸沉降化学研究[J].环境科学学报,1992,12(1):37-41
    [137]许晶,万小卓.湖南省酸雨普查现状、污染控制对策及监测工作建议[J].湖南有色金属,2004,20(6):31-34
    [138]许晶.湖南省酸性降水变化趋势及防治措施研究.环境科学与管理,2009,34(8):45-48
    [139]蒋高明.发展生态循环农业,培养土壤碳库[J].绿叶,2009,(12),93-99
    [140]朱英国,李阳山,朱仁山等.关于加强红莲型杂交水稻种子工程建设,稳步推进红莲型杂交水稻产业化,打造湖北种业品牌的建议报告[A].2007中国科协年会专题论坛“红莲型杂交水稻学术专题研讨会”论文汇编[C],2007年
    [141]Xu K, Xu X, Fukao T, Canlas P, Maghirang-Rodriguez R, Heuer S, Ismail AM, Bailey-Serres J, Ronald PC, Mackill DJ. Subl A is an ethylene-response-factor-like gene that confers submergence tolerance to rice. Nature,2006,442(7103): 705-708.
    [142]张启发.绿色超级稻的构想与实践[M].北京:科学出版社,2009,前言,3,4,5
    [143]Zhang Q F.2007. Strategies for developing green super rice. Proc Natl Acad Sci USA,104:16402-16409
    [144]潘希.环境痕量污染物:新一代环境问题来临.科学时报[N],2008-06-04
    [145]黄勤楼,孙世坤,陈君琛,等.谷秆两用稻稻草饲养肉牛效果研究[J].中国草食动物,2004,24(4):9-11
    [146]李春燕,应朝阳,黄毅斌.“201”稻稻草与氨化稻草肥育肉牛的对比试验[J].福建畜牧兽医,2002,6(24):1
    [147]王玉杰,张大克.多元肥料效应函数模型的优化方法[J],生物数学学报,2002,17(1):74-77
    [148]IPCC. Climate change 2001:the Scientific Basis [R]. Cambridge (UK):Cambridge University Press.2001,12 - 14 or http://www.grida.no/climate/ipcc_tar/wg1/ 134.htm#4211
    [149]Yan, X., H. Akiyama, K. Yagi, and H. Akimoto (2009), Global estimations of the inventory and mitigation potential of methane emissions from rice cultivation conducted using the 2006 Intergovernmental Panel on Climate Change Guidelines, Global Biogeochem. Cycles,23, GB2002, doi:10.1029/2008GB003299.
    [150]Xingkai Xu, Boeckx Pascal, Van Cleemput Oswald and Likai Zhou. (2002) Urease and nitrification inhibitors to reduce emissions of CH4 and N2O in rice production. Nutrient Cycling in Agroecosystems,2002,64:203-211,2002
    [151]Huang Y, Jiao Y, Zong LG, Zheng XH, Sass RL and Fisher FM,2002. Quantitative dependence of methane emission on soil properties, Nutrient Cycling in Agroecosystems,64:157-167,2002.
    [152]Ronald. Sass, Arvin Mosier, Xunhua Zheng, Introduction and Summary: International Workshop on Greenhouse Gas Emissions from Rice Fields in Asia, Nutrient Cycling in Agroecosystems,63:ix-xv,2002.
    [153]Wang Mingxing, Li Jing, CH4 emisssion and oxidation in Chinese rice paddies, Nutrient Cycling in Agroecosystems,64:43-55,2002.
    [154]Li Jing, Wang Mingxing, Huang Yao Wang Yuesi, New estimates of methane emissions from Chinese rice paddies, Nutrient Cycling in Agroecosystems 64:33-42,2002.
    [155]黄璜,王华,胡泽友等.稻鸭种养生态工程的理论分析与实践过程[J].作物研究,2003,17(4):190
    [156]IPCC. Climate change 2007:Couplings between Changes in the Climate System and Biogeochemistry [OL]. http://www.ipcc.ch/pdf/assessment-repotr/ar4/wg1/ar4-wg1-chapter7.pdf
    [157]丁爱菊,王明星.稻田甲烷排放的初级模式[J].大气科学,1995,15(6):733-740
    [158]Cao MK, Dent JB, Heal OW. Modeling methane emission from rice Paddies [J]. Global Biogeochemieal cyeles,1995,9:183-195
    [159]Huang Y, Sass RL, Fisher FM. A semi-empirical model of methane emission from flooded rice Paddy soils [J]. Global Change Biolog,1998,4:247-264.
    [160]张稳,黄耀,郑循华等.稻田甲烷排放模型研究——模型及其修正[J].生态学报,2004,24(1):2347-2352
    [161]Li CS, Frolking S, Frolking TA. A model of nitrous oxide evolution from soils driven by rain fall events,1.Model structure and sensitivity[J]. J Geo Phys Res,1992,97:9759-9776
    [162]Li CS, Frolking S, Frolking TA. A model of nitrous oxide evolution from soils driven by rain fall events,2.Modela applications [J]. J Geo Phys Res,1992,97: 9777-9783
    [163]刘建栋,周秀骥,王建林.稻田CH4排放的农业气象数值模拟研究[J].应用气象学报,2001,12(4):409-418
    [164]Cai ZC, Sawamoto T, Li CS, et, al. Field validation of the DNDC model for green house gas emissions in EastAsian cropping systems [J]. Global Biogeoehem. Cyeles2003,17(4),1107,doi:10.1029/2003GB002046.
    [165]傅志强,黄璜,李小平,等.基于主成分分析水稻植株CH4排放估算模型[J].生物数学学报,2009,24(3):567-575.
    [166]黄璜,杨志辉,王华等.湿地稻-鸭复合系统的CH4排放规律[J].生态学报,2003,23(5):929-934
    [167]王樱,雷慰慈.稻田种养模式生态效益研究.生态学报,2000,20(2):311-316
    [168]傅志强,黄璜,廖晓兰等.养鸭数量对CH4排放的影响[J].生态学报,2008,28(5):2107-2114
    [169]傅志强,黄璜,陈灿等.稻-鸭复合系统中灌水深度对甲烷排放的影响[J].湖南农业大学学报(自然科学版),2006,32(6):632-636
    [170]HoughtonJ著.戴晓苏,石广玉,董敏等译.全球变暖.北京:气象出版社,2001:165-167.Houghton J.Translated by Dai X S,Shi G Y,Dong M,et al.Globla Warming:The Complete Briefing (2nd).Beijing:Meteorology Press,2001:165-167.(in Chinese)
    [171]IRRI.IRRI studies role of ricefield methane in global climate change. The IRRI Report,1991,4:1,2.
    [172]向平安,黄璜,黄梅.稻-鸭生态种养技术减排甲烷的研究及经济评价[J].中国农业科学,2006,39(5):968-975
    [173]钟珍梅,黄秀声,黄勤楼,等.规模化牛场“肉牛-沼气-牧草”循环农业模式能值分析[J].家畜生态学报,2009,30(6):112-116
    [174]刘福堂.在南方发展肉牛养殖业的实践与思考[J].农村实用工程技术·农业产业化,2003,(5):31-32
    [175]刘波,朱昌雄.微生物发酵床零污染养猪技术研究与应用.北京:中国农业科技出版社,2009,2
    [176]罗强华,吴买生,邓先余等.发酵微生物添加剂对发酵床养猪效果的影响[A].湖南省养猪协会第五届会员代表大会暨学术研讨会论文集[C],湘潭:湖南省养猪协会.2010年,pp83-87
    [177]江泽慧.气候变化与我国林业生态建设.气候变化与生态环境研讨会论文集[R],2003
    [178]刘燕华,李振吉,李泊溪.中药现代化产业推进战略.北京:中国中医药出版社,2003:58,260,261
    [179]李文华,闵庆文,张壬午.生态农业的技术与模式[M].北京:化学工业出版社,2005:236~243,294~297
    [180]孙彦.淡水养殖水体水质污染及微生态制剂应用现状[J].河南农业(教育版),2008,(7):56-57
    [181]曾宇,秦松.光合细菌法在水处理中的应用[J].城市环境与城市生态,2000,13(6):29-31
    [182]朱清旭.蟹池中水高效复合芽孢杆菌对水质的改良效果[J].科学养鱼,2008,(1):79
    [183]齐素芳.复合载体固定化硝化细菌去除水体中氨氮的研究[J].广东工业大学学报,2007,24(2):15-19
    [184]黄正.固定化硝化细菌去除养殖废水中氨氮的研究[J].华中科技大学学报,2002,31(1):18-20
    [185]罗晓华.反硝化细菌的作用机理在水产上的应用[J].渔业致富指南,2008,(3)22-23
    [186]张庆,李卓佳,陈德康.复合微生物对养殖水体生态因子的影响[J].上海水产大学学报,1999,8(1):43-47
    [187][春秋]李耳.老子[M].太原:山西古籍出版社,1999,44
    [188]曲黎敏.中医与瘟疫共舞[J].中国国家地理,2003,(7):66-74
    [189]李勇枝.中医药在载人航天中的应用[J].航天医学与医学工程,2008,21(3):198-205
    [190]张岱年,方克立.中国文化概论[M].北京:北京师范大学出版社,2004,233-235
    [191]赵其国,周应恒,耿献辉.我国现代农业发展路线与发展战略[J].生态环境,2008,17(5):1721-1727
    [192]胡志远.将每一粒稻谷榨干用尽.潇湘晨报,2009-09-08.
    [193]李林杰,李劲松,李亚文.抗非典药皮质激素的关键中间体甾醇项目可行性.精细化工中间体[J].2004,34(1):8-10
    [194]彭莺.天然植物甾醇的应用于提取工艺[J].化工进展,2002,21(1):49-53
    [195]李林杰,李亚文.提高肌醇收率的技术进展[J].广东化工,997,(,3):36-38,40
    [196]李亚文,李林杰,李劲松.肌醇厂的优化设计与工业性试验[J].中国粮油学报,1997,12(5):40-44
    [197]Modi, A.K. y I.A. Karimi, Design of Multiproduct Batch Processes with Finite Intermediate Storage. Computers and Chemical Engineerring,13,127-139(1989).
    [198]许锡恩,郑国文,成思危.多产品间歇化工过程最优设计的研究——启发法[J].化工学报,1993,44(4):442-450
    [199]王春峰,权红印,许锡恩.多产品间歇化工过程最优设计——混合模拟退火法[J].化工学报,1996,47(2):184-191
    [200]Ya-Wen Li, Lin-Jie Li, Jin-song Li. A Study on the Raise of the Inositol Yield(Ⅱ)-The Optimized Design and Industrialized Test of the Inositol Factory. In:Book of Abstracts for Fifth Eurasia Conference on Chemical Ciencel(C), Guangzhou:Zhongshan University Press,1996.323.
    [201]赵永金.关于稻壳碳化/气化产品全利用技术的研究[J].粮食与食品工业.2006.13(2):27-32.
    [202]刘晓军.稻壳的开发利用[J].农村新技术.2008(4).pp.26,27.
    [203]王立,王领军,姚惠源.稻壳硅综合利用.粮食与油脂[J].2006.(4):14-16.
    [204]刘叶高,邓彩清,翁俊基.利用稻草菌草在冬闲田栽培大球盖菇技术.广西热带农业,2006(2):24-25
    [205]王迪,王凡强,王建华.发酵法制备甲乙酮[J].精细与专用化学品,2000(9):19-20
    [206]顾吉青,金保升,肖军等.基于LCA的稻秸合成甲醇的环境-经济成本分析[J].中国 环境科学,2009,29(11):1221-1226
    [207]Zhang Yanan,Xiao Jun,Shen Laihong.Simulation of methanol production from biomass gasification in interconnected fluidized beds [J].Industrial and Engineering Chemistry Research,2009,48(11):5351-5359.
    [208]王伟,赵戴青,杨浩林,等.生物质气化发电系统的生命周期分析和评价方法探讨[J].太阳能学报,2005,26(6):752-759.
    [209]魏学好,周浩.中国火力发电行业减排污染物的环境价值标准估算[J].环境科学研究,2003,16(1):53-56.
    [210]黄雷,张彩虹,秦琴.环境成本与林木生物质发电[J].电力需求侧管理,2007,1(9):77-80.
    [211]向平安,黄璜,燕惠民,等.湖南洞庭湖区水稻生产的环境成本评估[J].应用生态学报,2005,16(11):2187-2193.
    [212]葛蕴珊,尤可为,王军方,等.甲醇燃料汽车的排放特性研究[J].北京理工大学学报,2008,28(4):413,513,613,713,813.
    [213]刘宏,王贺武,侯之超,等.甲醇汽车和电动汽车的煤基燃料路径生命周期评价[J].交通节能与环保,2007,(5):27-32.
    [214]王璇.甲醇生产工艺经济与成本分析[J].国际化工信息,2005,(4):10-18.
    [215]北京华经纵横经济信息中心.2008年中国甲醇项目投资可行性研究报告[R/OL].http://www.chinacir.com.cn/report/200848113353.shtml.2008-04-08.
    [216]李林杰,许振成,罗琳等.稻草稻壳米糠清洁高值化深加工多联产技术系统——涟水流域低碳循环农业园加-种-养-林-游生态工程模式.载:中国环境科学学会主编.第十三届世界湖泊大会论文集(中卷).北京:中国农业大学出版社,2010:959-969
    [217]文化,钱友山.农业接口工程[M].北京:北京科学技术出版社,1996,5
    [218]孙鸿良生态农业的理论与方法[M].济南:山东科学技术出版社,1993,7
    [219]季凤瑚,李秋洪.生态农业优化模式与技术[M].武汉:湖北科技出版社,1997,6
    [220]骆世明.论生态农业的技术体系[J].中国生态农业学报,2010,18(3):453-457
    [221]尹昌斌,周颖.循环农业发展的基本理论及展望[M].中国生态农业学报,2008,16(6):1552-1556
    [222]骆世明.论生态农业模式的基本类型[J].中国生态农业学报,2009,17(3):405-409
    [223]骆世明.农业生态学(第二版)[M].中国农业出版社,2009,269,270
    [224]张懿.绿色过程工程[J].过程工程学报,2001(1):10-15
    [225][美]约瑟夫·熊彼特.经济发展理论[M].上海:商务印书馆,1992:73
    [226]孙道进.马克思主义环境哲学研究[M].北京:人民出版社,2008:1-14
    [227]叶谦吉.生态农业——农业的未来[M].重庆:重庆出版社,1988
    [228]陈宗懋,阮建云,蔡典雄等.茶树生态系中的立体污染链与阻控[J].中国农业科学,2007,40(5):948-958
    [229]李林杰,许振成,罗琳等.超级杂交稻产业化-高值化耦合技术与环境经济研究[J].杂交水稻,2010,25(专辑):568-575

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700