用户名: 密码: 验证码:
浸没式光刻中浸液控制单元的液体供给及密封研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文以浸没式光刻中的浸液控制单元的液体供给及密封为主要研究对象,针对浸液控制单元的曝光流场流动状态以及浸液控制单元与硅片之间的缝隙流场动态密封技术展开研究,对浸液控制单元及液体供给系统进行设计、制造、优化和集成,为研制满足工程化需要的浸没式光刻机浸液供给系统提供技术储备。论文首先建立了浸液控制单元缝隙流场的注液、流动和回收过程的数值仿真模型,对了不同注液条件下流场的流动状态与更新过程进行了仿真分析,确定了恒压双侧对称注液的浸液控制单元注液方式;其次,对浸液控制单元的缝隙流场动态密封进行了实验研究,在获得流场状态与更新效率等密封所需参数的基础上,建立了浸液控制单元非接触动态密封条件下硅片的临界运动速度预测模型,对硅片临界扫描速度进行了分析预测,其结果与实验测试结果基本吻合,以此为基础,提出了浸液控制单元流场动态密封的优化设计方法;最后,以优化设计方法为指导,设计了非接触密封结构,研制出多种不同结构的浸液控制单元试验样机,并与光刻机主机企业SMEE合作,完成了浸液控制单元及液体供给系统在浸没式光刻机实验系统上的集成和测试,结果表明浸液控制单元的动态密封性能可满足200mm/s硅片扫瞄速度的动态密封要求,所研制的浸没式光刻液体供给系统,可满足浸液控制单元液体注入与回收压力的稳定性控制要求。
     本论文第一章主要介绍了在半导体生产领域广为应用的光学平板印刷术基本原理,及其演变历程和未来的发展方向,并着重介绍了其中具有巨大潜力的下一代光刻技术——浸没式光刻技术。结合国内外的现有文献资料,分析和归纳了浸没式光刻技术的研究热点与技术难题,介绍了主要研发机构的进展,确定了以浸没式光刻中的液体控制单元的液体供给及密封为主要对象的研究方向。
     本论文第二章详细介绍了浸没控制系统的运动实验平台的硬件结构与控制系统构架,并设计制造了浸没液体的管路系统,实现了具有可控流量压力的浸没液体注入、密封气体注入、以及气液混合物的回收过程。通过研究浸没式曝光过程中的流场需求,设计了具有双层气体密封和气液混合物回收的基本结构的液体控制单元,初步实现了浸液控制单元的主体结构,为后面的结构设计优化提供实验条件。
     本论文第三章讨论了流体注入对浸液控制单元密封流场影响。以保护流场光学特性为根本目的,在浸液控制单元结构优化过程中,考察了不同的液体注入角度与注液口数量下的流场内部流体流线分布,以及流场压力分布和速度分布。通过对于注液过程的分析和抽象,建立了浸液控制单元缝隙流场的注液、流动、回收过程的数值仿真模型,分析了不同注液条件下浸没液体的流动状态与更新过程。
     本论文第四章分析了浸液控制单元非接触动态密封条件下硅片的临界运动速度的预测方法。通过实验结果的研究,对浸没液体注入、曝光流场更新、浸没液体回收等区域进行分段处理,结合试验确定节流系数的数值,建立了硅片临界运动速度模型。利用甘油和去离子水按照一定组成配比混合而成的不同黏度液体,试验验证了模型的可靠性。此模型可作为浸液控制单元设计的有益工具,为浸没系统的总体设计提供依据,同时为高折射率、低吸收率的浸没液体的选择提供参考数据。
     本论文第五章详细介绍了浸液控制单元样机在流道结构、密封结构、气液混合物回收结构、浸没液体注入方式、以及样机安装镜头夹持等方面进行的改进和优化。说明了浸液控制单元以先功能实现、而后性能优化为主要特点的研发过程,实现了浸没液体全周连续回收口和全周连续气密封结构,完成同合作单位的浸没式光刻试验平台集成和测试。
     本论文第六章为结论与展望,说明了论文的主要及进展、本课题的主要创新点、以及课题还需要进一步完善和深入研究的内容。
Immersion lithography seeks to extend the resolution of optical lithography by filling the gap between the final optical element and the wafer with a liquid characterized by a high index of refraction. During the scanning and exposure process, immersion liquid is injected into the space between wafer and lens with certain inlet pressure and angle. Because the liquid will act as a lens component during the lithographic process, it must maintain high uniform optical quality. One source of optical degradation may be due to liquid contamination by chemical products or impurities during exposure period. Immersion liquid renovation is probably the best solution. The semiconductor industry demands high throughput, leading to relatively large wafer scanning velocities and accelerations. For higher scanning velocities, an issue that has been identified is the deposition of the immersion liquid while confining a relatively small amount of liquid to the under-lens region. Liquid loss occurs at the receding contact line that forms when a substrate is withdrawn from a liquid, which potentially leads to defects on printed patterns.
     In this dissertation, the liquid dispensing structure and noncontact sealing mechanism of the immersion unit for immersion lithography is systematically investigated, focusing on the mechanism designing, processing, testing, numerical simulation and performance optimization. Also, a pipeline supplying system is designed and optimized, compatible with the immersion unit, preparing for the industrial implementation of immersion lithography manufacturing equipment. Firstly, a numerical model is built to simulate the liquid dispense-flow-collection procedure, based on which, the flow state and the renovating cycle are studied. Secondly, a noncontact sealing mechanism is designed, upon which, a new liquid injection and collection model with analytic solutions is presented and compared with experimental results. Finally, according to the principles obtained, immersion unit prototype and its revised editions are designed and manufactured. After performance testing and optimization, the dynamic sealing ability for immersion unit is proved.
     The main contents of this dissertation are briefly stated as the followings:
     Study on liquid dispensing structure and flow state within under-lens region. Three-dimensional computational fluid dynamics models are built to simulate the liquid dispense-flow-collection procedure, featuring flow field stream patterns, lens normal and shear pressure, considering fluid injecting velocity, dispense ports quantity, and direction angles. Compared with experimental results, refreshing cycle time and velocity distribution are investigated, presenting theoretical support for system optimization and compatibility
     Study on dynamic sealing for the gap flow field boundary. A noncontact sealing method is studied, aiming at avoiding the liquid leaking on wafer motion and the liquid fulfillment beneath the lens. As new liquid injection and collection model with analytic solutions is presented and compared with experimental results, in which the critical velocity for liquid loss is mainly a function of the vacuum degree, the injection flow rate, the properties of the immersion liquid. This correlation allows the critical velocity to be predicted with a given gap height between wafer and lens using only a measurement of the injection speed and knowledge of the fluid properties. This correlation represents a useful tool that can serve to approximately guide the development of fluid control for immersion systems as well as to evaluate alternative immersion fluid candidates to minimize liquid deposition while maximizing throughput.
     Study on immersion unit performance testing and pipeline supplying system optimization. Steady-state operating performance for immersion unit prototype is carried out to obtain the designing principles of low-pressure noncontact sealing element. A pipeline supplying system is exploratory designed and built, compatible with the input interface of immersion unit.
引文
[1]Bailey, F. J., Introduction to Semiconductor Devices[M], George Allen & Unwin Ltd.,1972.
    [2]Kiver, M. S., Transistors and Integrated Electronics[M], McGraw-Hill Book Company,1972.
    [3]Bell Laboratories, Alcatel-Lucent Timeline, Bell Laboratories,2009, http://www.alcatel-lucent.com/wps/portal/AboutUs/Overview/
    [4]Wylie, Andrew. The early history of the transistor[M]. March 14,2001 Collector. http://ourworld.compuserve.com/homepages/Andrew_Wylie/history.htm0.
    [5]Alan Hastings. The Art of Analog Layout, Second Edition[M]. USA:Prentice Hall,2005,102-104
    [6]Deboo, G. J., Burrous, C. N., Integrated Circuits and Semiconductor Devices[M], McGraw-Hill Book Company,1977.
    [7]About.com. Inventors of the modern computer (2001)[M]. March 14,2001. http://www.inventors.about.com/science/inventors/library/weekly/aa080498.htm.
    [8]Hennessey, John L. Fundamentals of computer design[M]. March 14,2001. http://hennessycube.stanford.edu/chap01-2001.pdf.
    [9]Tomoyuki Matsuyama, Toshiharu Nakashima, and Tomoya Noda. A study of source and mask optimization forArF scanners[C]. Proc. SPIE,Vol.7274, 727408(2009)
    [10]Alois Senefelder[R],2009, http://en.wikipedia.org/wiki/Alois_Senefelder
    [11]Senefelder, A., A Complete Course of Lithography [M], Da Capo Press, New York, 1968.
    [12]Twyman, M., Lithography 1800-1850[M], Oxford Universiy Press, London, 1970.
    [13]Levinson, H., Principles of Lithography [M], SPIE Press, Bellingham, WA,2001.
    [14]Nishi, Y, Doering, R. Editors, Handbook of Semiconductor Manufacturing Technology[M], Marcel Dekker, Inc., New York,2000.
    [15]Thompson, L. F., Willson, C. G, Bowden, M. J., Introduction to Microlithography[J], American Chemical Society, Washington, D.C.,1994.
    [16]Michael Quirk, Julian Serda, Semiconductor manufacturing Technology [M], Prentice Hall, Upper Saddle River, New Jersey,2001.
    [17]Wikipedia, the free encyclopedia, John Strutt,3rd Baron Rayleigh[R],2009, http://en.wikipedia.org/wiki/John_Strutt,_3rd_Baron_Rayleigh
    [18]韩郑生,海潮和,徐秋霞,半导体制造技术[M],电子工业出版社,北京,2004.
    [19]Abramowitz, M., Davidson M. W. Microscope Objectives:Numerical Aperture and Resolution[R]. Molecular Expressions:Optical Microscopy Primer. http://micro.magnet.fsu.edu/primer/anatomy/numaperture.html (July 23,2003).
    [20]Rai-Choudhury, P., Editor, Handbook of Microlithography[C], Micromachining, and Microfabrication, SPIE Optical Engineering Press, Bellingham, Washington, 1997
    [21]Gomel, Yoshio. Overview of ASET PXL and EUVL programs in Japan[J]. SPIE, 2000,3997:2-9
    [22]徐晓东,汪辉,亚65nm及以下节点的光刻技术[J],半导体技术,2007年32卷11期,921-925
    [23]Craighead, H.G,10-nm Resolution Electron-Beam Lithography [J], Journal of Applied Physics,1984, Vol.55(12), pp.4430-4435
    [24]Burn J L, Lithography for manufacturing of sub-65nm nodes and beyond [C], Electron Devices Meeting,2005 IEDM Technical Digest. Washington D.C., USA, 2005:48-51
    [25]王振宇,成立,祝俊,李岚,电子束曝光技术及其应用综述[J],半导体技术,ISSN 1003-353X,2006年31卷6期,418-422,428
    [26]Wikipedia, the free encyclopedia, Electron beam lithography [R],2009, http://en. wikipedia. org/wiki/Electron_beam_lithography
    [27]LLOYD R. Harriott, Evolution of EPL[R], August 13,2003 http://www.sematech.org/public/resources/litho/ngl/htcp0801/Pres06%20LH%20 evolution%20of20epl.pdf
    [28]姚汉民,刘业异,21世纪微电子光刻技术[J],半导体技术,2001年26卷10期,47-51,73
    [29]Reu, P., Comparative Analysis of Next Generation Lithography Masks:PREVAIL and SCALPEL Technologies [D], Mechanical Engineering, University of Wisconsin-Madison,2001.
    [30]陈大鹏,叶甜春,现代光刻技术[J],核技术,ISSN 0253-3219,2004年27卷2期,81-86
    [31]M. Switkes, M. Rothschild, J. Microlith. Microfab. Microsyst.l (2002) 225.
    [32]B. Lin, Microelectron. Eng.6 (1987) 31.
    [33]Switkes, M., Rothschild, M., Kunz, R. R., Baek, S-Y., Cole, D., Yeung, M., Immersion lithography:Beyond the 65nm node with optics [J], Microlithography World, Vol.12(2), pp.4,2003.
    [34]M. Switkes, M. Rothschild, Immersion Lithography at 157nm[J], American Vacuum Society, B, Nov/Dec 2001, Vol.19, No.6, P2353-P2356
    [35]M. Switkes, etc, Extending optics to 50 nm and beyond with immersion lithography [J], American Vacuum Society, B, Nov/Dec,2003, Vol.21, No.6, P2794-P2799
    [36]Bradbury, S., The Evolution of the Microscope[M], Pergamon Press, Oxford, 1967.
    [37]Allen, R. M., The Microscope [M], D. Van Nostrand Company, Inc., New York, 1940.
    [38]A. Takanashi et al., U.S. Patent No.4,480,910 (filed 1984)
    [39]B. J. Lin, Microelectronic Engineering,1987,6-31
    [40]Bruce W. Smith, Yongfa Fan, etc,25nm Immersion Lithography at a 193nm Wavelength[C], Optical Microlithography XVIII, Proceedings of SPIE Vol.5754 (SPIE, Bellingham, WA,2005), P141-P147
    [41]Lin, B. J., New λ/NA Scaling Equations for Resolution and Depth-of-Focus[C], Proceedings of SPIE Optical Microlithography XIII,2000,Vol.4000, pp. 759-764.
    [42]Donis Flagello, Jan Mulkens. Status ASML Immersion[C]. SEMATECH Immersion Lithography Workshop II.2003.7
    [43]Palmer, D. W., Decker, S. K., Microscopic Circuit Fabrication on Refractory Superconducting Films[J], Review of Scientific Instruments,1973, Vol.44(11), pp 1621-1624.
    [44]Feuer, M. D., Prober, D. E., Projection Photolithography-Liftoff Techniques for Production of 0.2-μm Metal Patterns[C], IEEE Transactions on Electron Devices, 1981, Vol ED-28(11),pp 1375-1378.
    [45]Lin, B. J., The Future of Subhalf-Micrometer Optical Lithography[J], Microelectronic Engineering,1987, Vol 6, pp.31-51.
    [46]Takahashi, K., Immersion Type Projection Exposure Apparatus[P], United States Patent 5610683,1997.
    [47]Tabarelli, W. W., Verfahren und Vorrichtung zum Kopieren eines Musters auf eine Haibleiterscheibe[P], European Patent EP23231,1981.
    [48]Fukami, Y., Magome, N., Omori, S., Projection Exposure Method and System[P], Japan Patent WO99/49504,1999.
    [49]Takanashi, A., Harada, T., Akeyama, M., Kondo, Y., Kurosaki, T., Kuniyoshi, S., Hosaka, S., Kawamura, Y, Pattern Forming Apparatus[P], United States Patent 4480910,1984.
    [50]Kawata H., Carter, J., Yen, A., Smith, H., Optical Projection Lithography using Lenses with Numerical Apertures Greater than Unity [J], Microelectronic Engineering,1989, Vol.9, pp.31-36.
    [51]Kawata, H., Matsumura, I., Yoshida, H., Murata, K., Fabrication of 0.2μm Fine Patterns Using Optical Projection Lithography with an Oil Immersion Lens[J], Japan Journal of Applied Physics,1992, Vol.31, pp 4174-4177.
    [52]M.Switkes, M. Rothschild. Resolution enhancement of 157 nm lithography by liquid immersion[J], Journal of Microlithography, Microfabrication, and Microsystems.2002,1(3):225-228.
    [53]Takanashi A, et al. Pattern forming apparatus[P]:U.S. A.,4,480,910.1984.
    [54]Lin B J. The future of subhalf-micrometer optical lithography [J]. Microelectronic Engineering,1987,6(1-4):31-51.
    [55]Wei A, Abdo A, Nellis G, et al. Simulating fluid flow characteristics during the scanning process for immersion lithography [J]. Journal of American Vacuum Society,2003,21(6):2788-2793.
    [56]Wei A, Greg N, et al. Preliminary microfluidic simulation for immersion lithography[J], Journal of Proceedings of International Society for Optical Engineering.2003,5040:713-723.
    [57]Wei A, Greg N, et al. Microfluidic simulations for immersion lithography [J]. Journal of Society of Photo Optical Instrumentation Engineers,2004,3(1): 28-34.
    [58]Wei A, Abdo A, et al. Modeling fluid thermomechanical response for immersion lithography scanning[J]. Microelectronic Engineering,2004,73-74:29-34.
    [59]So-Yeon Baek, A.Wei, et al. Simulation of the coupled thermal optical effects for liquid immersion micro-nano-lithography[C]. Proceeding of SPIE Optical Microlithography XVII.5377:415-427
    [60]Holly B, Shedd T, et al. Control of the receding meniscus in immersion lithography[J]. Journal of American Vacuum Society B,2005,23(6):2611-2616.
    [61]Donis Flagello, Jan Mulkens. Status ASML Immersion[C]. SEMATECH Immersion Lithography Workshop II.2003.7
    [62]Announcing the Sale of Nikon ArF Immersion Scanner NSR-S609B[OL]. Nikon Pricision Inc. http://www.nikon.co.jp/main/eng/news/2005/0630_nsrs-609b_01
    [63]Roger H. French, Min K. Yang, et al. Immersion fluid refractive indices using prism minimum deviation techniques [C]. Proceeding of SPIE Optical Microlithography XVII.5377:1689-1694
    [64]M. Switkes, R. R. Kunz, et al. Immersion liquids for lithography in the deep ultraviolet[C]. Proceeding of SPIE Optical Microlithography XVI.5040:690-699
    [65]M.Switkes, T. M. Bloomstein. Scattering in liquid immersion lithography[C]. Proceeding of SPIE Optical Microlithography XVII.5377:469-476
    [66]Akihiro Y. ArF immersion lithography for 45nm and beyond[C]. Proceedings of International Society for Optical Engineering,2007,6607:66071G.
    [67]Dario G, Timothy A B, et al. Immersion lithography New opportunities for semiconductor manufacturing[J]. Journal of American Vacuum Society B,2004, 22(6):3431-3438.
    [68]William H A, et al. Metrology challenges for double exposure and double patterning [C]. Metrology, Inspection, and Process Control for Microlithography XXI. Proceedings of International Society for Optical Engineering,2007,6518: 651802-1~651802-13.
    [69]ASML Holding N.V, ASML TWINSCAN Immersion Lithography [OL],2009, http://www.asml.com/immersion/eng/images/ts_1950hi.pdf
    [70]Wu C, et al. The rapid introduction of immersion lithography for nand flash challenges and experience [C]. Proceedings of International Society for Optical Engineering,2008,6924:69241A-1-69241A-10.
    [71]Canon, Canon Semiconductor Equipment-Canon FPA-7000AS7[OL],2009, http://semiconductor.canon-europe.com/Products/FPA7000AS7.asp
    [72]翟立奎,浸没光刻液体传送及控制系统研究[D],浙江大学,2006年5月,25-26。
    [73]刘洪伟,浸没装置开放式平台控制系统的研究与开发[D],浙江大学,2007年5月,37-43。
    [74]杨华勇,陈文昱,谢海波,傅新,李小平,等.一种浸没式光刻系统中的液体供给及回收的密封控制装置[P],中国,ZL200720107284.X,2008-02-06.
    [75]杨华勇,陈文昱,谢海波,傅新,李小平,浸没式光刻系统中的液体供给及回收的密封控制装置[P],中国,ZL200710067558.1,2007-3-15
    [76]A. Wei, A. Abdo, G Nellis, R. Engelstad, J. Chang, E. Lovell, and W. Beckman. Simulating fluid flow characteristics during the scanning process for immersion lithography [J], American Vacuum Society, Nov/Dec 2003, Vol.21, No.6, P2788-P2793.
    [77]M. El-Morsi, G. Nellisb, S. Schuetter.Full wafer simulation of immersion fluid heating [J], American Vacuum Society, Nov/Dec 2005, Vol.23, No.6, P2596-P2600.
    [78]So-Yeon Baek, Alexander Wei, et al, Simulation of the coupled thermal optical effects for liquid immersion nanolithography [J], Microlith. Microfab. Microsyst. Jan/Mar 2005, Vol.4(1), P1-P11.
    [79]A. Wei, A. Abdo, et al, Modeling fluid thermomechanical response for immersion lithography scanning [J]. Microelectronic Engineering,73-74 (2004), P29-P34
    [80]C. H. Lin, L A Wang. Simulation of air bubble scattering effects in 193 nm immersion interferometric lithography [J], American Vacuum Society,2005, Vol. 23,No.6,P2684-P2693.
    [81]Holly B. Burnett, Alex C. Wei, et al, Modeling and Experimental Investigation of Bubble Entrainment for Flow Over Topography during immersion lithography[C], 24th Annual BACUS Symposium on Photomask Technology, J. Tracy Weed, Proceedings of SPIE Vol.5567, P829-P840
    [82]Holly B. Burnett, T. Shedd, et al. Control of the receding meniscus in immersion lithography[J], American Vacuum Society, B, Nov/Dec 2005, Vol.23, No.6, P2611-P2616
    [83]Alexander Wei, Greg Nellis, et al, Preliminary microfluidic simulation for immersion lithography [J], Proceedings of SPIE,2003, Vol 5040, P713-P723
    [84]Alexander C. Wei, Gregory F. Nellis, et al, Microfluidic simulations for immersion lithography [J]. Society of Photo-Optical Instrumentation Engineers, 2004.3(1), P28-P34
    [85]Roel Gronheid, Enrico Tenaglia, et al, Dynamic Leaching Procedure on an Immersion Interference Printer[C], Optical Microlithography XIX, Proceedings of SPIE,2006, Vol.6154(11), P1-P11
    [86]Will Conley, Robert J. Lesuer, et al. Understanding the Photoresist Surface-Liquid Interface for ArF Immersion Lithography [C], Advances in Resist Technology and Processing XXII, edited by John L. Sturtevant, Proceedings of SPIE,2005, Vol.5753, P64-P77
    [87]M. El-Morsi, G. Nellisb, S. Schuetter.Full wafer simulation of immersion fluid heating[J], American Vacuum Society, Nov/Dec 2005, Vol.23, No.6, P2596-P2600.
    [88]FLUENT 6.3 User's Guide,12.4.1 Standard k-epsilon Model (ANSYS Inc.).
    [89]Adrian R J, Particle Imaging Techniques for Experimental Fluid Mechanics[M], Annu, Rev. Fluid Mech.,1991, (23), P261-P304.
    [90]J. Fay, Introduction to Fluid Mechanics[M], MIT Press, Cambridge, MA,1994.
    [91]Alexander Wei, Greg Nellis, Amr Abdo, Roxann Engelstad, Chen-Fu Chen, Michael Switkes, Mordechai Rotheschild. Preliminary microfluidic simulation for immersion lithography[C]. Proceedings of SPIE, Vol.5040 (2003) 713-723.
    [92]E. John Finnemore, Joseph B. Franzini, Fluid Mechanics With Engineering Applications[M], McGraw-Hill,2009.
    [93]Wenyu Chen, Ying Chen, Jun Zou, Xin Fu, Huayong Yang, Xiaodong Ruan, and Guofang Gong. Effect of Liquid Dispensing on Flow Field for Immersion Lithography[J]. J. Vac. Sci. Technol. B, Vol.27, No.5, Sep/Oct 2009
    [94]Scott D. Schuetter, Timothy A. Shedd, Gregory F. Nellis. Prediction of the velocity at which liquid separates from a moving contact line[J]. J. Micro/Nanolith. MEMS MOEMS, Apr-Jun 2007,6(2),023003
    [95]Jan Mulkens, Donis Flagello, Bob Streefkerk, Paul Graeupner, Benefits and limitations of immersion lithography [J], J. Microlith. Microfab. Microsyst, 2004,1:104-114
    [96]用于光刻机浸没液体供给及回收控制装置[P],中国,200810164178.4,2009.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700