用户名: 密码: 验证码:
星载宽幅合成孔径雷达干涉测量形变监测理论与应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
星载宽幅合成孔径雷达干涉测量是利用SAR卫星扫描模式观测地表而获取其几何信息的技术,又被称为ScanSAR干涉测量。宽幅SAR图像强度信息已应用于资源勘探、环境监测、海洋探测、防灾减灾、土地利用和森林调查、农作物估产、国家安全等方面,取得了重大成效。随着合成孔径雷达卫星设备性能和定轨技术的改善或提高,宽幅SAR干涉的前提条件即扫描同步和极限基线已得到保证;已发射和即将发射多颗具有宽幅模式的SAR卫星能为宽幅SAR干涉研究应用提供丰富的数据资源,故现在ScanSAR干涉测量技术为地壳板块运动及地球动力学研究提供了契机。
     ScanSAR干涉测量相对于其他模式干涉测量而言,尽管分辨率较低,但其具有重访周期短和宽幅的优点。重访周期短则易监测地表缓慢变形,宽幅不仅可消除具有累积效应的基线误差,而且在监测精度与IM模式相当的条件下,其获取的宽域形变场更能用于发震机制分析,同时其多模式干涉测量可为干涉图时间序列分析提供条件,故ScanSAR干涉测量理论与方法已成为一个热点研究与应用的新方向。
     尽管宽幅SAR模式是星载合成孔径雷达卫星监测模式中的一种,但是由于成像模式不同,其成像原理和干涉测量数据处理过程有很大不同,包括图像拼接、去相干性分析、配准、大气效应校正和大地水准面差距改正等。为了将其应用于干涉测量而获取宽域形变场,本文系统地研究了星载宽幅合成孔径雷达干涉测量理论及其应用,主要包括:
     1)研究了宽幅SAR的成像与干涉原理:在介绍了合成孔径雷达基本原理和ScanSAR成像原理的基础上,分析了其成像参数和性能,研究了TCN坐标系中的ScanSAR干涉测量数学模型及其干涉测量流程,与条带干涉测量进行了异同点的比较。
     2)宽幅SAR图像拼接:根据条带SAR图像和Burst图像频谱特性的不同,研究了ScanSAR零级数据拼接;在得到单Burst干涉图的基础上,研究了Burst干涉图拼接法;针对利用成像几何关系拼接子条带干涉图的不足,提出了基于配准加权的子条带拼接法,并用实验验证了其有效性。
     3)宽幅SAR干涉去相干性研究:比较了与条带干涉测量去相干性的异同点,研究了ScanSAR干涉测量几何去相干和扫描同步去相干。由于宽幅SAR模式分辨单元中的相对高差超过相干高差的概率比条带模式大n倍,从而其极限基线是条带模式的n分之一,而扫描同步性随着科学技术的发展现已不是影响宽幅SAR干涉的最主要因素。
     4)研究了影响宽幅SAR干涉测量质量的因素:推导了基线误差和DEM误差影响宽幅SAR干涉测量结果的数学模型,以Bam地震为例对其进行了验证分析,尽管GDEM和SRTM的精度稍有不同,但是ScanSAR干涉是基线较短,故不需考虑其影响,基线误差具有累积效应,故干涉时需选用精度较高的轨道数据。研究了大地水准面差距对星载宽幅SAR干涉结果的影响规律和程度,即使大地准面差距和垂直基线分别仅为20米和100米,其对宽幅SAR差分干涉结果影响将达到6.4mm;阐述了基于EGM96模型计算大地水准面差距的方法,极大地改善了宽幅SAR干涉测量结果。
     5)宽幅SAR干涉测量中的大气校正研究:归纳引入条带干涉测量中的大气影响去除方法,研究了基于外部数据和非外部数据的ScanSAR干涉图大气校正方法,尤其是基于MERIS和DEM数据的大气校正方法,最后对宽幅SAR的PS方法进行了初步研究。
     6)基于星载宽幅SAR干涉的地震形变场获取研究:基于ScanSAR干涉测量理论,获取了8.0汶川地震和7.3级于田地震宽域形变场;在分析不同模式和不同数据来源非相干区域的基础上,研究了基于多源多模式的变形融合分析方法,融合后的宽域形变场不仅能反映研究区域的形变情况,而且其非相干区域变小,形变场更向断层靠近;同时基于DEM和MERIS数据,分别对于田地震和汶川地震的差分干涉图进行了大气校正,取得了良好的效果。
Wide swath synthetic aperture radar interferometry is a technique which can monitor the earth's surface and process corresponding radar data to get deformation information based on ScanSAR mode of SAR satellites, therefore it is also named as scanning synthetic aperture radar interferometry.Wide swath SAR intensity data has been used and acquired important effect for many aspects such as resource perambulation,monitoring environment,ocean exploration, preventing and dcreasing disasters,land use and forest investiagation,crop assess and nation security.With melioration and enhance of facility and orbit tecqnique of SAR satellite, scanning pattern synchronization and the critical baseline of precondition condition for scanning synthetic aperture radar interferometry have been pledged,at the same time,many SAR satellites have been launched or will be eradiated soon so that they can provide more abundant data for WSInSAR.Therefore,scanning synthetic aperture radar interferometry can offer chance for studing plank movement and geodynamics.
     As far as scanning synthetic aperture radar interferometry is concerned,although its resolution is very low, it has two merits:i.e,wider swath and short period revisiting target.The merit of short period denotes it can measure easily slow deformation of the earth's surface.The other merit denotes not only baseline error can be removed,but its wider deformation field can be also applied to analyze mechanism of earthquake.At the same time, ScanSAR mode data can be combined with stripmap mode data to form a series of interferograms at a denser temporal spacing than is possible with normal InSAR,therefore scanning synthetic aperture radar interferometry has become a hot topic and new direction of application.
     Although wide swath mode is one of modes of spaceborne SAR satellites, their modes are different, and imaging principle and process of interferometry also have a lot of dissimilitudes such as coherence,coregistering,correction of atmosphere effects and geoid undulation.In order to make use of ScanSAR data to get wider deformation field, theory and its application of scanning synthetic aperture radar interferometry are studied, including the following contents:
     1) Principles of image and interferometry of wide swath SAR: Based on theory of synthetic aperture radar and ScanSAR,their imaging parameters and capability are analyzed. Compared to IM interferometry, mathematic model and flow of ScanSAR interferometry are studied in TCN corordinate system.
     2)Mosaicing of wide swath SAR data:According to different frequcency peculiarity of stripmap mode and burst mode data, mosaic algorithm of ScanSAR level 0 data is studied.After getting single burst interferogram, methods of mosaicing single burst interferogram are introduced. As method of mosaicing sub-swath interferogram by using geometry relation of image has shortage, a method based on coregistering and weight is put forward,and is validated by experiment.
     3) Research of removing coherence of wide swath SAR interferometry:After comparing with stripmap interferometry,removing coherence of geometry and azimuth scanning pattern synchronization is investigated, especially relation between geometry coherence and critical baseline of ScanSAR interferometry.For probability which relative high difference within one resolution of wide swath SAR exceeds coherence high difference is n times than image mode.critical baseline of ScanSAR interferometry is (?) of IM interferometry.
     4) Ingredient research influenced quality of WSInSAR:ScanSAR interferometry is suffered from many sources of errors such as baseline error and DEM error, so,mathematical model of these errors is duduced and validated by an example of bam earthquake. Although there is a little difference of precision between GDEM and SRTM, ScanSAR interferometry need not be taken into account influence because of shorter baseline.Baseline error takes on cumulation domino offect in the ScanSAR interferogram so that WSInSAR need more precise orbit data.Geoid undulation can also influence ScanSAR interferometry,when Geoid undulation is 20m and perpendicular baseline is 100m, the influence value is 6.4mm.Therefore, geoid undulation is computed by using EGM96 model and it improve greatly results of ScanSAR interferometry.
     5) Correction of atmospheric effects on ScanSAR interferogram:In order to remove or reduce atmospheric effects, algorithms of correction of atmospheric effects on IM interferogram are concluded and introduced for ScanSAR interferogram,at the same time,correction methods based on exterior and non-ecterior data are studied for ScanSAR mode,especially MERIS and DEM; permanent scatters ScanSAR Interferometry is invertigated simply.
     6) Capture of earthquake deformation field based on spacebome wide swath interferometry: After analysis of non coherent region for different mode and different wavelength, deformation fusion method based on mulit-mode and multi-wavelength is put forward and applied to get fused deformation field.Defomation field after fusion not only can reflect earthquake deformation,but also non coherent region diminish. Deformation field of 8.0 Wenchuan earthquake and 7.3 Yutian earthquake are gained by making use of ScanSAR interferometry;at the same time, atmospheric effects of these deformation field have been corrected based on MERIS and DEM data respectively.
引文
[1].(美)卡明(Cumming, I. G.),洪文译,合成孔径雷达成像:算法与实现,电子工业出版社,2007.
    [2].Bamler R., Breit H., Steinbrecher U.. Algorithms for X-SAR Processing. In Proc. Int. Geoscience and Remote Sensing Symp., IGARSS'93,4:1589-1592,1993
    [3].Bamler R., EIneder M. ScanSAR Processing Using Standdard High Precision SAR Algorithms. IEEE Trans. Geoscience and Remote Sensing,34(1):212-218,1996.
    [4].Bamler R., Geudtner D., Schattler B., Steinbrecher U., Holzner J., et al. "RADARSAT SAR interferometryusing standard, fine, and ScanSAR modes, " in Proc. Radarsat ADROFinal Symp., Montreal, QC, Canada,1998.
    [5]. Bamler R., Geudtner D., Schattler B., Vachon P. W. et al. RADARSAT ScanSAR Interf erometry. In Proc. Int. Geoscience and Remote Sensing Symp., IGARSS'99, 3:1517-1521,1999.
    [6]. Bamler R.. Adapting Precision Standard SAR Processors to ScanSAR. In Proc. Int. Geoscience and Remote Sensing Symp., IGARSS'95,3:2051-2053,1995.
    [7]. Barber B. C.. Theory of Digital Imaging from Orbital Synthetic Aperture Radar. International Journal of Remote Sensing,1009-1057,1985.
    [8]. Biggs J.R,Burgman, J.T.Freymueller, et al.,The postseismic response to the 2002 M7.9 Denali Fault earthquake:constraints form InSAR 2003-2005, Geophys. J. Int.,2009,176:353-367.
    [9]. Burchfiel,B. C.et al. A geological and geophysical context for the Wenchuan earthquake of 12 May 2008, Sichuan, People's Republic of China.2008,GSA 18,4-11
    [10]. Captuti W. J. Stretch:A Time-Transformation Technique. IEEE Trans. On Aerospace and Electronic Systems, Aes-7:269-278,1971.
    [11]. Colesanti, C., A. Ferretti, C. Prati, and F. Rocca, Monitoring landslides and tectonicmotions with the permanent scatterers technique, Engg. Geology, 68(1-2),3-14,2003a.
    [12]. Colesanti, C., Ferretti A., Novali F., Prati C., Rocca F., SAR monitoring of progressive and seasonal ground deformation using the Permanent Scatterer Technique, IEEE Trans. Geosci. Remote Sens.,41(7),1685-1701,2003b.
    [13]. Cumming I. G., Guo Y., Wong F. H.. A Comparison of Phase-Preserving Algorithms for Burst-Mode SAR Data Processing. In Proc. Int. Geoscience and Remote Sensing Symp., IGARSS'97,2:731-733,1997.
    [14]. Cumming I. G., Lim J. The Design of a Digital Breadboad Processor for the ESA Remote Sensing Satlellite Synthetic Aperture Radar:Technical, MacDonald Dettwiler,1981.
    [15]. Cumming I.G., Wong F. H. Digital Processing of Synthetic Aperture Radar Data:Algorithms and Implemention,2005.
    [16]. Cumming I. G., J. R. Bennet. Digital Processing of SEASAT SAR Data. In IEEE 1979 Internation Conference on Acoustics, Speech and Singal Processing. Washington, D. C.,1979.
    [17]. Currie A,M, Brown A.. Wide-swath SAR. IEEE Proceedings F,139(2):123-135, 1992.
    [18]. Donnellan,A., J.W.Parker, and G. Peltzer, Combined GPS and InSAR models of postseismic deformation from the Northridge earthquake, Pure and Applied Geophysics,2002,159:2261-2270.
    [19]. Ferretti, A., Bianchi M., C. Prati, Rocca F. Higher-Order Permanent ScatterersAnalysis, EURASIP Journal on Applied Signal Processing,2005 (20), 3231-3242,2005.
    [20]. Ferretti. A, Prati C., Rocca F. Permanent scatterers in SAR interferometry[C]. IEEE Transactions on Geoscience and Remote Sensing.39(1):8-20,2001.
    [21]. Ferretti. A., Prati C., Rocca F, et al. Analysis of Permanent Scatterers in SAR interferometry[R]. In:Geoscience and Remote Sensing Symposium,2000. IGARSS'2000.
    [22]. Ferretti. A., Prati C., Rocca F. Nonlinear subsidence rate estimation using permanent scatterers in differential SAR interferometry[C]. IEEE Transactions on Geoscience and Remote Sensing,38(5):2202-2212,2000.
    [23]. FerrettiA., Guarnieri A. M., Prati C., Rocca F. InSAR Principles:Guidelines for SAR Interferometry Processing and Interpretation. ESA Publications,2007.
    [24]. Fialko, Y, Evidence of fluid-filled upper crust from observations of postseismic deformation due to the 1992 Mw7.3 Landers earthquake. Res.,2004,109(B08401).
    [25]. Gatelli F., Guarnieri A. M., Parizzi F., Pasquali P., Prati C., Rocca F., The Wavenumber Shift in SAR Interferometry, IEEE Trans. Geosci. Remote Sens.,32(4),855-865,1994.
    [26]. Gatelli F., Guarnieri A. M. et al. The Wavenumber Shift in SAR Interferometry, IEEE Transaction on Geoscience and Remote Sensing,32(4):855-865,1994.
    [27]. Guarnieri A.M. ScanSAR interferometric monitoring using the PS technique, Proc. ERS/ENVISAT Symposium,2000.
    [28]. Guarnieri A. M., Guccione P. Optimal "focusing" for low resolution ScanSAR. In IEEE Trans. GARS,39(3):479-491,2001.
    [29]. Guarnieri A.M., Prati C. ScanSAR Focusing and Intexferometry, IEEE TRANSACTIONS ON GEOSC1ENCE AND REMOTE SENSING, VOL.34, NO.4, 1996:1029-1039.
    [30]. Guarnieri A.M., Rocca F. Combination of low-and high-resolution SAR images for differential interferometry. IEEE Trans. on Geoscience and Remote Sensing,37(4):2035-2049,1999.
    [31]. Guccione P., Interferometry With ENVISAT Wide Swath ScanSAR Data, IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, VOL.3, NO.3, JULY 2006:377-382.
    [32]. Gudipati K. V. Deformation Monitoring using Scanning Synthetic Aperture Radar Interferometry[D]. The University of Texas,2009.
    [33]. Gudipati. K., S. M. Buckley, C. R. Wilson, Temporal Variations in Phoenix Arizona Subsidence Revealed by Radar Interferometry, Poster, IEEE International Geosci. Remote Sens. Symposium, Anchorage, Alaska, September 2004.
    [34]. Hanssen R. Atmospheric heterogeneities in ERS tandem SAR interferometry. Delft:Delft University Press,1998.
    [35]. Hanssen. RADAR INTERFEROMETRY:Data Interpretation and Error Analysis, Delft University of Technology,2002.
    [36]. Hashimoto M., Enomoto M. Yo Fukushima. Coseismic Deformation from the 2008 Wenchuan, China, Earthquake Derived from ALOS/PALSAR Images. Tectonophysics,2009.
    [37]. Holzner J., Bamler R.Burst-Mode and ScanSAR Interferometry, IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL.40, NO.9, 2002:1917-1935.
    [38]. Jacobs, A.,D. Sandwell, Y. Fialko, et al. The 1999 (Mw7.1) Hector Mine, California, earthquake:Near-field postseismic deformation from ERS interferometry, Bull,Seismol. Soc. Am,2002,92(4):1433-1442.
    [39]. Jin M. J., WU C. ASAR Correlation Algorithm Which Accommodates Large Range Migration. IEEE Trans. Geoscience and Remote Sensing,22(6):592-597,1984.
    [40]. Johnson, K. M., and P. Segall, Viscoelastic earthquake cycle models with deep stress-driven creep along the San Andreas fault system, J. Geophsics, Res.,2004,109 (B10403).
    [41]. Jonsson, S., P.Segall, R. Pedersen, et al., post-earthquake ground movements correlated to pore-pressure transients, Nature,2003,424:179-183.
    [42]. Kampes, B. M., Radar Interferometry:Persistent Scatterer Technique, Springer, Dordrecht, The Netherlands,2006.
    [43]. Kirk J. C. A Discussion of Digital Processing in Processing in Synthetic Aperture Radar. IEEE Trans, on Aerospace and Electronic Systems,10(3):326-337,1975.
    [44]. Lanari R., Hensley S., Rosen P. A. Chirp-Z transform Based SPECAN Approach for Phase Preseving ScanSAR Image Gerneration. IEEE Proc. Radar, Sonar and Navigation,145(5):254-261,1998.
    [45]. Lemoine F. G., Kenyon et al. The Development of the Joint NASA GSFC and the National Imagery and Mapping Agency(NIMA) Geopotential Model EGM 96. NASA no.19980218814,1998.
    [46]. Li Zhenghong, Fielding E J,Cross P, et al. Interferometric Synthetic Aperture Rader Atmospheric Correstion:GPS Topography-Depengent TurbulenceModel [J]. Journal of Geophysical Research,2006,111 (B2):404.
    [47]. Li Zhenghong. Correction of Atmospheric Water Vapour Effects on Repeat Pass SAR Interfermetry Using GPS/MODIS and MERIS Data [D]. London :University College London,2005.
    [48]. Meng Wei, David Sandwell, Bridget Smith-Konter. Optimal combination of InSAR and GPS for measuring interseismic crustal deformation. Advances in Space Research,2010.
    [49]. MERIS Manual [EB/OL]. http://envisat. esa. int/instruments/meris/pdf /atbd_2_04. pdf.
    [50]. MERIS Product Manual [EB/OL]. http://www. brockmann-consult. de/beam /doc/envisat_p roducts/bands/MER_RR__2P.html.
    [51]. Mittermayer J., Moreira A., Scheiber R.. Reduction of Phase Errors Arising from the Approximation in the Chirp Scaling Algorithm. In Proc. Int. Geoscience and Remote sensing Symp., IGARSS'98,2:1180-1182,1998.
    [52]. Mittermayer J., Moreira A.. A Generic Formuation of the Extended Chirp Scaling Algorithm (ECS) for Phase Preserving ScanSAR and Spot-SAR Processing. In Proc. Int. Geoscience and Remote sensing Symp., IGARSS'00,1:108-110,2000.
    [53]. Mittermayer J., Moreira A.. The Extended Chirp Scaling Algorithm for ScanSAR Interferometry. In Proc. European Conference on Synthetic Aperture Radar, EUSAR'00,:197-200,2000.
    [54]. Moore R. K, J. P. Claassen, Y. H. Lin. Scanning spaceborne Synthetic Aperture Radar with integrated radiometer. IEEE Trans. AES,17(3):410-420,1981.
    [55]. Moreira A., Mittermayer J., Scheiber R. Extended Chirp Scaling Algorithm for Air and Spaceborne SAR Data Processing in Stripmap and ScanSAR Imaging Modes.IEEE Trans. on Geoscience and Remote sensing,34(5):1123-1136,1996.
    [56]. Okkes R., Cumming I. G. Method and Apparatus for Processing Data Generated by a synthetic Aperture Radar System. European Patent No.0048704. Patent on the SPECAN algorithm,1985.
    [57]. Ortiz A. B., Zebker H. A., ScanSAR-to-Stripmap Mode Interferometry Processing Using ENVISAT/ASAR Data, IEEE Trans. Geosci. Remote Sens.,45(11), 2007.
    [58]. Ortiz, A. B.. SCANSAR-TO-STRIPMAP Interf erometric Observations of HAWAII (D), STANFORD UNIVERSITY,2007.
    [59]. Perry R. P., Kaiser H. W. Digital Step Transform Approach to Airborne Radar Processing. In IEEE National Aerospace and Electronics Conference,280-287,1973.
    [60]. Piau P., Cael J. C., Deschaux M., Lopes A. Analysis of the resolution of multitemporal SAR systems, in Proc. IGARSS'93, pp:1196-1199,1993.
    [61]. Pollitz, F. F., C. Wicks, and W. Thatcher, Mantle flow beneath a continental strike-slip fault:Postseismic deformation after the 1999 Hector Mine earthquake, Science,2001,293:1814-1818.
    [62]. Reilinger, R. E., Ergintav, S., R. Burgmannn, et al., Coseismic and postseismic fault slip for the 17 August 1999, M=7.5, Izmit, Turkey earthquake, Science,2000,289:1519-1524.
    [63]. Rocca F. Permanent Scatterers interferometry for surface deformation monitoring[C].4th International Symposium on MIPPR,2005.
    [64]. Rodriguez E., Martin J. M. Theory and design of interferometric synthetic aperture radars, IEEE Proc.,139(2):147-159,1992.
    [65]. Rosich B., Guarnieri et al. ASAR Wide Swath mode interferometry:optimization of the Scanpattern synchronization. Proc. Envisat Symposium 2007, Switzerlan,2007
    [66]. Ryder I., Parson B., Wright T., et al., Post-seismic motion following the 1997 Manyi(Tibet) earthquake:InSAR observation and modelling, Geophys. J. Int.,2007,169:1009-1027.
    [67]. Sack M., Ito M., Cumming I. G.. Application of Efficient Linear FM Matched Filtering Algorithm to SAR processing, IEEE Proc-F,132(1):45-57,1985.
    [68]. Shi C., Lou Y., Zhang H., Zhao Q., Geng J., Wang R., Fang R., Liu J.. Seismic deformation of the Mw 8.0 Wenchuan earthquake from high-rate GPS observations. Advances in Space Research (2010), doi: 10.1016/j. asr.2010.03.006.
    [69]. Stoica P., Moses R. L. Introduction to Spectral Analysis, Prentice-Hall, Upper Saddle River, New Jersey,1997.
    [70]. Wang, W.-M., Zhao, L.-F., Li, J.& Yao, Z.-X. Rupture process of the Ms 8.0 Wenchuan earthquake of Sichuan, China. Chin. J. Geophys.51,1403_1410 (2008).
    [71]. Wong F. H., Stevens D. R., Cumming I. G. Phase-Preserving Processing of ScanSAR Data with a Modified Range Doppler Algorithm. In Proc. Int. Geoscience and Remote Sensing Symp., IGARSS'97,2:725-727,1997.
    [72]. Working Group of the Crustal Motion Observation Network of China Project. Coseismic displacement field of the 2008 Ms 8.0 Wenchuan earthquakedetermined by GPS (in Chinese). Sci. China Ser. D 38,1195-1206 (2008).
    [73]. Wu C..Processing of SEASEAT SAR data. In SAR Technology Symp., Las Cruces, NM,1977.
    [74]. Xiaogang Song, Xinjian Shan, Chunyan Qu, Guifang Zhang, Limin Guo et al. COSEISMIC SURFACE DEFORMATION CAUSED BY THE WENCHUAN M8 EARTHQUAKE FROM INSAR DATA ANALYSIS. IGARSS 2009,Ⅲ:69-73.
    [75]. Yusen Dong, Michael Chang, Alex Ng, Kui Zhang, Xiaojing Li and Linlin Ge. ScanSAR Interferometry for Monitoring the Ground Deformation of the Magnitude 8.0 Wenchuan Earthquake in China.
    [76]. Zebker H. A., Rosen P. A., Hensley S. Atmospheric effects in interferometric synthetic aperture radar surface deformation and topographic maps, J. Geophys.Res,102 (B4),7547-7563,1997.
    [77]. Zebker, Shankar H. P., Hooper A., InSAR Remote Sensing over Decorrelating Terrains:Persistent Scattering Methods, IEEE Radar Conference 2007, 717-722, Boston, MA,2007.
    [78]. ZHANG Yong, FENG WanPeng, XU LiSheng, ZHOU ChengHu. Spatio-temporal rupture process of the 2008 great Wenchuan earthquake。Science in China Series D: Earth Sciences,2009,52 (2):145-154.
    [79]. Zheng-Kang Shen, Jianbao Sun, Peizhen Zhang, etal. Slip maxima at fault junctions and rupturing of barriers during the 2008Wenchuan earthquake. NATURE GEOSCIENCE,2009,2:717-724.
    [80].单新建,马谨,王长林等.利用星载D-InSAR技术获取的地表形变场提取玛尼地震震源断层参数.中国科学,2002,32(10):837—844.
    [81].单新建,屈春燕,宁小刚等.汶川Ms8.0级地震InSAR同震形变场.地球物理学报,2009,52(2):496—504.
    [82].丁丁,王贞松,荆麟角等.星载ScanSAR成像研究[J].遥感学报,2002,6(4):259-266.
    [83].范景辉,郭华东,郭小方,刘广,葛大庆,刘圣伟.基于相干目标的干涉图叠加方法监测天津地区地面沉降.遥感学报,12(1):111-123.
    [84].高骥,于晋,候明辉,陈琦.ECS结合Modified SPECAN在ScanSAR精确成像中的应用. 雷达科学与技术,2008,6(3):191-195.
    [85].高骥,于晋.星载扫描模式合成孔径雷达成像算法研究[J].航天返回与遥感,2009,30(1):43-47.
    [86].龚晓静,皮鸣,杨建宇.ECS成像算法在ScanSAR中的应用.实验科学与技术,2005,3:17-22.
    [87].焦明连,蒋廷臣.合成孔径雷达干涉测量理论与应用,测绘出版社,2008
    [88].李海兵, 王宗秀, 付小方.2008年5月12日汶川地震_Ms8-0_地表破裂带的分布特征.中国地质,2008,35(5):803-815.
    [89].李小凡,李颖,曾琪明,赵永红.应用与ASAR同步的MERIS对重复轨道InSAR进行大气校正.北京大学学报(自然科学版),2009,45(6):1012-1019.
    [90].李志才,张鹏,金双根,蒋志浩,温扬茂.基于GPS观测数据的汶川地震断层形变反演分析.测绘学报,2009,38(2):108—117.
    [91].刘晓刚,邓禹,叶修松,吴杉.EGM96与EGM2008地球重力场模型精度比较,海洋测绘,2010,30(2):54-57.
    [92].马超,单新建.昆仑山口西Ms8.1级地震InSAR斜距向同震位错分解,地震研究,2005,28(3):244—247.
    [93].明峰,洪峻,吴一戎ScanSAR的Scalloping辐射误差研究,电子与信息学报,2006,28(10):1806-1809.
    [94].明峰,洪峻,吴一戎.地形因素对ScanSAR辐射特性的影响,现代雷达,2006,28(6):30-34.
    [95].乔蓉蓉,王贞松.星载ScanSAR工作模式研究与设计,电子与信息学报,2002,24(7):935—944.
    [96].屈春燕, 宋小刚,张桂芳等.汶川MS810地震InSAR同震形变场特征分析.地震地质,2008,30(4):1076-1084.
    [97].谭小敏,张洪太,王万林.星载ScanSAR工作模式研究.空间电子技术,2007,1:13-20
    [98].田斌,李进,中文斌.基于EGM2008和SRTM模型确定的新疆地区似大地水准面及其精度评估。测绘科学,2009,34(增):5-8.
    [99].王琦,刘站科,丁晓光,管建安.结合EGM96重力场位模型采用RCR法求解高程异常,矿山测量,2009(2):16-22.
    [100].魏杰,周荫清,李春升.星载ScanSAR等效斜视距离模型的ECS成像算法.2005,9:1545-1549
    [101].徐华平,周荫清,李春升.星载SCANSAR模式的实现方法及计算机仿真.2001,29:1960-1963.
    [102].许才军,刘洋,温扬茂.利用GPS资料反演汶川Mw7_9级地震滑动分布.测绘学报,2009,38(3):195-203.
    [103].尹光华,蒋靖祥,吴国栋.2008年3月21日于田7.4级地震的构造背景.干旱地理,2008,34(2):543-550.
    [104].袁孝康.星载ScanSAR特性研究.中国空间科学技术.1998,4:42-50.
    [105].袁孝康.星载合成孔径雷达的ScanSAR技术.上海航天,1997,2:52-57.
    [106].袁运斌.基于GPS的电离层监测及延迟改正理论与方法的研究.中国科学院研究生院(测量与地球物理研究所)(D),2002
    [107].张军龙,申旭辉,徐岳仁,高战武,吕晓健,杨攀新.汶川8级大地震的地表破裂特征及分段.地震,2009,29(1):149-163.
    [108].张双成.地基GPS遥感水汽空间分布技术及其应用的研究.武汉大学(D),2009.
    [109].张诗玉.干涉图大气效应校正方法研究及InSAR在天津地面沉降中的应用.武汉大学(D),2009.
    [110].赵淑清,胡伟,周志鑫.ScanSAR成像及测绘带拼接像素间隔的归一化.系统工程与电子技术,2006,28(9):1321-1326.
    [111].赵志伟,杨汝良,祈海明等.星载ScanSAR模式ECS成像算法研究[J].测试技术学报,2007,21(5):418-423.
    [112].赵志伟.星载扫描干涉合成孔径雷达系统及信号处理技术(D).中国科学院电子学研究所,2007.
    [113].魏钟铨等著.合成孔径雷达卫星.科学出版社,2001.
    [114].温扬茂.利用INSAR资料研究若干强震的同震和震后形变.武汉大学(D),2009.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700