用户名: 密码: 验证码:
高聚物微流控芯片上金属微器件的研制和应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,高聚物材料以其成本低、易加工复制等优势在微流控芯片系统中得到了广泛的应用。微流控系统集成化、微型化、便携化的特点决定了在芯片上制备集成化的金属微器件以用于各种不同的功能单元是微流控发展的必然需要。利用传统的LIGA技术在微流控芯片上集成金属微器件需要洁净实验室和复杂的设备,价格昂贵,制作难度较大,且用传统LIGA技术制备金属微器件的过程中不可避免地需要使用对高聚物材料表面具有腐蚀作用的有机溶剂(光胶稀释剂、显影剂等),不适于高聚物芯片上金属器件的制备。所以目前为止文献报道的带有金属微器件的芯片大多为玻璃/PDMS杂交芯片。这样的杂交芯片通道内壁由两种完全不同的材质构成,而不同材质表面所支持的电渗流大小不同,在电泳分离中会可能响分离效果。
     本文利用化学镀方法分别在两种微流控芯片常用的高聚物材料聚对苯二甲酸乙二醇酯(PET)和聚二甲基硅氧烷(PDMS)表面研制金属微器件,对金属器件的物理和化学性质进行研究,在此基础上制作均一材质的带有金属电极的全塑微流控芯片,并应用全塑芯片进行微流控化学和生化分析的试验。
     全文共分四章:
     第一章,评述了近年来高聚物芯片和微流控芯片上集成化金属微器件的研究进展。主要涉及高聚物芯片中微通道的加工和芯片的封合方法、微流控芯片上集成化金属器件的种类、应用和加工方法等。
     第二章,主要目标是制作全PET的带有集成化金微电极的微流控芯片。在本章中采用无定形PET材料,研究了紫外光与空气等离子体对无定形PET材料表面改性效果,研究发现,紫外光和空气等离子体两种处理方法对PET表面亲水性均有明显提高,并能显著提高芯片的热封合强度和通道的电渗流水平。等离子体改性在这两方面的效果优于紫外光改性。另外我们还研究了254 nm紫外光诱导的选择性光化学改性与化学镀相结合在PET表面制作金膜微器件的方法、技术及相关原理。
     在以上研究的基础上,我们在PET表面集成了金膜微器件,并利用空气等离子体处理待封合的PET表面,在较低的温度(65℃)下实现了无辅助黏合层的全PET芯片的热键合,制备了带有金微电极的全PET微流控芯片。所制备的芯片应用于芯片毛细管电泳—安培检测(μCE—AD),分离检测了神经递质多巴胺(DA)和儿茶酚(CA)。分离效率分别为3.2x104和4.3×104塔板/m,检测限(3σ)分别为0.87和1.28μmol/L,五次连续进样分离测定,迁移时间的RSD分别为0.5%和0.3%。与使用黏合层封合的PET同类芯片相比,分析性能明显改善。
     第三章,由于PDMS表面自由能低、高度疏水的性质,在其表面制备金属微器件的难度很大,本章对在PDMS表面和通道内集成精细且稳定的金属器件的方法进行了研究和探索。本章工作中,我们对比讨论了不同紫外光处理、表面活化方法对PDMS表面区域选择性化学镀金属层质量的影响,并最终选择利用紫外光诱导的丙烯酸(AA)聚合反应对PDMS表面进行区域选择性活化,结合化学镀技术建立了一种在PDMS表面简单而低成本地制备高精度、高结合强度的金属微器件的方法。应用此方法在PDMS表面制备的金膜微器件与基底之间的附着力非常强,具有很好的电化学活性,并且可以通过自组装的方法进行表面修饰。在现有的实验条件下,本方法在PDMS材料表面对金膜微器件的制作精度至少可以达到10μm。
     我们将此方法制备的金膜微电极应用于μCE—ED,对DA和CA的标准溶液进行分离检测。在对100μM的DA和CA混合样品的分析中,连续21次分离检测的峰高RSD分别为2.1%和2.4%;308V/cm的分离场强下,DA的柱效达21,237塔板/m(H=4.7x10-5m),比文献报道的同类型PDMS/玻璃杂交芯片柱效高。我们认为全PDMS通道内均一的电渗流是柱效得以提高的重要因素。另外我们还将制备的带状金膜作为电加热器考察了其在芯片中对溶液直接加热的性能。
     第四章,在第三章的基础上,初步考察了PAA接枝—化学镀法在PDMS表面制备的金膜作为细胞培养基底的可能性。考察了一种贴壁细胞COS-7在所制备的金膜表面的生长及增殖状态,结论是PAA接枝—化学镀法在PDMS表面制备的金膜表面可用于贴壁细胞的正常培养。此初步研究为PDMS微流控芯片细胞培养过程中的电刺激诱导分化奠定了一定的基础。
     本论文的主要创新点:
     1.通过等离子体改性,实现了无定形PET芯片在较低温度下热封合;结合UV选择性改性为基础的化学镀在PET芯片上集成了可用于电化学检测的金微电极,所制备的全PETμCE—ED芯片显示出良好的分离和检测性能。
     2.建立了在PDMS表面以光诱导聚合接枝PAA为基础的区域选择性化学镀技术制备集成化金属膜微器件的方法和工艺。与文献报道相比,此方法操作简单、成本低,且所制备金属器件具有令人满意的机械性能、电化学性能以及良好的生物兼容性,可以用于微流控芯片中电流传导、电化学检测和传感、电加热以及细胞培养等各种用途。
     3.对研制的PDMS-Au表面应用于细胞培养做了初步试验,为在PDMS-Au表面进行细胞的培养和电刺激诱导分化建立了初步的技术平台。
Microfluidic chips made of polymers have been widely employed in the recent years because they are less expensive and easier to fabricate compared to those made of glass or silica. According to microfluidics'property of miniaturization, integration and portability of analytical instruments, metal apparatuses integrated for various functions are obviously required in microfluidic systems.
     Fabrication of micro metal devices in microchips through LIGA technique requires clean-room conditions and complicated facilities, which makes the process tough and costly. At the same time, organic solvents harmful for polymer surfaces are inevitably employed in the LIGA process, which is not favorable for preparation of metal devices on polymeric chips. As a result, most microchips integrated with metal devices are hybridized of glass and PDMS, the surface properties of which are completely different. The PDMS/glass hybrid chips can only support inhomogeneous electroosmotic flow (EOF), which might deteriorate the separation efficiency.
     In present work, electroless plating is employed to fabricate micro metal devices on PET and PDMS sheets, both of which are widely used in fabricating microchips. Properties of the fabricated metal devices are characterized, and polymeric microchips with homogeneous channel surfaces properties and integrated micro metal devices are fabricated, which are then used in chemical and biochemical applications.
     The thesis is composed of four chapters:
     In chapter 1, recent progress in polymeric microchips and fabrication of micro metal devices on microfluidic chips are reviewed with respect to fabrication of microchannels in polymers, bonding the polymeric microchips, the functions of metal devices on microchips, as well as their applications and fabrication methods.
     In chapter 2, amorphous PET was exploited to fabricate full-PET microchips integrated with gold microelectrodes. Surface modification via UV light irradiation and air plasma was studied and both of the two methods were found to be able to improve the surface wettability, enhance the supported electroosmotic flow (EOF), and increase thermal bonding strength of PET sheets, with the latter being more efficient and less time-consuming than the former UV light during the surface modification. On the basis of the study mentioned above gold film electrodes were fabricated on PET sheets, and the micro-structured PET sheet was bonded with the PET sheet carrying micro gold electrode was bonded without assistant layers at a low temperature (65℃), forming a full-PET capillary electrophoresis-amperometric detection (μCE-AD) microfluidic chip.
     The developedμCE-AD PET chip was used for separation and detection of dopamine (DA) and catechol(CA). The separation efficiencies of DA and CA are 3.2×104 and 4.3x104 plates/m, respectively, and detection limits achieved are 0.87 and 1.28μmol/L, respectively. Electropherograms for five consecutive runs of DA and CA show that the RSDs of migration time are 0.5% and 0.3%, respectively. Compared to the PET chips bonding with assistant layers, the analytical performances of present fabricated chip are significantly improved.
     It is rather difficult to prepare metal devices directly on PDMS substrates because the low surface energy of PDMS renders the adhesion between the deposited metal layer and PDMS substrate quite weak. In chapter 3, protocols for fabrication of fine and reliable metal devices on PDMS surfaces are studied. Different UV induced surface activation methods and their effects on the finally plated gold films are discussed. Among the tested methods, the UV-induced polymerization and grafting of PAA on the PDMS surface is the most effective for region-selective electroless plating. It provides the active carboxylic moieties which can be used as the scaffold for immobilization of metal nano particle catalysts necessary for region-selective electroless plating. The prepared micro gold devices show strong adhesion to the PDMS substrate, excellent electrochemical properties, and allow the SAMs of thiol-compounds to be perfectly formed on their surface. The minimum width of the prepared micro gold devices is no worse that 10μm, which could be improved if finer photo-masks and collimated UV light are used.
     The full PDMS chip showed good analytical performance. With DA and CA being the model analysts, the RSD of detection signals for DA and CA are 2.1% and 2.4%, respectively (each at 100μM, n=21). The separation efficiency achieved at the applied electric field of 308 V/cm is 21,237 plates/m (H=4.7×10-5 m for DA), which is significantly higher than that (8600 plates/m) obtained at approximately similar electric fields (250V/cm) with a PDMS/glass hybrid chip. The uniform EOF supported by the homogeneous PDMS channels is one of the reasons for the improvement in the separation efficiency.
     The fabricated gold device is also used d as an electric heater in microchips and its heating performance is examined.
     In chapter 4, on the basis of chapter 3's work, the Au-PDMS substrate which can be immobilized in the well-plate is fabricated and the feasibility of using it in cell culture is preliminarily studied. Similar cell growth and proliferation is observed on the Au-PDMS substrate prepared by the method established in chapter 3 as in the control experiment, which suggests the fabricated Au-PDMS could be used in cell culture. This result shows the potential for the Au-PDMS substrate to be used for electrical stimulation induced stem cell differentiation during cell culture process in PDMS microfluidic chips.
     The main novelty of the present work is summarized as:
     1. Realizing full-PET microchip thermal bonding at a relatively low temperature with the help of air plasma surface modification and prepared PETμCE-ED chip with integrated micro gold electrode via UV surface modification induced electroless plating. The fabricated PET chip shows good analytical performances inμCE-ED application.
     2. Developing the protocol of integrating reliable micro metal devices on PDMS substrates on the basis of UV induced PAA grafting. Compared to the reports, this protocol proves its feasibility in ordinary chemistry laboratories without the need of the clean room and expensive facilities, and the prepared micro gold devices show satisfying mechanical behavior, excellent electrochemical properties, and good biological compatibility, which could be used as electric conductors, electrochemical detectors and sensors, electric heater and cell culture containers.
     3. Preliminarily testing performances of the electrolessly fabricated Au-PDMS substrate in cell culture experiment, and establishing the platform for cell culture and electrical stimulation of stem cell in PDMS microchips.
引文
[1]Manz, A.; Graber, N.; Widmer, H.M. Miniaturized Total Chemical Analysis Systems:A Novel Concept for Chemical Sensing, Sens. Actuator B-Chem.1990, 1,244-248.
    [2]Harrison, D. J.; Manz, A.; Fan, Z.H.; Ludi, H.; Widmer, H.M. Capillary Electrophoresis and Sample Injection Systems Integrated on a Planar Glass Chip, Anal. Chem.1992,64,1926-1932.
    [3]方肇伦等.微流控分析芯片(科学出版社),北京,2002.
    [4]方肇伦等.微流控分析芯片的制作及应用(化学工业出版社),北京,2005.
    [5]Effenhauser, C.S.; Manz, A.; Widmer, H.M. Glass Chips for High-speed Capillary Electrophoresis Separations With Submicrometer Plate Heights, Anal. Chem., 1993,65,2637-2642.
    [6]Harrison, D.J.; Fluri, K.; Seiler, K.; Fan, Z.H.; Effenhauser, C.S.; Manz, A. Micromachining a Miniaturized Capillary Electrophoresis-based Chemical Analysis System on a Chip, Science,1993,261,895-897.
    [7]Fan, Z.H.; Harrison, D.J. Micromachining of Capillary Electrophoresis Injectors and Separators on Glass Chips and Evaluation of Flow at Capillary Intersections, Anal. Chem.,1994,66,177-184.
    [8]Effenhauser, C.S.; Bruin, G.J.M.; Paulus, A. Integrated Chip-based Capillary Electrophoresis, Electrophoresis 1997,18,2203-2213.
    [9]Jacobson, S.C.; Moore, A.W.; Ramsey, J.M. Fused Quartz Substrates for Microchip Electrophoresis, Anal. Chem.1995,67,2059-2063.
    [10]Becker, H.; Lowack, K.; Manz, A. Planar Quartz Chips With Submicron Channels for Two-dimensional Capillary Electrophoresis Applications, J. Micromech. Microeng.1998,8,24-28.
    [11]Belder, D.; Ludwig, M. Surface Modification in Microchip Electrophoresis, Electrophoresis 2003,24,3595-3606.
    [12]Soper, S.A.; Ford, S.M.; Qi, S.Z.; McCarley, R.L.; Kelly, K.; Murphy, M.C. Polymeric Microelectromechanical Systems, Anal. Chem.2000,72,642A-651 A.
    [13]Rossier, J.; Reymond, F.; Michel, P.E. Polymer Microfluidic Chips for Electrochemical and Biochemical Analyses, Electrophoresis 2002,23,858-867.
    [14]Reyes, D.R.; Iossifidis, D.; Auroux, P.A.; Manz, A. Micro Total Analysis Systems. 1. Introduction, Theory, and Technology, Anal. Chem.2002,74,2623-2636
    [15]Becker, H.; Locascio, L.E. Polymer Microfluidic Devices, Talanta 2002,56, 267-287.
    [16]Shadpour, H.; Musyimi, H.; Chen, J.F.; Soper, S.A. Physiochemical Properties of Various Polymer Substrates and Their Effects on Microchip Electrophoresis Performance, J. Chromatogr. A 2006,1111,238-251.
    [17]Tsao, C.-W.; DeVoe, D.L. Bonding of Thermoplastic Polymer Microfluidics, Microfluid. Nanofluid.2009,6,1-16.
    [18]Becker, H.; Gartner, C. Polymer Microfabrication Technologies for Microfluidic Systems, Anal. Bioanal. Chem.2008,390,89-111.
    [19]Becker, H.; Gartner, C. Polymer Microfabrication Methods for Microfluidic Mnalytical Mpplications, Electrophoresis 2000,21,12-26.
    [20]McDonald, J. C; Duffy, D.C.; Anderson, J.R.; Chiu, D.T.; Wu, H.K.; Schueller, O.J.A.; Whitesides, G.M. Fabrication of Microfluidic Systems in Poly(dimethylsiloxane), Electrophoresis 2000,21,27-40.
    [21]Jaszewski, R.W.; Schift, H.; Gobrecht, J.; Smith, P. Hot Embossing in Polymers as a Direct Way to Pattern Resist, Microelectron. Eng.1998,41-42,575-578.
    [22]Becker, H.; Heim, U. Polymer Hot Embossing with Silicon Master Structures, Sens. Mater.1999,11,297-302.
    [23]Muck, A,; Wang, J.; Jacobs, M.; Chen, G.; Chatrathi, M.P.; Jurka,V.; Vyborny, Z.; Spillman, S.D.; Sridharan, G.; Schoning, M.J. Fabrication of Poly(methyl methacrylate) Microfluidic Chips by Atmospheric Molding, Anal. Chem.2004, 76,2290-2297.
    [24]Duffy, D.C.; McDonald, J.C.; Schueller, O.J.A.; Whitesides, G.M. Rapid Prototyping of Microfluidic Systems in Poly(dimethylsiloxane), Anal. Chem. 1998,70,4974-4984.
    [25]Roberts, M.A.; Rossier, J.S.; Bercier, P.; Girault, H. UV Laser Machined Polymer Substrates for the Development of Microdiagnostic Systems, Anal. Chem.1997, 69,2035-2042.
    [26]Rossier, J.S.; Bercier, P.; Schwarz, A.; Loridant, S.; Girault, H.H. Topography, Crystallinity and Wettability of Photoablated PET Surfaces, Langmuir 1999,15, 5173-5178.
    [27]Bianchi, F.; Chevolot, Y.; Mathieu, H.J.; Girault, H.H. Photomodification of Polymer Microchannels Induced by Static and Dynamic Excimer Ablation: Effect on the Electroosmotic Flow, Anal. Chem.2001,73,3845-3853.
    [28]Szekely, L.; Guttman, A. New Advances in Microchip Fabrication for Electrochromatography, Electrophoresis 2005,26,4590-4604.
    [29]GraB, B.; Neyer, A.; Johnck, M.; Siepe, D.; Eisenbeiβ, F.; Weber, G.; Hergenroder, R. A New PMMA-microchip Device for Isotachophoresis with Integrated Conductivity Detector, Sens. Actuator B-Chem.2001,72,249-258.
    [30]Kelly, R.T.; Pan, T.; Woolley, A.T.; Phase-changing Sacrificial Materials for Solvent Bonding of High-performance Polymeric Capillary Electrophoresis Microchips, Anal. Chem.2005,77,3536 3541.
    [31]Koesdjojo, M.T.; Tennico, Y.H.; Remcho, V.T. Fabrication of a Micro fluidic System for Capillary Electrophoresis Using a Two-stage Embossing Technique and Dolvent Welding on Poly(methyl methacrylate) with Water as a Sacrificial Layer, Anal. Chem.2008,80,2311 2318.
    [32]杜晓光,关艳霞,王福仁,方肇伦.高等学校化学学报,2003,24,1962-1966.
    [33]Wu, Z.Y.; Xanthopoulos, N.; Reymond, F.; Rossier, J.S.; Girault, H.H. Polymer Microchips Bonded by 02-plasma, Electrophoresis 2002,23,782-790.
    [34]Wang, X.-D.; Ge, L.-J.; Lu, J.-J.; Li, X.-J.; Qiu, K.-Q.; Tian, Y.-C.; Fu, S.-J.; Cui, Z. Fabrication of Enclosed Nanofluidic Channels by UV Cured Imprinting and Optimized Thermal Bonding of SU-8 Photoresist, Microelectron. Eng.2009,86, 1347-1349.
    [35]Lu, C.-M.; Lee, L. J.; Juang, Y.-J. Packaging of Microfluidic Chips via Interstitial Bonding Technique, Electrophoresis 2008,29,1407-1414.
    [36]Chow, W.W.Y.; Lei, K.F.; Shi, G.-Y.; Li, W.-J.; Huang, Q. Microfluidic Channel Fabrication by PDMS-interface Bonding, Smart Mater. Struct.2006,15, S112-S116.
    [37]He, F.-Y.; Liu, A.-L.; Yuan, J.-H.; Coltro, W.K.T.; Carrilho, E.; Xia, X.-H. Electrokinetic Control of Fluid in Plastified Laser-printed Poly(ethylene terephthalate)-toner Microchips, Anal. Bioanal. Chem.2005,382,192-197.
    [38]Woolley, A.T.; Lao, K. Q.; Glazer, A.N.; Mathies, R.A. Capillary Electrophoresis Chips with Integrated Electrochemical Detection, Anal. Chem.1998,70, 684-688.
    [39]Lacher, N.A.; Garrison, K.E.; Martin, R.S.; Lunte, S.M. Microchip Capillary Electrophoresis/Electrochemistry, Electrophoresis 2001,22,2526-2536.
    [40]IV, W.R.V.; Pasas-Farmer, S.A.; Fischer, D.J.; Frankenfeld, C.N.; Lunte, S.M. Recent Developments in Electrochemical Detection for Microchip Capillary Electrophoresis, Electrophoresis 2004,25,3528-3549.
    [41]Wang, J. Electrochemical Detection for Capillary Electrophoresis Microchips:A Review, Electroanalysis 2005,17,1133-1140.
    [42]Du, Y; Wang, E.-K. Capillary Electrophoresis and Microchip Capillary Electrophoresis with Electrochemical and Electrochemiluminescence Detection, J. Sep. Sci.2007,30,875-890.
    [43]Xu, J.-J.; Wang, A.-J.; Chen, H.-Y. Electrochemical Detection Modes for Microchip Capillary Electrophoresis, Trends in Anal. Chem.,2007,26,125-132.
    [44]Dawoud, A.A.; Kawaguchi, T.; Jankowiak,R. In-channel Modification of Electrochemical Detector for the Detection of Bio-targets on Microchip, Electrochem. Commun.2007,9,1536-1541.
    [45]Vickers, J.A.; Henry, C.S. Simplified Current Decoupler for Microchip Capillary Electrophoresis with Electrochemical and Pulsed Amperometric Detection, Electrophoresis 2005,26,4641-4647.
    [46]Satoh, W.; Hosono, H.; Suzuki, H. On-chip Microfluidic Transport and Mixing Using Electrowetting and Incorporation of Sensing Functions, Anal. Chem.2005, 77,6857-6863.
    [47]Hosono, H.; Satoh, W.; Fukuda, J.; Suzuki, H. On-chip Handling of Solutions and Electrochemiluminescence Detection of Amino Acids, Sens. Actuator B-Chem.2007,122,542-548.
    [48]Pollack, M.G.;Fair, R.B. Electrowetting-based Actuation of Liquid Droplets for Microfluidic Applications, Appl. Phys. Lett.2000,77,1725-1726.
    [49]Lee, J.; Moon, H.; Fowler, J.; Schoellhammer, T.; Kim, C.-J. Electrowetting and Electrowetting-on-dielectric for Microscale Liquid Handling, Sens. Actuator A-Phys.2002,95,259-268.
    [50]Jebrail, M.J.; Wheeler, A.R. Digital Microfluidic Method for Protein Extraction by Precipitation, Anal. Chem.2009,81,330-335.
    [51]Yang, Y.; Kameoka, J.; Wachs, T.; Henion, J.D.; Craighead, H.G. Quantitative Mass Spectrometric Determination of Methylphenidate Concentration in Urine Using an Electrospray Ionization Source Integrated with a Polymer Microchip, Anal. Chem.2004,76,2568-2574.
    [52]Chen, Y.R.; Tseng, M.C.; Her, G.R. Design and Performance of a Low-flow Capillary Electrophoresis-electrospray-mass Spectrometry Interface Using an Emitter with Dual Beveled Edge, Electrophoresis 2005,26,1376-1382.
    [53]Prudent, M.; Girault, H.H. Functional Electrospray Emitters, Analyst 2009,134, 2189-2203.
    [54]Kitamura, N.; Hosoda, Y.; Iwasaki, C.; Ueno, K.; Kim, H.-B. Thermal Phase Transition of an Aqueous Poly(N-isopropylacrylamide) Solution in a Polymer Microchannel-Microheater Chip, Langmuir 2003,19,8484-8489.
    [55]Seger-Sauli, U.; Panayiotou, M.; Schnydrig, S.; Jordan, M.; Renaud, P. Temperature Measurements in Microfluidic Systems:Heat Dissipation of Negative Dielectrophoresis Barriers, Electrophoresis 2005,26,2239-2246.
    [56]Giovangrandi, L.; Gilchrist, K.H.; Whittington, R.H.; Kovacs, G.T.A. Low-cost Microelectrode Array with Integrated Heater for Extracellular Recording of Cardiomyocyte Cultures Using Commercial Flexible Printed Circuit Technology, Sens. Actuator B-Chem.2006,113,545-554.
    [57]Lagally, E.T.; Emrich, C.A.; Mathies, R.A. Fully Integrated PCR-capillary Electrophoresis Microsystem for DNA Analysis, Lab Chip 2001,1,102-107.
    [58]Lagally, E.T.; Scherer, J.R.; Blazej, R.G.; Toriello, N.M.; Diep, B.A. Ramchandani, M.; Sensabaugh, G.F.; Riley, L.W.; Mathies, R.A. Integrated Portable Genetic Analysis Microsystem for Pathogen/Infectious Disease Detection, Anal. Chem.2004,76,3162-3170.
    [59]Liu, C.N.; Toriello, N.M.; Mathies, R.A. Multichannel PCR-CE Microdevice for Genetic Analysis, Anal. Chem.2006,78,5474-5479.
    [60]Toriello, N.M.; Liu, C.N.; Mathies, R.A. Multichannel Reverse Transcription-polymerase Chain Reaction Microdevice for Rapid Gene Expression and Biomarker Analysis, Anal. Chem.2006,78,7997-8003.
    [61]Yu, C.; Liang,W.; Kuan, I.; Wei, C.; Gu, W. Fabrication and Characterization of a Flow-through PCR Device with Integrated Chromium Resistive Heaters, J. Chin. Inst. Chem. Eng.2007,38,333-339.
    [62]Kaigala, G.V.; Hoang, V.N.; Stickel, A.; Lauzon, J.; Manage, D.; Pilarski, L.M.; Backhouse, C.J. An Inexpensive and Portable Microchip-based Platform for Integrated RT-PCR and Capillary Electrophoresis, Analyst 2008,133,331-338.
    [63]Sauer-Budge, A.F.; Mirer, P.; Chatterjee, A.; Klapperich, C.M.; Chargin, D.; Sharona, A. Low Cost and Manufacturable Complete MicroTAS for Detecting Bacteria, Lab Chip 2009,9,2803-2810.
    [64]Zhong, R.-T.; Pan, X.-Y.; Jiang, L.; Dai, Z.-P.; Qin, J.-H.; Lin, B.-C. Simply and Reliably Integrating Micro Heaters/sensors in a Monolithic PCR-CE Microfluidic Genetic Analysis System, Electrophoresis 2009,30,1297-1305.
    [65]Lagally, E. T.; Simpson, P. C.;Mathies, R. A. Monolithic Integrated Microfluidic DNA Amplification and Capillary Electrophoresis Analysis System, Sens. Actuator B-Chem.2000,63,138-146.
    [66]Allen, P.B.; Rodriguez, I.; Kuyper, C.L.; Lorenz, R.M.; Spicar-Mihalic, P.; Kuo, J.S.; Chiu, D.T. Selective Electroless and Electrolytic Deposition of Metal for Applications in Microfluidics:Fabrication of a Microthermocouple, Anal. Chem. 2003,75,1578-1583
    [67]Feng, X.; Castracane, J.; Tokranova, N.; Gracias, A.; Lnenicka, G.; Szaro, B.G. A Living Cell-based Biosensor Utilizing G-protein Coupled Receptors: Principles and Setection Methods, Biosens. Bioelectron.2007,22,3230-3237.
    [68]Rodrigues, N. P.; Sakai, Y.; Fujii, T. Cell-based Microfluidic Biochip for the Electrochemical Real-time Monitoring of Glucose and Oxygen, Sens. Actuator B-Chem.2008,132,608-613.
    [69]Spegel, C.; Heiskanen, A.; Skjolding, L.H.D.; Emneus, J. Chip Based Electroanalytical Systems for Cell Analysis, Electroanalysis 2008,20,680-702.
    [70]Zou, Z.-W.; Jang, A.; MacKnight, E.; Wu, P.-M.; Do, J.; Bishop, P.L.; Ahn, C.H. Environmentally Friendly Disposable Sensors with Micro fabricated On-chip Planar Bismuth Electrode for in Situ Heavy Metal Ions Measurement, Sens. Actuator B-Chem.2008,134,18-24.
    [71]Shi, X.-W.; Tsao, C.-Y.;Yang, X.-H.; Liu, Y.; Dykstra, P.; Rubloff, G.W.; Ghodssi, R.; Bentley, W.E.; Payne, G.F. Electroaddressing of Cell Populations by Co-Deposition with Calcium Alginate Hydrogels, Adv. Funct. Mater.2009, 19,2074-2080.
    [72]Ravula, S.K.; McClain, M.A.; Wang, M.S.; Glass, J.D.; Frazier, A.B. A Multielectrode Microcompartment Culture Platform for Studying Signal Transduction in The Nervous System, Lab Chip 2006,6,1530-1536.
    [73]Suzuki, I.; Sugio, Y.; Jimbob, Y.; Yasuda, K. Stepwise Pattern Modification of Neuronal Network in Photo-thermally-etched Agarose Architecture on Multi-electrode Array Chip for Individual-cell-based Electrophysiological Measurement, Lab Chip 2005,5,241-247.
    [74]Liu, Q.; Yu, J.; Xiao, L.; Tangd, J.C.O.; Zhang, Y.; Wang, P.; Yang, M. Impedance Studies of Bio-behavior and Chemosensitivity of Cancer Cells by Micro-electrode Arrays, Biosens. Bioelectron.2009,24,1305-1310.
    [75]Ueno, K.; Kitagawa, F.; Kitamura, N. One-step Electrochemical Cyanation Reaction of Pyrene in Polymer Microchannel-electrode Chips, Bull. Chem. Soc. Jpn.2004,77,1331-1338.
    [76]Liu, Y.; Vickers, J.A.; Henry, C.S. Simple and Sensitive Electrode Design for Microchip Electrophoresis/Electrochemistry, Anal. Chem.,2004,76,1513-1517.
    [77]Kim, J.H.; Kang, C.J.; Kim, Y.S. Development of a Microfabricated Disposable Microchip with a Capillary Electrophoresis and Integrated Three-electrode Electrochemical Detection, Biosens. Bioelectron.2005,20,2314-2317.
    [78]Kim, J.H.; Kang, C.J.; Jeon, D.; Kim, Y.S. A Disposable Capillary Electrophoresis Microchip with an Indium Tin Oxide Decoupler/Amperometric Detector, Microelectron. Eng.2005,78-79,563-570.
    [79]Wang, W.; Xu, X.-Q.; Bin, Q.; Ling, J.-M.; Chen, G.-N. A New Method for Fabrication of an Integrated Indium Tin Oxide Electrode on Electrophoresis Microchips with Amperometric Setection and Its Application for Determination of Synephrine and Hesperidin in Pericarpium Citri Reticulatae, Electrophoresis 2006,27,4174-4181.
    [80]Xu, J.-J.; Bao, N.; Xia, X.-H.; Peng, Y.; Chen, H.-Y. Electrochemical Detection Method for Nonelectroactive and Electroactive Analytes in Microchip Electrophoresis, Anal. Chem.2004,76,6902-6907.
    [81]Design and Development of Microfabricated Capillary Electrophoresis Devices with Electrochemical Detection, Keynton R.S.; Roussel T.J.Jr; Crain M.M.; Jackson, D.J.; Franco, D.B.; Naber, J.F.; Walsh, K.M.; Baldwin, R.P. Anal. Chim. Acta,2004,507,95-105.
    [82]Jiang, L.; Lu, Y.; Dai, Z.P.; Xie, M.H.; Lin, B.C. Mini-electrochemical Detector for Microchip Electrophoresis, Lab Chip 2005,5,930-934.
    [83]Martin, R.S.; Gawron, A.J.; Lunte, S.M. Dual-Electrode Electrochemical Detection for Poly(dimethylsiloxane)-Fabricated Capillary Electrophoresis Microchips, Anal. Chem.2000,72,3196-3202.
    [84]Yan, J.-L.; Du, Y.; Liu, J.-F.; Cao, W.-D.; Sun, X.-H.; Zhou, W.-H.; Yang, X.-R.; Wang, E.-K.; Fabrication of Integrated Microelectrodes for Electrochemical Detection on Electrophoresis Microchip by Electroless Deposition and Micromolding in Capillary Technique, Anal. Chem.,2003,75,5406-5412.
    [85]Schoninga, M.J.; Jacobsa, M.; Muckc, A.; Knobbe, D.-T.; Wang, J.; Chatrathi, M.; Spillmann, S. Amperometric PDMS/Glass Capillary Electrophoresis-based Biosensor Microchip for Catechol and Dopamine Detection, Sens. Actuator B-Chem.2005,10,688-694.
    [86]Manica, D.P.; Mitsumori, Y.; Ewing, A.G. Characterization of Electrode Fouling and Surface Regeneration for a Platinum Electrode on an Electrophoresis Microchip, Anal. Chem.2003,75,4572-4577.
    [87]Lacher, N.A.; Lunte, S.M. Development of a Micro fabricated Palladium Decoupler/Electrochemical Detector for Microchip Capillary Electrophoresis Using a Hybrid Glass/Poly(dimethylsiloxane) Device, Anal. Chem.,2004,76, 2482-2491.
    [88]Ching-Chou Wu, Ren-Guei Wu, Huang, J.-G.; Lin, Y.-C.; Chang, H.-C. Three-Electrode Electrochemical Detector and Platinum Film Decoupler Integrated with a Capillary Electrophoresis Microchip for Amperometric Detection, Anal. Chem.2003,75,947-952.
    [89]Osbourn, D.M.; Lunte, C.E. On-Column Electrochemical Detection for Microchip Capillary Electrophoresis, Anal. Chem.,2003,75,2710-2714.
    [90]Ueno, K.; Kim, H.B.; Kitamura, N. Characteristic Electrochemical Responses of Polymer Microchannel-elctroelectrode Chips, Anal. Chem.2003,75,2086-2091.
    [91]Viedi, G.S.; Chutani, R.K.; Rao,P.K; Kumar, S. Fabrication of Low Cost Integrated Micro-capillary Electrophoresis Analytical Chip for Chemical Analysis, Sens. Actuator B-Chem.2008,128,422-426.
    [92]刘军山,罗怡,杜艳,刘冲,王立鼎,周伟红,杨秀荣集成铜电极的聚甲基丙烯酸甲脂电泳芯片的制作,分析化学,2005,33,584-587.
    [93]Mieszawska, A.J.; Zamborini, F.P. Gold Nanorods Grown Directly on Surfaces from Microscale Patterns of Gold Seeds, Chem. Mater.2005,17,3415-3420.
    [94]Kim, J.-W.; Yang, K.-Y.; Hong, S.-H.; Lee, H. Formation of Au Nano-patterns on Various Substrates Using Simplified Nano-transfer Printing Method, Appl. Surf. Sci.2008,254,5607-5611.
    [95]Fan, X.-J.; Tran, D.T.; Brennan, D.P.; Oliver, S.R.J. Microfabrication Using Elastomeric Stamp Deformation, J. Phys. Chem. B 2006,110,11986-11990.
    [96]Payne, D.A.; Clem, P.G. Mono layer-Mediated Patterning of Integrated Electroceramics, J. Electroceram.1999,3,163-172.
    [97]Felmet K.; Loo, Y.L.; Sun, Y.M. Patterning Conductive Copper by Nanotransfer Printing, Appl. Phys. Lett.2004,85,3316-3318.
    [98]Atmaja, B.; Frommer, J.; Scott, J.C. Atomically Flat Gold on Elastomeric Substrate, Langmuir 2006,22,4734-4740.
    [99]Lee, K.J.; Tosser, K.A.; Nuzzo, R.G. Fabrication of Stable Metallic Patterns Embedded in Poly(dimethylsiloxane) and Model Applications in Non-Planar Electronic and Lab-on-a-Chip Device Patterning, Adv. Funct. Mater.2005,15, 557-566.
    [100]Schmid, H.; Wolf, H.; Allenspach, R.; Riel, H.; Karg, S.; Michel, B.; Delamarche, E. Preparation of Metallic Films on Elastomeric Stamps and Their Application for Contact Processing and Contact Printing, Adv. Funct. Mater. 2003,13,145-153.
    [101]Pangule, R.C.; Banerjee, I.; Sharmab, A. Adhesion Induced Mesoscale Instability Patterns in Thin PDMS-metal Bilayers, J. Chem. Phys.2008,128, 234708.
    [102]Hilmi, A.; Luong, J.H.T. Electrochemical Detectors Prepared by Electroless Deposition for Micro fabricated Electrophoresis Chips, Anal. Chem.2000,72, 4677-4682.
    [103]Wang, J.; Chen, G; Chatrathi, M.P. Nickel Amperometric Detector Prepared by Electroless Deposition for Microchip Electrophoretic Measurement of Alcohols and Sugars, Electroanalysis,2004,16,1603-1608.
    [104]Yan, J.; Yang, X.; Wang, E. Electrochemical Detection of Anions on an Electrophoresis Microchip with Integrated Silver Electrode, Electroanalysis 2005, 17,1222-1226.
    [105]Henry, A.C.; McCarley, R.L. Selective Deposition of Metals on Plastics Used in the Construction of Microanalytical Devices:Photo-Directed Formation of Metal Features on PMMA, J. Phys. Chem. B,2001,105,8755-8761.
    [106]McCarley, R.L.; Vaidya, B.; Wei, S.Y.; Smith, A.F.; Patel, A.B.; Feng, J.; Murphy, M.C.; Soper, S.A. Resist-Free Patterning of Surface Architectures in Polymer-Based Microanalytical Devices, J. Am. Chem. Soc.2005,127,842-843.
    [107]Wei, S.Y.; Vaidya, B.; Patel, A.B.; Soper, S.A.; McCarley, R.L. Photochemically Patterned Poly(methyl methacrylate) Surfaces Used in the Fabrication of Microanalytical Devices, J. Phys. Chem. B 2005,109,16988-16996.
    [108]Kong, Y.; Chen, H.W.; Wang, Y.R.; Soper, S.A. Fabrication of a Gold Microelectrode for Amperometric Detection on a Polycarbonate Electrophoresis Chip by Photodirected Electroless Plating, Electrophoresis 2006,27,2940-2950.
    [109]Castellana, E.T.; Kataoka, S.; Albertorio, F.; Cremer, P.S. Direct Writing of Metal Nanoparticle Films Inside Sealed Microfluidic Channels, Anal. Chem. 2006,78,107-112.
    [110]Hozumi, A.; Inagaki, M.; Shirahata, N. Spatially Defined Silver Mirror Reaction on a Micropatterned Aldehyde-terminated Self-assembled Mono layer, Appl. Surf. Sci.2006,252,6111-6114.
    [111]Sawada, S.; Masuda, Y.; Zhu, P.-X.; Koumoto, K. Micropatterning of Copper on a Poly(ethylene terephthalate) Substrate Modified with a Self-Assembled Monolayer, Langmuir 2006,22,332-337.
    [112]Kenis, P.J.A.; Ismagilov, R.F.; Whitesides, G.M. Microfabrication Inside Capillaries Using Multiphase Laminar Flow Patterning, Science 1999,285, 83-85.
    [113]Bai, H.-J.; Shao, M.-L.; Gou, H.-L.; Xu, J.-J.; Chen, H.-Y. Patterned Au-Poly(dimethylsiloxane) Substrate Fabricated by Chemical Plating Coupled with Electrochemical Etching for Cell Patterning, Langmuir 2009,25, 10402-10407.
    [114]Gao, Y.-X; Chen, L.-W. Versatile Control of Multiphase Laminar Flow for In-channel Microfabrication, Lab Chip 2008,8,1695-1699.
    [115]Li, M.; Zhai, J.; Liu, H.; Song, Y.-L.; Jiang, L.; Zhu, D.-B. Electrochemical Deposition of Conductive Superhydrophobic Zinc Oxide Thin Films, J. Phys. Chem. B 2003,107,9954-9957.
    [116]Deng, T.; Prentiss, M.; Whitesides, G.M. Fabrication of Magnetic Micro filtration Systems Using Soft Lithography, Appl. Phys. Lett.2002,80,461-463.
    [117]Wang, Y.-R.; Chen, H.-W.; He, Q.-H.; Soper, S.A. A High-performance Polycarbonate Electrophoresis Microchip with Integrated Three-electrode System for End-channel Amperometric Detection, Electrophoresis 2008,29, 1881-1888.
    [118]Siegel, A.C.; Bruzewicz, D.A.; Weibel, D.B.; Whitesides, G.M. Microsolidics: Fabrication of Three-Dimensional Metallic Microstructures in Poly(dimethylsiloxane), Adv. Mater.2007,19,727-733.
    [1]Effenhauser, C.S.; Bruin, G.J.M.; Paulus, A. Integrated Chip-based Capillary Electrophoresis, Electrophoresis 1997,18,2203-2213.
    [2]Belder, D.; Ludwig, M. Surface Modification in Microchip Electrophoresis, Electrophoresis 2003,24,3595-3606.
    [3]Soper, S.A.; Ford, S.M.; Qi, S.Z.; McCarley, R.L.; Kelly, K.; Murphy, M.C. Polymeric Microelectromechanical Systems, Anal. Chem.2000,72,642A-651A.
    [4]Rossier, J.; Reymond, F.; Michel, P.E. Polymer Microfluidic Chips for Electrochemical and Biochemical Analyses, Electrophoresis 2002,23,858-867.
    [5]Becker, H.; Locascio, L.E. Polymer Microfluidic Devices, Talanta 2002,56, 267-287.
    [6]Belder, D.; Ludwig, M. Surface Modification in Microchip Electrophoresis, Electrophoresis 2003,24,3595-3606.
    [7]Roberts, M.A.; Rossier, J.S.; Bercier, P.; Girault, H. UV Laser Machined Polymer Substrates for The Development of Microdiagnostic Systems, Anal. Chem.1997, 69,2035-2042.
    [8]Rossier, J.S.; Schwarz, A.; Reymond, F.; Ferrigno, R.; Bianchi, F.; Girault, H.H. Microchannel Networks for Electrophoretic Separations, Electrophoresis 1999, 20,727-731.
    [9]Rossier, J.S.; Ferrigno, R.; Girault, H.H. Electrophoresis with Electrochemical Detection in a Polymer Microdevice, J. Electroanal. Chem.2000,492,15-22.
    [10]Bianchi, F.; Wagner, F.; Hoffmann, P.; Girault, H. Electroosmotic Flow in Composite Microchannels and Implications in Microcapillary Electrophoresis Systems, Anal. Chem.2001,73,829-836.
    [11]Bianchi, F.; Chevolot, Y.; Mathieu, H.J.; Girault, H.H. Photomodification of Polymer Microchannels Induced by Static and Dynamic Excimer Ablation: Effect on The Electroosmotic Flow, Anal. Chem.2001,73,3845-3853.
    [12]Bianchi, F.; Lee, H.J.; Girault, H.H. Ionode Detection and Capillary Electrophoresis Integrated on a Polymer Micro-chip, J. Electroanal. Chem.2002, 523,40-48.
    [13]He, F.Y.; Liu, A.L.; Yuan, J.H.; Coltro, W.K.T.; Carrilho, E.; Xia, X.H. Electrokinetic Control of Fluid in Plastified Laser-printed Poly(ethylene terephthalate)-toner Microchips, Anal. Bioanal. Chem.2005,382,192-197.
    [14]Shadpour, H.; Musyimi, H.; Chen, J.F.; Soper, S.A. Physiochemical Properties of Various Polymer Substrates and Their Effects on Microchip Electrophoresis Performance, J. Chromatogr. A,2006,1111,238-251.
    [15]Wu, Z.Y.; Xanthopoulos, N.; Reymond, F.; Rossier, J.S.; Girault, H.H. Polymer Microchips Bonded by O2-plasma, Electrophoresis 2002,23,782-790.
    [16]Liu, J.S.; Luo, Y.; Du, Y.; Liu, C.; Wang, L.D.; Zhou, W.H.; Yang, X.R. Fabrication of Polymethyl methacrylate Electrophoresis Chips with Integrated Copper Electrodes, Chin. J. Anal. Chem.2005,33,584-587.
    [17]Sniadecki, N.J.; Lee, C.S.; Sivanesan, P.; DeVoe, D.L. Induced Pressure Pumping in Polymer Microchannels via Field-effect Flow Control, Anal. Chem. 2004,76,1942-1947.
    [18]Wei, S.Y.; Vaidya, B.; Patel, A.B.; Soper, S.A.; McCarley, R.L. Photochemically Patterned Poly(methyl methacrylate) Surfaces Used in the Fabrication of Microanalytical Devices, J. Phys. Chem.B 2005,109,16988-16996.
    [19]McCarley, R.L.; Vaidya, B.; Wei, S.Y.; Smith, A.F.; Patel, A.B.; Feng, J.; Murphy, M.C.; Soper, S.A. Resist-free Patterning of Surface Architectures in Polymer-based Microanalytical Devices, J. Am. Chem. Soc.2005,127,842-843.
    [20]Kong, Y.; Chen, H.W.; Wang, Y.R.; Soper, S.A. Fabrication of a Gold Microelectrode for Amperometric Detection on a Polycarbonate Electrophoresis Chip by Photodirected Electroless Plating, Electrophoresis 2006,27,2940-2950.
    [21]Sawada, S.; Masuda, Y.; Zhu, P.X.; Koumoto, K. Micropatterning of Copper on a Poly(ethylene terephthalate) Substrate Modified with a Self-assembled Monolayer, Langmuir 2006,22,332-337.
    [22]Kong, Y.; Chen, H.W.; Yun, X.; Hao, Z.X.; Fang, Z.L. A Simple Photomask with Photoresist Mask Layer for Ultraviolet-photolithography and Its Application for Selectively Photochemical Surface Modification of Polymers, Chin. J. Anal. Chem.2007,35,623-627.
    [23]Wang, X.H.; Gordon, M.J.; Zare, R.N. Current-monitoring Method for Measuring the Electroosmotic Flow Rate in Capillary Zone Electrophoresis, Anal. Chem.1988,60,1837-1838.
    [24]Boiko, Y.M.; Bach, A.; Lyngaae-Jorgensen, J.; Self-bonding in an Amorphous Polymer Below the Glass Transition:A T-peel Test Investigation, J. Polym. Sci. Pol. Phys.,2004,42,1861-1867.
    [25]Baker, L.A.; Zamborini, F.P.; Sun, L.; Crooks, R.M. Dendrimer-mediated Adhesion Between Vapor-deposited Au and Glass or Si Wafers, Anal. Chem. 1999,71,4403-4406.
    [26]Wang, Y. R.; Chen, H.W. Integrated Capillary Electrophoresis Amperometric Detection Microchip with Replaceable Microdisk Working Electrode:Ⅱ. Influence of Channel Cross-sectional Area on The Separation and Detection of Dopamine and Catechol, J.Chromatogr. A,2005,1080,192-198.
    [27]Yan, J.L.; Du, Y.; Liu, J.F.; Cao, W.D.; Sun, X.H.; Zhou, W.H.; Yang, X.R.; Wang, E:K. Fabrication of Integrated Microelectrodes for Electrochemical Detection on Electrophoresis Microchip by Electroless Deposition and Micromolding in Capillary Technique, Anal. Chem.,2003,75,5406-5412.
    [1]McDonald, J.C.; Duffy, D.C.; Anderson, J.R.; Chiu, D.T.; Wu, H.; Schueller, O.J.A.; Whitesides, G.M. Fabrication of Micro fluidic Systems in Poly(dimethylsiloxane), Electrophoresis 2000,21,27-40.
    [2]Runge, M.B.; Mwangi, M.T.; Miller II, A.L.; Perring, M.; Bowden, N.B.; Cascade Reactions Using LiAlH4 and Grignard Reagents in the Presence of Water, Angew. Chem. Int. Ed.2007,46,1-6.
    [3]Makamba, H.; Kim, J.H.; Lim, K.; Park, N.; Hahn, J.H. Surface Modification of Poly(dimethylsiloxane) Microchannels, Electrophoresis 2003,24,3607-3619.
    [4]Yan, J.-L.; Du, Y.; Liu, J.-F.; Cao, W.-D.; Sun, X.-H.; Zhou, W.-H.; Yang, X.-R.; Wang, E.-K. Fabrication of Integrated Microelectrodes for Electrochemical Detection on Electrophoresis Microchip by Electroless Deposition and Micromolding in Capillary Technique, Anal. Chem.2003,75,5406-5412.
    [5]Martin, R.S.; Gawron, A.J.; Lunte, S.M.; Dual-electrode Electrochemical Detection for Poly(dimethylsiloxane)-fabricated Capillary Electrophoresis Microchips, Anal. Chem.2000,72,3196 3202.
    [6]Schmid, H.; Wolf, H.; Allenspach, R.; Riel, H.; Karg, S.; Michel, B.; Delamarche, E. Preparation of Metallic Films on Elastomeric Stamps and Their Application for Contact Processing and Contact Printing, Adv. Funct. Mater.2003,13, 145-153.
    [7]Pangule, R.C.; Banerjee, I.; Sharmab, A. Adhesion Induced Mesoscale Instability Patterns in Thin PDMS-metal Bilayers, J. Chem. Phys.2008,128,234708.
    [8]Bowden, N.; Brittain, S.; Evans, A.G.; Hutchinson, J.W.; Whitesides, G.M. Spontaneous Formation of Ordered Structures in Thin Films of Metals Supported on an Elastomeric Polymer, Nature 1998,393,146-149.
    [9]Baek, J.-Y.; An, J.-H.; Choi, J.-M.; Park, K.-S.; Lee, S.-H. Flexible Polymeric Dry Electrodes for the Long-term Monitoring of ECG, Sens. Actuator A-Phys.2008, 143,423-429.
    [10]Loo, Y.-L.; Willett, R.L.; Baldwin, K.W.; Rogers, J.A. Additive, Nanoscale Patterning of Metal Films with a Stamp and a Surface Chemistry Mediated Transfer Process:Applications in Plastic Electronics, Appl. Phys. Lett.2002,81, 562-564.
    [11]Atmaja, B.; Frommer, J.; Scott, J.C. Atomically Flat Gold on Elastomeric Substrate, Langmuir 2006,22,4734-4740.
    [12]Lee, K.J.; Fosser, K.A.; Nuzzo, R.G.. Fabrication of Stable Metallic Patterns Embedded in Poly(dimethylsiloxane) and Model Applications in Non-Planar Electronic and Lab-on-a-Chip Device Patterning, Adv. Funct. Mater.2005,15, 557-566.
    [13]Lim, K.S.; Chang, W.-J.; Koob, Y.-M.; Bashir, R. Reliable Fabrication Method of Transferable Micron Scale Metal Pattern for Poly(dimethylsiloxane) Metallization, Lab Chip 2006,6,578-580.
    [14]Meacham, K.W.; Giuly, R. J.; Guo, L.; Hochman, S.; DeWeerth, S.P. A Lithographically-patterned, Elastic Multi-electrode Array for Surface Stimulation of the Spinal Cord, med. Microdevices 2008,10,259-269.
    [15]Hilmi, A.; Luong, J.H.T. Electrochemical Detectors Prepared by Electroless Deposition for Microfabricated Electrophoresis Chips, Anal. Chem.2000,72, 4677-4682.
    [16]Kong, Y.; Chen, H.-W.; Wang, Y.-R.; Soper, S.A. Fabrication of a Gold Microelectrode for Amperometric Detection on a Polycarbonate Electrophoresis Chip by Photodirected Electroless Plating, Electrophoresis 2006,27,2940-2950.
    [17]Hao, Z.-X.; Chen, H.-W.; Zhu, X.-Y.; Li, J.-M.; Liu, C. Modification of Amorphous Poly(ethylene terephthalate) Surface by UV Light and Plasma for Fabrication of an Electrophoresis Chip with an Integrated Gold Microelectrode, J. Chromatogr. A,2008,1209,246-252.
    [18]Hu, X.-Q.; He, Q.-H.; Lu, H.; Chen, H.-W. Fabrication of Gold Microelectrodes on Polystyrene Sheets by UV-directed Electroless Plating and Its Application in Electrochemical Detection, J. Electroanal. Chem.2010,638,21-27.
    [19]Dai, W.; Wang, W.-J. Fabrication of comb-drive micro-actuators based on UV lithography of SU-8 and electroless plating technique, Microsyst. Technol.2008, 14,1745-1750.
    [20]Kenis, P.J.A.; Ismagilov, R.F.; Whitesides, G.M. Microfabrication inside capillaries using multiphase laminar flow patterning, Science 1999,285,83-85.
    [21]Gao, Y.-X.; Chen, L.-W. Versatile control of multiphase laminar flow for in-channel microfabrication, Lab Chip,2008,8,1695-1699.
    [22]Bai, H.-J.; Shao, M.-L.; Gou, H.-L.; Xu, J.-J.; Chen, H.-Y. Patterned Au-Poly(dimethylsiloxane) Substrate Fabricated by Chemical Plating Coupled with Electrochemical Etching for Cell Patterning, Langmuir,2009,25, 10402-10407.
    [23]Wang, Y.-L.; Lai, H.-H.; Bachman, M.; Sims, C.E.; Li, G.P.; Allbritton, N.L. Covalent Micropatterning of Poly(dimethylsiloxane) by Photografting through a Mask, Anal. Chem.2005,77,7539-7546.
    [24]Sims, C.E.; Li, G.P.; Allbritton, N.L. Surface-directed, graft polymerization within microfluidic channels, Shuwen Hu, Xueqin Ren, Mark Bachman, Anal. Chem.2004,76,1865-1870.
    [25]Baker, L.A.; Zamborini, F.P.; Sun, L.; Crooks, R.M. Dendrimer-Mediated Adhesion between Vapor-Deposited Au and Glass or Si Wafers, Anal. Chem. 1999,71,4403-4406.
    [26]Hou, Z.-Z.; Abbott, N.L.; Stroeve, P. Electroless Gold as a Substrate for Self-assembled Monolayers, Langmuir 1998,14,3287 3297
    [27]Efimenko, K.; Wallace, W.E.; Genzer, J. Surface Modification of Sylgard-184 Poly(dimethyl siloxane) Networks by Ultraviolet and Ultraviolet/Ozone Treatment, J. Colloid Interface Sci.2002,254,306-315.
    [28]Sawada, S.; Masuda, Y.; Zhu, P.-X.; Koumoto, K. Micropatterning of Copper on a Poly(ethylene terephthalate) Substrate Modified with a Self-assembled Monolayer, Langmuir 2006,22,332-337.
    [29]Zhou, Q.-H.; Chen, H.-W.; Wang, Y. Region-selective Electroless Gold Plating on Polyclarbonate Sheets by UV-patterning in Combination with Silver Activating, Electrochim. Acta 2010,55,2542-2549.
    [1]Brennan, D.; Dillmore, S.; Moore, E.; Galvin, P. A Rapid Polymerisation Process Realizing 3D Biocompatible Structures in a Microfluidic Channel Suitable for Genetic Analysis, Sens. Actuator B-Chem.2009,142,383-388.
    [2]You, L.; Temiyasathit, S.; Tao, E.; Prinz, F.; Jacobs, C.R.3D Microfluidic Approach to Mechanical Stimulation of Osteocyte Processes, Cellular and Molecular Bioengineering,2008,1,103-107.
    [3]Kim, M.S.; Lee, W.; Kim, Y.C.; Park, J.-K. Microvalve-Assisted Patterning Platform for Measuring Cellular Dynamics Based on 3D Cell Culture, Biotechnol. Bioeng.2008,101,1005-1013.
    [4]Domachuk, P.; Tsioris, K.; Omenetto, F.G.; Kaplan, D.L. Bio-microfluidics: Biomaterials and Biomimetic Designs, Adv. Mater.2010,22,249-260.
    [5]Young, E.W.K.; Beebe, D.J. Fundamentals of Microfluidic Cell Culture in Controlled Microenvironments, Chem. Soc. Rev.2010,39,1036-1048.
    [6]Wang, J.-Y.; Ren, L.; Li, L.; Liu, W.-M.; Zhou, J.; Yu, W.-H.; Tonga, D.; Chena, S. Microfluidics:A New Cosset for Neurobiology, Lab Chip,2009,9,644-652.
    [7]Meyvantsson, I.; Beebe, D.J. Cell Culture Models in Microfluidic Systems, Annual Review of Analytical Chemistry 2008,1,423-449.
    [8]Verpoorte, E. Leveraging Microfluidics to Bridge the in Vitro-in Vivo Gap, The 13th international conference on miniaturized systems for chemistry and life sciences, Korea,2009.
    [9]Rodriguez-Boulan, E.; Nelson, W.J. Morphogenesis of the Polarized Epithelial Cell Phenotype, Science 1989,245,718-725.
    [10]Mie, M.; Ohgushi, H.; Haruyama, T.; Kobatake, E.; Aizawa, M. Electrically Enhanced Differentiation of Bone Marrow Stromal Stem Cells,18th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Amsterdam,1996.
    [11]Kimura, K.; Yanagida, Y.; Haruyama, T.; Kobatake, E.; Aizawa, M. Gene Expression in the Electrically Stimulated Differentiation of PC12 Cells, J. Biotechnol.1998,63,55-65.
    [12]Mie, M.; Endoh, T.; Yanagida, Y.; Kobatake, E.; Aizawa, M. Induction of Neural Differentiation by Electrically Stimulated Gene Expression of NeuroD2, J. Biotechnol.2003,100,231-238.
    [13]Mizuno, A.; Mie, M.; Yanagida, Y.; Aizawa, M.; Kobatake,E. The Secretory Response through Electric Stimulation of Differentiated PC 12 Rat Pheochromocytoma Cells Transfected with Neuropeptide Y Fused with Enhanced Green Fuorescent Protein, Biotechnol. Lett.2003,25,547-552.
    [14]Hartig, M.; Joos, U.; Wiesmann, H.-P. Capacitively Coupled Electric Fields Accelerate Proliferation of Osteoblast-like Peimary Cells and Increase Bone Extracellular Matrix Formation in Vitro, Eur. Biophys. J. Biophys. Lett.2000,29, 499-506.
    [15]Park, J.S.; Park, K.; Moon, H.T.; Woo, D.G.; Yang, H.N.; Park, K.-H. Electrical Pulsed Stimulation of Surfaces Homogeneously Coated with Gold Nanoparticles to Induce Neurite Outgrowth of PC12 Cells, Langmuir 2009,25,451-457.
    [16]Woo, D.G.; Shim, M.-S.; Park, J.S.; Yang, H.N.; Lee, D.-R.; Park, K.-H. The Effect of Electrical Stimulation on the Differentiation of hESCs Adhered onto Fibronectin-coated Gold Nanoparticles, Biomaterials 2009,30,5631-5638.
    [17]Ingber, D.E. Biomimetic Microsystems Technologies:Organs-on-chips, The 13th international conference on miniaturized systems for chemistry and life sciences, Korea,2009.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700