用户名: 密码: 验证码:
煤矿井下搜救探测机器人的路径规划及轨迹跟踪控制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
我国是世界上最大的煤炭生产国和消费国。然而,由于矿井自然条件差,高瓦斯矿井多,加上技术和管理等诸多方面不到位,以及近年来国家对煤炭资源需求量的不断增长,使得煤矿开采中瓦斯爆炸、涌水、着火等事故频繁发生,由此造成重大的人员伤亡事故和不良的社会影响,严重制约着煤炭工业的健康发展。因此,研发煤矿井下搜救探测机器人是煤矿井下发生瓦斯爆炸事故后进行抢险救援的前提手段和必要工具,它能够在矿难原因和现场情况不明的情况下,替代或部分替代救援人员进入灾害现场实施环境探测和搜救任务,同时将信息实时地传输到救援指挥中心,为救援决策提供科学依据,便于快速、准确地制定救援方案。因此,对煤矿安全生产、减少国家和人民生命财产的损失具有十分重要的意义。
     本文以煤矿井下搜救探测机器人为研究对象,在对其运动装置进行设计分析的基础上,围绕移动机器人自主导航中的两项关键技术——路径规划与轨迹跟踪控制问题进行了深入的研究。首先对自主移动机器人研究中的关键技术进行了全面、系统的总结,重点对其中路径规划和轨迹跟踪控制的研究内容、存在问题及发展趋势等进行了综述,归纳总结了各种算法的性能差异,并以此为基础展开进一步的研究与探讨,主要研究内容包括以下几个方面:
     提出了一种针对煤矿井下特殊环境的运动装置设计方案。对煤矿井下搜救探测机器人的运动系统、通行能力和结构特点进行了重新设计及进一步改进,并在此基础上,利用地面力学理论,参考履带车辆的运动学和动力学原理,针对煤矿井下搜救探测机器人采用差动转向的特点,建立了机器人的运动学和动力学模型,为后续的煤矿井下搜救探测机器人轨迹跟踪等控制问题的研究奠定了基础。
     针对煤矿井下非结构化环境的不确定环境特征,设计了上下位机的分级控制系统,提出了一种分层协作规划与控制的体系结构。考虑到煤矿井下搜救探测机器人特定的应用环境及要求,设计了一个主要由决策系统(包括上位机监控模块、下位机控制模块、传感检测模块等)、数据通信系统和运动控制系统等组成的控制系统。并在分析当前出现的机器人各种体系结构的基础上,提出了一种从上到下依次分为决策层、慎思层和控制层的分层协作规划与控制的体系结构,能够满足机器人在未知环境下导航任务的复杂性与不确定性的要求。
     结合目前具有代表性的遗传算法、蚁群算法这两种优化算法各自的特点,分别对其进行了改进。首先,设计了一种改进的遗传算法,充分考虑到井下环境地形的高低变化,采用栅格法在三维空间中对机器人工作环境进行建模,并根据路径长度最短且能耗最少的评价指标设计了适应度函数。按照可变长度的染色体编码方式及随机指导式搜索策略来生成初始种群,保证初始阶段无障碍路径的产生,同时针对传统遗传算法中存在的“早熟现象”和“收敛速度慢”的问题,将交叉算子和变异算子进行优化设计,从而使整个规划过程变得简单而有效。其次,本文还在最大—最小蚂蚁系统(MMAS)的基础上,提出了一种改进的蚁群算法,对其启发函数、路径选择规则及信息素更新方式等进行改进,加快了算法收敛速度,改善了路径规划的性能。最后通过实验对改进算法的性能进行了验证。
     提出了一种用于实现机器人轨迹跟踪的模糊自适应控制器的设计方法。首先利用Lyapunov直接法设计出机器人轨迹跟踪控制系统的控制器,对机器人以期望运动速度从当前位置运动到目标点的过程进行控制,并在参考线速度不为零时,利用Barbalat引理对系统的全局一致渐近稳定性进行了证明。另外,在此基础上设计了一种模糊自适应控制器,解决了模糊多变量控制系统中规则数随系统变量数呈指数增长的问题,提高了控制器效率,且使模糊控制逻辑变得清晰明了。实验结果证明,本文设计的这两种轨迹跟踪控制器,对于不同初始误差、不同类型的参考速度都具有很好的跟踪效果。
China is the largest country of the coal production and consumption in the world. However, because of poor conditions of the coal mining system, large number of highly-gas mine and lack of effective techniques and management, especially continuous increasing demand for the coal, accidents such as gas explosion, water inflow and ignition have happened frequently in recent years. Heavy casualties and negative social effects have made healthy development of the coal industry impossible. Therefore it is premise and necessary to develop the coal mine detecting and rescuing robot. Under the circumstance the causes and field conditions of the coal mine accidents were unknown, it could substitute the rescue staff to enter the accident area for implementation of detecting and rescuing, and information can be transferred real-timely to the rescue command center simultaneously. It can provide scientific basis for the rescue decision, and the rescue plan can be made as rapidly and accurately as possible. Therefore it has critical significance for safety production in coal mine and can reduce loss of the public property and lives.
     This dissertation focuses on the coal mine detecting and rescuing robot as research object, key techniques in robot autonomous navigation—path planning and trajectory tracking based on the design and analysis of its movement device were thoroughly and deeply studied. At first, the key techniques in autonomous mobile robot were summarized comprehensively and systematically, especially the research contents, existing problems and development trend of path planning and trajectory tracking were reviewed, performance differences in various algorithms were summarized and further research was developed. The main research contents included are as follows:
     A kind of movement device aiming at special environment of the coal mine was proposed. The motion system, crossing-capacity and structure of the coal mine detecting and rescuing robot were redesigned and further improved. Using land surface mechanics theory and with reference to the principles of tracked vehicle, the kinematic and dynamic model of the robot were built according to the features of differential steering, which provided a basis for subsequent research on trajectory tracking of the coal mine detecting and rescuing robot.
     Aiming at the features of non-structure environment in the coal mine, the hierarchical control system consisting of upper and lower computers was designed and a system architecture of layered cooperation and planning was proposed. Considering the particular application environment and demand, the control system was mainly composed of decision system (including monitor module of upper and lower computers, control module of the lower computer and sense and detection module, etc.), data communication system and motion control system. Then system architecture divided into such layers as decision layer, deliberation layer and control layer was proposed, which can meet the requirement of the navigation's complexity and uncertainty when the robot is under an unknown environment.
     Combining with advantages of the representative optimization algorithm such as genetic algorithm and ant algorithm, improvements were made respectively. Firstly, an improved genetic algorithm was designed with the height variation of underground were fully considered. Three-dimensional workspace was modeled by grid method, and fitness function design used path length and energy consumption as the criterion. The initial population was generated by Variable length coding and random guided searching strategy to ensure the generation of the obstacle-free path in the initial period, meanwhile, crossover operator and mutation operator were optimized to solve the problems of the simple genetic algorithm such as premature phenomena and slow convergence, thus make the whole planning process more simple and effective. Secondly, an improved ant algorithm based on Max—Min Ant system(MMAS) was proposed. Its heuristic Function, selection rules of the path and the regeneration methods of pheromone were all improved, so that the convergence speed was increased and the performance of the path planning was improved. Finally the experimental results show that the performance of improved algorithms were effective and feasible.
     A design method of fuzzy self-adaptive controller used in robot trajectory tracking was proposed. Firstly, the controller of the robot trajectory tracking control system was designed by Lyapunov direct method, which can control the process from current position to target point by the expected speed. When the reference speed was unequal to zero, Barbalat lemma was used to prove the global consistent asymptotic stability of the system. Furthermore, a fuzzy self-adaptive controller was designed on this basis, which solved problems such as the rules increased with the numbers of system's variables, and efficiency of the controller was greatly improved, fuzzy control logic also became more clear. The experimental results show these two trajectory tracking controller designed in this dissertation has excellent tracking effect for different initial errors and reference speeds.
引文
[1]蔡自兴.机器人学[M].北京:清华大学出版社,2002:12-20.
    [2](美)西格沃特(Siegwart,R.),诺巴克什(Nourbakhsh,I.R.).李人厚译.自主移动机器人导论[M].西安:西安交通大学出版社,2006.
    [3]李佳宁,易建强.移动机器人体系结构研究进展[J].机器人,2003,25(7):756-760.
    [4]Gesu V D. A distributed architecture for autonomous navigation of robots[C]. Proceeding of the 15th IEEE International Workshop on Computer Architectures for Machine Perception. Washington: IEEE Computer Society,2000:190-194.
    [5]Rosenblatt J. DAMN:A distributed architecture for mobile navigation [R]. Pittsburgh:Robotics Institute Carnegie Mellon University,1995.
    [6]蔡¨兴.基于功能/行为集成的自主式移动机器人进化控制体系结构.机器人,2000,22(3):170-1 75.
    [7]何友,上国宏等.多传感器信息融合及应用[M].北京:电子工业出版社,2000.
    [8]王军,苏剑波,席裕庚.多传感器集成与融合概述[J].机器人,2001,23(2):183-186.
    [9]Stephen S S. Synesthetic sensor fusion via A cross-wired artificial neural network[D]. USA:East Tennessee State University,2002.
    [10]Varshney P K. Distributed detection and data fusion[M]. New York:Springer-Verlag,1996.
    [11]Weckesser P, Dillmann R. Modeling unknown environments with a mobile robot[J]. Robotics and Autonomous Systems,1998,23(4):293-300.
    [12]Koshizen T. The architecture of a Gaussian mixture Bayes(GMB)robot position estimation system[J]. Journal of Systems Architecture,2001,47(2):103-117.
    [13]Freire E,Teodiano B F,Mario S F, etc.A new mobile robot control approach via fusion of control signals[J].IEEE Transactions on Systems,Man and Cybernetics,2004,(34):419-429.
    [14]王仲民,岳宏,刘继岩.移动机器人多传感器信息融合技术述评[J].传感器技术,2005,24(4):5-7.
    [15]李群明,熊蓉,褚健.室内自主移动机器人定位方法研究综述[J].机器人,2003,25(6):560-573.
    [16]李磊,叶涛,谭民等.移动机器人技术研究现状与未来[J].机器人,2002,24(5):475-480.
    [17]厉茂海,洪炳熔.移动机器人的概率定位方法研究进展[J].机器人,2005,27(4):380-384.
    [18]Thrun S, Fox D, Burgard W, etc. Robust Monte Carlo localization for mobile robots[J]. Artificial Intelligence,2001,128(1-2):99-141.
    [19]赵翊捷,陈卫东.基于地图的移动机器人定位技术新进展[J].上海交通大学学报,2002,10(36):1435-1447.
    [20]张捍东,郑睿,岑豫皖.移动机器人路径规划技术的现状与展望[J].系统仿真学报,2005,17(2):439-443.
    [21]戴博,肖晓明,蔡自兴.移动机器人路径规划技术的研究现状与展望[J].控制工程,2005,12(3):198-202.
    [22]Arkin R C. Behavior-based robotics[M]. Cambridge, MA:The MIT Press,1998.
    [23]苏学成,樊炳辉,李贻斌等.试论煤矿机器人的研究与开发[J].机器人,1995,17(2):123-127.
    [24]李东晓.机器人技术在煤矿自动化中的应用[J].煤炭科学技术,2007,35(5):62-64.
    [25]Rapid Response Investigation of Robots for Post-Accident Safety Assessment [EB/OL]. http://www.sandia.gov/isrc/minerobot.html,2007.
    [26]Ferguson D, Morris A, Hahnel D, etc. An Autonomous Robotic System for Mapping Abandoned Mines[C], Proceedings of the Conference on Neural Information Processing Systems. Cambridge, MA:MIT Press,2003.
    [27]Mine Rescue Robot [EB/OL]. http://www.msha.gov/SagoMine/robot.asp,2008.
    [28]朱华.矿井救灾机器人研究现状及需要重点解决的技术问题[J].徐州工程学院学报,2007,22(6):5-8.
    [29]蒋新松.机器人学导论[M].沈阳:辽宁科学技术出版社,1994:543-544.
    [30]Baase S,elder A V. Computing Algorithms:introduction to design and analysis [M]. Beijing:Higher Education Press,2001:235-267.
    [31]Nilsson N. A Mobile Automation:An Application of Artificial Intelligence Techniques [C]. Proceedings International Joint Conference on Artificial Intelligence, Washington, D.C.,1969: 509-520.
    [32]Lozano-Perez T,Wesley M. An Algorithm for Planning Collision-free Paths Among Polyhedral Obstacles[J]. Communications of the ACM,1979,22(5):436-450.
    [33]Choser H,Burdick J W. Sensor based motion planning:the hierarchical generalized Voronoi graph[C]. Proc. Work Shop on Algorithmic Foundations of Robotics,1996.
    [34]Latombe J C. Robot motion planning [M]. MA:Kluwer Academic Publishers,1991.
    [35]HOWDEN W E. The sofa problem[J]. The Computer Journal,1968,11(3):299-301.
    [36]Metes M B. Planning for intelligence autonomous land vehicles using hierarchical terrain representation[C]. Proc. IEEE Int. Conference on Robotics and Automation, Raleigh, NC:IEEE Computer Society Press,1987:1947-1952.
    [37]Christian Hofner, Gunther Schmidt. Path Planning and Guidance Techniques for an Autonomous Mobile Cleaning Robot [J]. Robotics and Autonomous Systems.1995,14 (2-3):199-212.
    [38]袁增任,高明.在动态环境中移动机器人导航与避障的一种新方法[J].机器人,2000,22(2):81-88.
    [39]张钹、张铃,人工智能及其应用丛书:问题求解理论及应用[M].北京:清华大学出版社,1990.
    [40]Robert A,Moshe K. Robot motion planning on N-dimensional star worlds among moving obstacles[J]. IEEE Transactions on Robotics and Automation,1998,14(2):320-325.
    [41]Khatib O. Real-time obstacle avoidance for manipulators and mobile robots[J]. The International Journal of Robotic Research,1986,5(1):90-98.
    [42]Koren Y, Borenstein J. Potential Field Methods and Their Inherent Limitations for Mobile Robot Navigation[C],Proc. of IEEE Int.Conf.On Robotics and Automation, Los Alamitos, Calif.:IEEE Computer Society Press,1991:1398-1404.
    [43]Ge S S, Cui Y J. New potential functions for mobile robot path planning[J]. IEEE Transaction on Robotics and Automation,2000,16(5):615-620.
    [44]庄晓东,孟庆春等.复杂环境中基于人工势场法优化算法的最优路径规划[J].机器人2003,25(6):531-535.
    [45]Nilsson N J. Introduction to artificial intelligence principles[J].Rivista di Informatica,1981, 11(1):13-38.
    [46]Stentz A. Optional and efficient path planning for partly-known environment[C]. Proceedings of the IEEE International Conference on Robotics and Automation, San Diego:IEEE Computer Society Press,1994:3310-3317.
    [47]Stentz A. The focused D* algorithm for real-time replanning[C]. Proceedings of the International Joint Conference on Artificial Intelligence, Montreal, Canada:Morgan Kaufmann Publishers Inc. 1995:1652-1659.
    [48]Hartmut Surmann, Jorg Huser, Jens Wehking. Path Planning for a Fuzzy Controlled Autonomous Mobile Robot[C]. Proc.of the IEEE Int.Conf.on Fuzzy Systems. Miami Beach.1996:762-771.
    [49]Tsong Li Lee,Chia Ju Wu. Fuzzy motion planning of mobile robots in unknown environment [J]. Journal of Intelligent and Robotic Systems,2003,37(2):177-191.
    [50]Ro P I, Lee B R. Neural-Fuzzy Hybrid System for Mobile Robot Path Planning in a Partially Known Environment[C]. Proceedings of the American Control Conference, Seattle,Washington: 1995:673-677.
    [51]靳保,付宜利,王树国等.未知环境下机器人实时模糊路径规划方法[J].哈尔滨工业大学学报,2005,37(10):1315-1317.
    [52]Brooks R, Robis A. Layered control system for a mobile robot [J]. IEEE Trans on Robotics & Automation,1986,2 (1):14-23.
    [53]Guldner J, Utkin V I, Bauer R. A three-layered hierarchical path control system for mobile robots: algorithm and experiments[J]. Robotics and autonomous systems,1995,14(2-3):133-147.
    [54]Na Y K, Oh S Y. Hybrid control for autonomous mobile robot navigation using neural network based behavior modules and environment classification[J].Autonomous Robots,2003,15(2):193-206.
    [55]Low K H, Leow W K. A hybrid mobile robot architecture with integrated planning and control [C]. Proceedings of the International Conference on autonomous Agents. New York ACM.2002:219-226.
    [56]曲道奎,杜振军,徐殿国等.移动机器人路径规划方法研究[J].机器人,2008,30(2):97-101.
    [57]Laumond Jean-paul. Robot Motion Planning and Control [M]. London:Springer,1998.
    [58]Pourboghrat F, Karlsson P. Adaptive Control of Dynamic Mobile Robots with Nonholonomic constraints. Computers and Electrical Engineering,2002,28:241-253.
    [59]Dubowsky S, Desforges D T. The application of model reference adaptive control to robotic manipulators[J]. Journal of Dynamic Systems, Measurement, and Control,1979,101(2):193-200.
    [60]Koivo A J. Self-tuning manipulator control in coordinate system[J]. Journal of Dynamic Systems, Measurement, and Control,1985,107(4):316-323.
    [61]Craig J, Ping Hsu, Sastry S.Adaptive control of mechanical manipulators[C]. Proceedings of the 1986 IEEE International Conference on Robotics and Automation,1986:190-195.
    [62]Yang J M,Kim J H.Sliding mode control for trajectory tracking of nonholonomic wheeled mobile robots [J]. IEEE Transactions on Robotics and Automation,1999,15(3):578-587.
    [63]Young K D.A variable structure model following control design for robotics applications[J]. IEEE Transactions on Robotics and Automation,1988,4(5):556-561.
    [64]Fierro R, Lewis F L. Control of a nonholonomic mobile robot:back stepping kinematics into dynamics[C]. Proceedings of the 34th Conference in Decision & Control, New York:IEEE Press,1995:3805-3810.
    [65]吴卫国,陈辉堂,王月娟.非完整移动机器人的全局轨迹跟踪控制[J].自动化学报,2001,27(3):326-331.
    [66]Mamdan E H. Applications of fuzzy algorithms for control of simple dynamic plant[C]. Proceedings of IEEE,1974,121(12):1585-1588.
    [67]Naranjo E,Gonzalez C,Reviejo J,etc. Adaptive Fuzzy Control for Inter-Vehicle Gap Keeping [J].IEEE Transaction on Intelligent Transportation System,2003,4(3):132-142.
    [68]Garcia R. Fuzzy logical strategies to control an autonomous mobile robot [J].Cybernetics systems, 1990,21(2):267-276.
    [69]Kim E. Output Feedback Tracking Control of Robot Manipulators with Model Uncertainty via Adaptive Fuzzy Logic[J].IEEE Transaction on Fuzzy systems,2004,12(3):365-378.
    [70]Dai X,Li C K. An Approach to tune Fuzzy Controllers Based on Reinforcement Learning for Autonomous Vehicle Control[J].IEEE Transaction on Intelligent Transportation System 2005,6(3):285-293.
    [71]Julien S, Dimitri M. Building Parametric and Probabilistic dynamic vehicle models using neural networks[C].Proceedings of AIAA Modeling and Simulation Technologies Conference and Exhibit, Montreal, Canada:American Institute of Aeronautics and Astronautics,Inc.,2001:43-47.
    [72]Albus J S. A new approach manipulator control:the cerebella model articulation controller (CMAC)[J]. Journal of Dynamic Systems, Measurement, and Control,1975,97(3):220-227.
    [73]Miller W.T..Real-time Dynamic Control of an Industrial Manipulator Using a Neural-Network-Based Leaning Controller[J].IEEE Transactions on Robotics and Automation,1990,6(1):1-9.
    [74]Miller W T. Sensor-Based control of robotic manipulators using a general learning algorithm [J].IEEE Transactions on robotics and automation,1987,4(2):157-165.
    [75]Moody J, Darken C. Fast learning in networks of locally-tuned processing units[J]. Neural Computation,1989,1(2):281-294.
    [76]牛玉刚,杨成梧,陈雪如.基于神经网络的不确定机器人自适应滑模控制[J].控制与决策,2001,16(1):79-82.
    [77]王忠民,刘军,窦智等.矿难救援机器人的研究应用现状与开发[J].煤矿机械,2007 28(11):6-8.
    [78]钱善华,葛世荣,王永胜等.救灾机器人的研究现状与煤矿救灾的应用[J].机器人,2006(3):350-354.
    [1]苏学成,樊炳辉,李贻斌等.试论煤矿机器人的研究与开发[J].机器人,1995,17(2):123-127.
    [2]钱善华,葛世荣,王永胜等.救灾机器人的研究现状与煤矿救灾的应用[J].机器人,2006(3)350-354.
    [3]李东晓.机器人技术在煤矿自动化中的应用[J].煤炭科学技术,2007,35(5):62—64.
    [4](美)西格沃特(Siegwart,R.),诺巴克什(Nourbakhsh,I.R.).李人厚译.自主移动机器人导论[M].西安:西安交通大学出版社,2006.
    [5]李岩,杨向东,陈恳.履带式移动机器人动力学模型及其反馈控制[J].清华大学学报,2006,46(8):1377-1380.
    [6]Wong J Y, Chiang C F. A general theory for skid steering of tracked vehicles on firm ground [J]. Proceedings of the Institution of Mechanical Engineers, Part D:Journal of Automobile Engineering,2001,215(3):343-355.
    [7](加)黄祖永.地面车辆原理[M].北京:机械工业出版社,1985.
    [8]龚振邦.机器人机械设计[M].北京:电子工业出版社,1995.
    [9]Wong J Y. Computer aided analysis of the effects of design Parameters on the performance of tracked vehicles[J]. Journal of Terramechanics,1986,23(2):95-124.
    [10]Le A T, Rye D C, Hugh F., etc. Estimation of track-soil interactions for autonomous tracked vehicles[C].International Conference on Robotics and Automation,New Mexico,1997,1388-1393.
    [11]Bekker M G. Introduction to terrain-vehicle systems[M]. University of Michigan Press, Ann habor,1969.
    [12]Shiller Z, Serate W, Hua M. Trajectory planning of tracked vehicles[C]. Proceedings of IEEE International Conference on Robotics and Automation. Atlanta, GA:IEEE Press,1993:796-801.
    [1]张毅,罗元,郑太雄.移动机器人技术及其应用[M].北京:电子工业出版社,2007.
    [2]蔡自兴,邹小兵,王璐等.移动机器人分布式控制系统的设计[J].中南大学学报,2005,36(5):727-732.
    [3]王忠民,刘军,窦智等.矿难救援机器人的研究应用现状与开发[J].煤矿机械,2007,28(11):6-8.
    [4]李东晓.机器人技术在煤矿自动化中的应用[J].煤炭科学技术,2007,35(5):62-64.
    [5]蒋新松.机器人学导论[M].沈阳:辽宁科学技术出版社,1994:517.
    [6]范水,谭民.机器人控制器的现状’j展望[J].机器人,1999,21(1):75-80.
    [7]徐华,贾培发,赵雁南.开放式机器人控制器软件体系结构研究进展[J].高技术通讯,2003,13(1):100-105.
    [8]李智军,罗青,吕恬生.基于混合结构的机器人Agent控制结构的研究[J].计算机工程与应用,2003,39(21):90-93.
    [9]Jones C V,Matarie M.Behavior-Based Coordination in Multi-Robot Systems[J].Autonomous Mobile Robots:Sensing, Control, Decision-Making and Applications,2005:549-570.
    [10]Saridis G N.Toward the realization of intelligent controls[C]. Proceedings of the IEEE,NJ,USA: 1979,67(8):1115-1133.
    [11]Brooks R. A robust layered control system for a mobile robot[J]. IEEE Transaction on Robotics and Automation,1986,2(1):14-23.
    [12]Arkin R C,Mackenzie D C. Planning to behave:A hybrid deliberative/reactive robot control architecture for mobile manipulation[C], Proceeding of the 5th International Symposium on Robotics and Manufacturing, New York:ASME Press,1994:5-12.
    [13]Hu H, Brady M. A Parallel Processing Architecture for Sensor-based Control of Intelligent Mobile Robots [J]. Robotics and Autonomous Systems,1996,17(4):235-257.
    [14]Gesu V D. A distributed architecture for autonomous navigation of robots[C]. Proceeding of the 15th IEEE International Workshop on Computer Architectures for Machine Perception. Washington:IEEE Computer Society,2000:190-194.
    [15]Rosenblatt J.DAMN:A distributed architecture for mobile navigation [R]. Pittsburgh:Robotics Institute Carnegie Mellon University,1995.
    [16]蔡自兴,周翔,李枚毅等.基于功能/行为集成的自主式移动机器人进化控制体系结构.机器人,2000,22(3):169-175.
    [17]Gat E. Three-Layer Architectures In Artificial Intelligence and Mobile Robots [M]. Cambridge, MA: Mit Press,1998:195-110.
    [18]Mallot H A. Spatial Cognition:Behavioral Competences, Neural Mechanisms and Evolutionary Sealing[J].Kogntiion swissenschatf,1999,8(1):40-48.
    [19]蔡自兴,邹小兵.移动机器人环境认知理论与技术的研究[J].机器人,2004,26(1):87-91.
    [1]Leonard J,Durrant-Whyte H F.Mobile robot localization by tracking geometric beacons[J]. IEEE Transactions on Robotics and Automation,1991,7(3):376-382.
    [2]蒋新松.机器人学导论[M].沈阳:辽宁科学技术出版社,1994.
    [3]孙树栋,曲彦宾.遗传算法在机器人路径规划中的应用研究[J].西北工业大学学报,1998,16(1):79-83.
    [4]Gerke M. Genetic path planning for mobile robots[C]. Proceedings of the 1999 American Control Conference. San Diego:IEEE Press,1999:2424-2429.
    [5]Oscar C, Leonardo T.. Multiple objective genetic algorithms for path planning optimization in autonomous mobile robots[J].Soft Computing,2007,11(1):269-279.
    [6]王强,姚进,王进戈.基于遗传算法的移动机器人的一种路径规划方法[J].哈尔滨工业大学学报,2004,36(7):867-870.
    [7]朱庆保,张玉兰.基于栅格法的机器人路径规划蚁群算法[J].机器人2005,27(2):133-136.
    [8]Mazzeo S, Loiseau I. An ant colony algorithm for the capacitated vehicle routing [J]. Electronic No tes in Discrete Mathematics,2004,18:181-186.
    [9]Holland J H. Genetic algorithms and the optimal allocations of trails [J]. SIAM Journal on Computing,1973,2(2):88-105.
    [10]Goleberg D E.Genetic algorithm in search optimization and machine learning [M]. MA:Addison-Wesley publishing Company,1989.
    [11]雷英杰,张善文,李续武等.MATLAB遗传算法工具箱及应用[M].西安:西安电子科技大学 出版社,2005.
    [12]Howden W E. The sofa problem [J]. The Computer Journal,1968,11(3):299-301.
    [13]师黎,邵国.改进遗传算法用于移动机器人路径规划[J].计算机工程与设计,2008,29(24):6330-6333.
    [14]De Jong K A. An analysis of the behavior of a class of genetic adaptive systems [D]. Michigan: University of Michigan,1975.
    [15]Rudolph G. Convergence analysis of canonical genetic algorithms [J]. IEEE Trans.on Neural Networks,1994,5(1):96-101.
    [16]段海滨,王道波,朱家强等.蚁群算法理论及应用研究的进展[J].控制与决策,2004,19(12):1321-1326.
    [17]Dorigo M, Maniezzo V, Colori A.. Ant system:optimization by a colony of cooperating agents [J]. IEEE Transactions on Systems, Man and Cybernetics,part B,1996,26(1):28-41.
    [18]Stutzle T, Hoos H. Max-min ant system [J]. Future Generation Computer System,2000(16): 889-914.
    [19]张纪会,高齐圣,徐心和.自适应蚁群算法[J].控制理论与应用,2000,17(1):1-3.
    [20]吴庆洪,张纪会,徐心和.具有变异特征的蚁群算法[J].计算机研究与发展,1999,36(10):1240-1245.
    [21]White T, Pagurek B, Oppacher F. ASGA:Improving the ant system by integration with genetic algorithms[R]. Canada:Systems and computer Engineering, Carleton University,1998.
    [22]丁建会,陈增强,袁著祉.遗传算法与蚁群算法的融合[J].计算机研究与发展,2003,40(9):1351-1356.
    [23]Dorigo M,Gambardella L M. Ant Colony System:A Cooperative Learning Approach to the Traveling Salesman Problem[J].IEEE Transactions on Evolutionary Compution,1997,1(1):53-66.
    [24]Gambardella L M, Dorigo M. Ant-Q:A reinforcement learning approach to the traveling salesman problem[C]. Proceedings of the 12th International Conference on Machine Learning, Palo Alto,CA: Morgan Kaufmann Publishers,1995:252-260.
    [25]Blum C, Sampels M.When model bias is stronger than selection pressure[C].Proceedings of the 7th International Conference on Parallel Problem Solving from Nature. Berlin, Germany:Springer Verlag,2002:893-902.
    [26]Colorni A,Dorigo M,ManiezzoV. Distributed optimization by ant colonies[C].Proceedings of the 1st European Conference on Artificial Life,1991:134-142.
    [27]Dorigo M,ManiezzoV,Colorni A. Ant system:optimization by a colony of cooperating agents [J]. IEEE Transaction on Systems, Man and Cybernetics,1996,26(1):29-41.
    [28]马良,项培军.蚂蚁算法在组合优化问题中的应用[J].管理科学学报,2001,4(2):32-37.
    [29]Stutzle T.Max-min ant system for quadratic assignment problems[R].Technical Report AIDA-97-04,Intellectics Group, Department of Computer Science, Darmstadt University of Technology, Germany, July 1997.
    [30]Bullnheimer B, Hart R F, Strauss C..A new rank-based version of the ant system:A computational study[J].Central European Journal for Operations Research and Economics,1999,7(1):25-38.
    [31]李士勇.蚁群算法及其应用[M].哈尔滨:哈尔滨工业大学出版社,2004.
    [1]Zvi S, William S,Minh H. Trajectory Planning of Tracked Vehicles[C]. Proceedings of IEEE International Conference on Robotics and Automation. Atlanta,GA:IEEE Press,1993:796-801.
    [2]李岩,杨向东,陈恳.履带式移动机器人动力学模型及其反馈控制.清华大学学报,2006,46(8):1377-1380.
    [3]Le A T,Rye D, Durrant-Whyte H F. Estimation of Track-soil Interactions for Autonomous Tracked Vehicles[C]. Proceedings of IEEE International Conference on Robotics and Automation. Albupuerpue,New Mexico:IEEE Press,1997:1388-1393.
    [4]胡跃明,周其节,裴海龙.非完整控制系统的理论与应用[J].控制理论与应用,1996,13(1):1-10.
    [5]Laumond Jean-paul. Robot Motion Planning and Control [M]. London:Springer,1998.
    [6]Diaz del Rio F, Jimenez G, Sevillano J L, etc.. A Generalization of Path Following for Mobile Robots[C]. Proceedings of IEEE International Conference on Robotics and Automation. Detroit, MI: IEEE Press,1999:7-12.
    [7]王仲民,岳宏,刘继岩.轮式移动机器人轨迹跟踪控制[J].太原理工大学学报,2005,36(4):474-476.
    [8]Kanayama Y,Kimura Y etc..A stable tracking control method for an autonomous mobile robot[C]. Proceedings of IEEE International Conference on Robotics and Automation. Cincinnati,Ohio:IEEE Press,1990:384-389.
    [9]Khalil H K.Nonlincar Systems[M]. Upper Saddle River,NJ:Prentice Hall.2002.
    [10]Samson C. Control of chained systems application to path following and time-varying point stabiliza-tion of mobile robots[J].IEEE Transactions on Automatic Conrtol,1995,40(1):64-77.
    [11]吴卫国,陈辉堂,工月娟.移动机器人的全局轨迹跟踪控制[J].自动化学报,2001,27(3):326-331.
    [12]Freeman R A,Primbs J A.Control Lyapunov Functions:New ideas from an old source. Proceedings of the 35th IEEE conference on decision and control,1996,(4):3926-3931.
    [13]Ham C, Qu Z.A new nonlinear learning control for robotic Manipulators[J]. Advanced Robotics, 1996,10(1):1-15.
    [14]孙炜,王耀南.基于控制器输出误差方法的自适应模糊控制及其在机器人轨迹跟踪控制中的应用[J].机器人,2001,23(7):616-622.
    [15]段勇,刘兴刚,徐心和.基于强化学习的机器人模糊控制系统设计[J].系统仿真学报,2006,18(6):1597-1600.
    [16]伍瑾斐,秦东兴,刘俊.四轮式移动机器人非完整运动控制[J].电子科技大学学报,2007,36(2):302.304.
    [17]诸静.模糊控制原理与应用[M].北京:机械工业出版社,2001.
    [18]刘金琨.智能控制[M].北京:电子工业出版社,2008.
    [19]Baoguo L, Chunxi Z, Adaptive fuzzy control for mobile robot obstacle avoidance based on virtual line path tracking [C]. Proceedings of IEEE International Conference on Robotics and Biomimetics, USA: IEEE press,2006:1455-1458.
    [20]Francesco M, Raimondi, Maurizio M. A New Kinematic and Dynamic Direct Adaptive Fuzzy Control of Constrained Mobile Wheeled Vehicles [C]. Proceedings of the 2005 IEEE International Conference on Emerging Technologies and Factory Automation. Catania, Italy:IEEE press,2005:181-186.
    [21]Simon X Yang, Tiemin Hu, Xiaobu Yuan. A Neural Network Based Torque Controller for Collision free Navigation of Mobile Robots[C]. Proceedings of the 2003 IEEE International Conference on Robotics & Automation. Taipei,Taiwan:IEEE press,2003.
    [22]王玉华,于双和,杜佳璐等.不确定非完整移动机器人的自适应模糊控制[J].系统仿真学报,2009,21(2):469-473.
    [23]肖本贤,张松灿,刘海霞等.基于动力学系统的非完整移动机器人的跟踪控制[J].系统仿真学 报,2006,18(5):1263-1266.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700