用户名: 密码: 验证码:
肿瘤干细胞树突细胞疫苗治疗脑胶质瘤的体外实验及作用机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:目前通过树突状细胞诱导机体抗肿瘤免疫已经成为肿瘤免疫治疗的一种重要途径,通过热休克凋亡脑胶质瘤细胞抗原制备树突状细胞疫苗,可增强树突状细胞抗原提呈功能,诱导细胞毒性T淋巴细胞产生肿瘤杀伤作用;同时探讨胶质瘤细胞系U251细胞中肿瘤干细胞的培养和鉴定方法;研究应用脑胶质瘤干细胞抗原制备的树突状细胞疫苗在体外对胶质瘤细胞的杀伤作用并探讨其机制。
     方法:采用改进Inaba法在rmGM-CSF和rhIL-4作用下体外诱导扩增小鼠骨髓来源的树突状细胞,电镜、流式细胞仪鉴定其生物学特性;经恒温43℃、44℃、45℃分别处理U251细胞1h、2 h、3 h、4 h继续常规培养12小时,进一步在体外制备凋亡U251细胞致敏的DC瘤苗,后观察疫苗的混合淋巴细胞反应和细胞杀伤作用;将U251细胞置于DMEM/F12+10%FBS的培养基中培养,对数生长期时0.25%胰蛋白酶消化,洗涤,加入无血清DMEM/F12培养基(含LIF 10ng/ml, EGF 20ng/ml,FGF 20ng/ml,B27 20ul/ml)培养。每日观察细胞球生长情况,每周传一代。收集培养4周的细胞球,行免疫细胞化学染色,检测神经干细胞标志Nestin和CD133的表达。使用流式细胞仪分别检测含血清培养条件下的肿瘤细胞,无血清培养1周、2周、4周和8周的肿瘤细胞中CD133+和nestin+细胞含量。收集培养4周的细胞球在DMEM/F12+10%FBS培养基中培养5-10天,应用免疫细胞化学染色,检测NSE、MAP2和GFAP的表达;从脑胶质瘤临床标本中培养获得肿瘤干细胞,应用反复冻融法获得胶质瘤干细胞冻溶物。诱导小鼠间充质干细胞分化为树突状细胞,将冻溶物和树突状细胞共培养,获得胶质瘤干细胞疫苗,流式细胞仪检测树突状细胞表面标志的变化。应用CCK-8法检测疫苗的促T细胞增殖能力以及对胶质瘤细胞的杀伤作用,应用ELISA法检测培养基中干扰素-Y的含量。
     结果:在细胞因子作用下,培养6-7天即可诱导出DCs,经倒置显微镜和电镜证实膜表面具有典型树突状结构;流式细胞仪证实其表达特征性表面标记CDllc,同时高表达功能相关抗原CD80、CD86、MHC-Ⅱ;应用倒置显微镜和流式细胞仪确定热诱导凋亡胶质瘤细胞的最佳条件是44℃处理3小时并常规培养12小时;凋亡肿瘤细胞能更好的负载DCs,混合淋巴细胞反应表明负载后DC疫苗有较强的刺激同种淋巴细胞反应的能力,DC疫苗活化抗原特异性CTL具有很强的杀伤肿瘤细胞能力;U251细胞在无血清培养基中1周可形成细胞团。传代后,能形成新的细胞球,并随传代次数的增多,细胞球逐渐变得规则。U251细胞系中部分细胞具有单克隆性质。培养4周的细胞球,免疫细胞化学染色提示Nestin和CD133均呈阳性表达。流式分析,CD133阳性率在肿瘤细胞0.5%,悬浮培养1周2.4%,悬浮培养2周3.0%,悬浮培养4周10.0%,悬浮培养8周可达17.7%。细胞球在含血清培养基中培养5-10天,免疫细胞化学染色提示神经元特异性标志MAP2与NSE和胶质细胞标志GFAP阳性表达,部分细胞MAP2和GFAP均表达,细胞异质性明显;经脑胶质瘤干细胞胞溶物的强烈刺激,树突状细胞表面标志表达显著提高,包括CD80、CD86、CD11C和MHCⅡ;胶质瘤干细胞疫苗能强烈刺激T细胞增殖;该疫苗诱导的免疫反应,能有效杀灭胶质瘤细胞,并能促进干扰素-γ的分泌。
     结论:在rmGM-CSF和rmIL-4的作用下体外成功诱导、扩增小鼠骨髓源性功能性的DC,热诱导凋亡胶质瘤细胞负载的DC疫苗在体外能有效刺激自体T淋巴细胞增殖,并诱导抗原特异性CTL产生较强的杀伤胶质瘤细胞功能;U251细胞系中存在少量肿瘤干细胞,具有神经干细胞样特性,可在无血清培养基中培养扩增,对胶质瘤的发生和进展有重要作用;应用胶质瘤干细胞制备的树突状细胞疫苗能有效诱导特异性细胞毒性T细胞,表现出较强的抗肿瘤特性。
OBJECTIVE:At present,DC-inducing anti-tumors immune has become one of important cancer immunotherapy.The DC vaccine loaded by hyperthermia-induing apoptotic glioma cells antigens can enhance differentiation and maturation of the dendritic cells, strengthen its function of antigen presentation and induce stronger tumor killing effect of cytoxicity T lymphocytes. To explore the method of culturing human glioma stem cell in U251 cell line in vitro with reformed neural stem cell culturing medium, meanwhile to study biological characters on proliferation and differentiation, and so on. To explore anti-glioma cells ability and mechanism of specific T cells induced by dendritic cells loaded with antigen of glioma stem cells,in vitro.
     METHODS:The murine bone marrow-derived DCs were induced and amplified by rmGM-CSF and rhIL-4 using improved Inaba way in vitro, the biological characteristics of which were indentificated by electron microscope and flow cytometer. Human U251 glioma cells were cutured in vitro and induced by hyperthermia 43℃、44℃、45℃for 1、2、3、4 hours respectively and then routine culture for 12 hours.The DCs were sensitized by apoptotic U251 cells to prepare DC vaccine in advance which was charactirizated through the mixed lymphocyte responses and cell killing experiment. Human glioma cells U251 were cultured in serum free mediam DMEM/F12, plus LIF(10ng/ml), EGF(20ng/ml), FGF(20ng/ml) and B27(20ul/ml), examined daily and subcultured weekly. Cell spheres were collected after 4 weeks.The expressions of neural stem cell marker Nestin and CD133 were detected by immunocytochemistry. CD133+ cells and nestin+ cells were detected with flow cytometry, in adherent U251 and non-adherent cell spheres, which were cultured for 1 to 8 weeks. After 4 weeks, Cell spheres were collected at 4 weeks and incubated for 5 to 10 days for differentiation in medium containing serum. Then, the expressions of NSE, MAP2 and GFAP on differentiation cells were examined by immunocytochemistry. Cancer stem cells were cultured from clinical specimen of glioma,lysate of glioma stem cells was obtained by the repeated freezing and thawing method,and DC stemed from mesenchymal stem cells(MSCs). Glioma stem cell vaccine was got by mixing tumor lysate with DC,then,surface molecules of DC were checked by flowcytometry. CCK-8 method was used to delect the DC vaccine's ability of promoting T cells proliferation and killing glioma cells. Level of IFN-yin the supernatant was checked by ELISA.
     RESULTS:The DCs were generated after 6-7 days induce with rmGM-CSF and rhIL-4, the typical dendritic structure on membrane surface was indentificated by inverted microscope and electron microscope.The flow cytometry confirmed that DCs expressed the typical surface marker CD11c and functional correlation antigen CD80,CD86 and MHC-II in high level meanwhile. The best condition of glioma cell inducing apoptosis was 44℃for 3 hours and then routine culture for 12 hours,which was defined by inverted microscope and flow cytometry. Apoptotic tumor cells could preferably load DCs.The DCs vaccine had strong ablity to stimulate the homogeneity mixed lymphocyte responses.Apoptotic tumor cells loaded DCs also could stongly active antigen specific CTL to kill glioma cells. A small amount of U251 cells had capacity of continuous proliferating and renewing for long time, in vitro, with positive immunohistochemistry-staining on Nestin and CD 133. The percentage of CD 133+ cells were 0.1% in adherent U251,1.5% after 1 week,3.0% after 2 weeks and 10.0% after 8 weeks in non-adherent cell spheres. Glioma stem cells could differentiate into neurons and astrocytes. Differentiation cells were positive for neural marker MAP2/NSE or glial marker GFAP, some expressed both markers. After stimulation of lysate of glioma stem cell, expression of surface molecules of DC was up-regulated,including CD80、CD86、CD11c and MHC II. Glioma stem cell vaccine could stimulate T cell proliferation strongly. The vaccine could induce effective immune response, kill tumor cells and boost the secretion of interferon-y.
     CONCLUSIONS:The functional DCs were successfully indced and amplificated by cytokines rmGM-CSF and rmIL-4 in vitro.The DCs vaccine loaded by hyperthermia-inducing apoptotic tumor cells could stimulate autologous T lymphocyte proliferation, and induce antigen specific CTL produce strong killer function. Human glioma stem cells could be cultured from U251,and could be differentiated into neurons and astrocytes, as neural stem cells,which played an important pole in the pathogenesis of glioma. Dendritic cell vaccine can effectively induce specific cytotoxic T cells, and show strong anti-tumor properties, loaded with antigen of glioma stem cells,in vitro.
引文
[1]Tseng MY, Tseng JH, Merchant E. Comparison of effects of socioeconomic and geographic variations on survival for adults and children with glioma. J Neurosurg.2006,105(4 Suppl):297-305.
    [2]Hau P, Koch D, Hundsberger T, et al. Safety and feasibility of long-term temozolomide treatment in patients with high-grade glioma. Neurology,2007,68(9):688-690.
    [3]Banchereau J, Steinman RM. Dendritic cells and the control of immunity. Nature,1998, 392:245-252. Review.
    [4]Banchereau J, Schuler-Thurner B, Palucka AK, et al. Dendritic cells as vectors for therapy. Cell, 2001,106:271-274. Review.
    [5]Insug O, Ku G, Ertl HC, et al. A dendritic cell vaccine induces protective immunity to intracranial growth of glioma. Anticancer Res,2002,22:613-621.
    [6]Gilboa E. The makings of a tumor rejection antigen. Immunity,1999,11:263-270. Review.
    [7]Kuwabara K, Mshishita T, Morishita M, et al. Results of a phase I clinical study using dendritic cell vaccinations for thyroid cancer. Thyroid,2007,17 (1):53-58.
    [8]Furumoto K, Mori A,Yamasaki S, et al. Interleukin-12-gene transduction makes DCs from tumor-bearing mice an effective inducer of tumor-specific immunity in a peritoneal dissemination model. Immounol Let,2002,83(1):13-20.
    [9]Monti P, Leone BE, Zerbi A, et al. Tumor-derived MUC1 mucins interact with differentiating monocytes and induce IL-10 high IL-12 Low regulatory dendritic cell. J Immunol,2004, 172(12):7341-7349.
    [10]Guo W, Lasky JL, Wu H. Cancer Stem Cells. Pediatr Res,2006,59:59-64.
    [11]Rolf Bjerkvig, Berit B. Tysnes, Karen S. Aboody, et al. The origin of the cancer stem cell: current controversies and new insights. Nature Reviews(cancer):2005,5(11):899-904.
    [12]Lapidot T, Sirard C, Vormor J, et al. A cell initiating human acute myeloid leukaemia after transplantation into SCID mice. Nature,1994,367 (6464):645-648.
    [13]Bonnet D, Dick J E. Human acute myeloid leukemia is organized as a hierarchy that originates from a primitive hematopoietic cell.NatMed,1997,3 (7):730-737.
    [14]Dick JE. Acute myeloid leukemia stem cells. Ann N Y A cad Sci,2005,1044:1-5.
    [15]Hemmati H D, Nakano I, Lazareff JA, et al. Cancerous stem cells can arise from pediatric brain tumors. Proc Natl AcadSci USA,2003,100 (25):15178-15183.
    [16]Singh SK, Hawkins C, Clarke ID, et al. Identification of a cancer stem cell in human brain tumors. Cancer Res,2003,63(18):5821-5828.
    [17]Singh S K, Clarke ID, TerasakiM, et al. Identification of human brain tumor initiating cells. Nature,2004,432(7015):396-401.
    [18]Nakano I, Hemmati HD, Komblum HI. Cancer stem cells in pediatric brain tumors. No Shinkei Geka,2004,32 (8):827-834.
    [19]Yuan X, Curtin J, Xiong Y, et al. Isolation of cancer stem cellsfrom adult glioblastoma multiforme. Oncogene,2004,23(58):9392-9400.
    [20]Galli R, Binda E, Orfanelli U, et al. Isolation and characterization of tumorigenic, stem-like neural precursors from human glioblastoma. Cancer Res,2004,64 (19):7011-7021.
    [21]Setoguchi T, T Taga, T Kondo. Cancer stem cells persist in many cancer cell lines. Cell Cycle, 2004,3 (4):414-415.
    [22]E. Galmozzi, F. Facchetti, CAM La Porta, et al. Cancer Stem Cells and Therapeutic Perspectives. Current Medicinal Chemistry,2006,13:603-607.
    [23]U Galderisi, M Cipollaro, A Giordano, et al. Stem cells and brain cancer, NATURE (Cell Death and Differentiation),2005,1-7.
    [24]Serena Pellegatta, Pietro Luigi Poliani, Daniela Corno, et al. Neurospheres Enriched in Cancer Stem-Like Cells Are Highly Effective in Eliciting a Dendritic Cell-Mediated Immune Response against Malignant Gliomas. Cancer Res,2006,66(21):10247-10252。
    [25]Hart DN. Dendritic cells:unique leukocyte populations which control theprimary immune response[J].Blood,2003,90:3245-3287.
    [26]Andersson BU,Tani E.Prognostic value of tumor-infiltrating dendritic cells in colorectal cancer:role of matureation status and intratumoral lacalization[J].Clin Cancer Res,2005,11(7):2576-2582.
    [27]熊菲,陈茜.树突状细胞培养技术的研究进展.国外医学临床生物化学与检验学分册,2005,26(4):238.
    [28]Syme R,Gluck S.Effects of cytokines on the culture and differentiation of dendritic cells in vitro.J Hematather Stem Cell Res,2001,10(1):43.
    [29]Ardavin C.Origin precuresors and differentiation of mouse dendritic cells. Nat Rev Immuno1,2003,3(7):582.
    [30]Hoffmann TK, Meidenbauer N, Dworacki G, et al. Generation of tumor-specific T-lymphocytes by cross-priming with human dendritic cells ingesting apoptotic tumor cells [J]. Cancer Res 2000;60:3542-3549.
    [31]Albert ML, Bhardwaj N, et al.Dendritic cells acc uire antigen from apoptotic cells and induce classl-restricted CTLs. Nature.1998,392:36-89.
    [32]Albert ML, Pearce SF, Francisco LM,et al.Immature dendritic cells phagocytose apoptotic cells via avβ5 and CD36,and croos-present antigens to cytotoxic T lymphocytes. J.Exp. Med.1998, 188:1359-1368.
    [33]Cotter TG,Lennon SV, Glynn JM,et al. Microfilament-disrupting agents prevent the formation of apoptotic bodies in tumor cells undergoing apoptosis. Cancer Res.1998,52:997-1005.
    [34]Kuniyoshi JS, Kuniyoshi CJ, Lim AM et al. Dendritic cells secretion of IL-15 is induced by recombinant hu CD40LT and augments the stimulation of antigen-specitic cytolytic T cells. Cellular Immunology,2003; 193:48-58.
    [35]WallinRPA,LundqvistA,MoreSM,vonBoninA,KiesslingR,LjunggrenH-G.Heat-shock proteins as activators of the innate immunesystem.Trends Immunol,2002;23:130-135.
    [36]StuartLM,LucasM,SimpsonC,LambJ,SavillJ,Lacy HulbertA.Inhibitory effects of apoptotic cell ingestion upon endotoxin-driven myeloid dendritic cell maturation.J Immunol 2002; 168: 1627-1635.
    [37]SpisekR,BretaudeauL,BarbieuxI,MeflahK,Gregoi -eM. Standardized generation of fully maturep70 IL-12 secreting monocyte-derived dendritic cells for clinical use. Cancer Immunol Immunother2001;50:417-427.
    [38]SpisekR, ChevallierP, MorineauN, MilpiedN, Avet-LoiseauH, HarousseauJ-L, et aL. Induction of leukaemia-specific cytotoxic response by cross-present ationof late-apoptotic leukaemia blasts by auto logous dendriticcells of non-leukemiccrigin. Cancer Res,2002;62:2861-2868.
    [39]Horovtiz A, Willison KR. Alosteric regulation of chaperonins[J]. CurrOpin Struct Bio,2005,15:646-651.
    [40]Shi H, Cao T, Connlly JE, et al. Hyperthermia enhance CTL cross-priming [J].J Immuno,2006, 176(4):2134-2141.
    [41]Kopper L, Hajdu M. Tumor Stem Cells[J]. Pathology Oncology Research,2004,10(2):69-73.
    [42]Guo W, Lasky JL, Wu H. Cancer Stem Cells[J]. Pediatr Res,2006,59(4 Pt 2):59-64.
    [43]Bjerkvig R, Tysnes BB, Aboody KS, et al. The origin of the cancer stem cell:current controversies and new insights[J]. Nature Reviews (cancer):2005,5(11):899-904.
    [44]Dean M, Fojo T, Bates S. Tumour stem cells and drug resistance[J]. Nat Rev Cancer,2005, 5(4):275-284.
    [45]Lapidot T, Sirard C, Vormor J, et al. A cell initiating human acute myeloid leukaemia after transplantation into SCID mice[J]. Nature,1994,367(6464):645-648.
    [46]Bonnet D, Dick J E. Human acute myeloid leukemia is organized as a hierarchy that originates from a primitive hematopoietic cell[J]. Nat Med,1997,3(7):730-737.
    [47]Dick J E. Acute myeloid leukemia stem cells[J]. Ann N Y A cad Sci,2005,1044:1-5.
    [48]Reya T, Morrison SJ, Clarke MF, et al. Stem cells, cancer and cancer stem cells[J]. Nature,2001, 4(6859):105-111.
    [49]Singh SK, Jawkins C, Clarke ID, et al. Identification of a cancer stem cell in human brain tumors[J]. Cancer Res,2003,63(18):5821-5828.
    [50]Singh SK, Clarke ID, TerasakiM, et al. Identification of human brain tumor initiating cells[J]. Nature,2004,432(7015):396-401.
    [51]Yuan X, Curtin J, Xiong Y, et al. Isolation of cancer stem cells from adult glioblastoma multiforme[J]. Ocogene,2004,23(58):9392-9400.
    [52]Kondo T, Setoguchi T, Taga T. Persistence of a small subpopulation of cancer stem-like cells in the C6 glioma cell line[J]. PNAS,2004,101(3):781-786.
    [53]Pellegatta S, Poliani P L, Corno D, et al. Neurospheres enriched in cancer stem-like cells are highly effective in eliciting a dendritic cell-mediated immune response against malignant gliomas[J]. Cancer Res,2006,66(21):10247-10252.
    [54]Zhang XP, Zheng G, Zou L, et al. Notch activation promotes cell proliferation and the formation of neural stem cell-like colonies in human glioma cells [J]. Mol Cell Biochem,2008, 307(1-2):101-108.
    [55]尹昌林,吕胜青,唐莉,等.免疫磁珠法分选人脑胶质瘤干细胞及其培养和鉴定[J].中国神经肿瘤杂志,2007,5(4):251-256.
    [56]A1-Hajj M, Becker MW, Wicha M, et al. Therapeutic implications of cancer stem cells[J]. Curr Opin Genet Dev,2004,14(1):43-47.
    [57]Duelli D, Lazeblik Y. Cell fusion:a hidden enemy[J]. Cancer Cell,2003,3(5):445-448.
    [58]Pawelek J. Tumour cell hybridization and metastasis revisited[J]. Melanoma Res,2000, 10(6):507-514.
    [59]Vignery A. Osteoclasts and giant cells:macrophage-macrophage fusion mechanism[J]. Int J Exp Pathol,2000,81(5):291-304.
    [60]Hemmati H D, Nakano I, Lazareff JA, et al. Cancerous stem cells can arise from pediatric brain tumors[J]. Proc Nat Acad Sci USA,2003,100(25):15178-15183.
    [61]Lindvall C, et al. The WNT signaling receptor, LRP5, is required for mammary ductal stem cell activity and WNT1-induced tumorigenesis[J]. J Biol Chem,2006,281(46):35081-35087.
    [62]Moraes RC, Zhang XM, Harrington N, et al. Constitutive activation of smoothened (SMO) in mammary glands of transgenic mice leads to increased proliferation, altered differentiation and ductal dysplasia[J]. Development,2007,134(6):1231-1242.
    [63]Zhang XP, Zheng G, Zou L, et al. Notch activation promotes cell proliferation and the formationof neural stem cell-like colonies in human glioma cells[J]. Mol Cell Biochem,2008, 307(1-2):101-108.
    [64]Brewer, G.J.. Isolation and culture of adult rat hippocampal neurons [J]. J Neurosci, Methods, 1997,71(2):143-155.
    [65]Svendsen, C.N., Fawcett, J.W., Bentlage, C.,et al. Increased survival of rat EGF-generated CNS precursor cells using B27 supplemented medium[J]. Exp Brain Res,1995,102(3):407-414.
    [66]Groszer M, Erickson R, Scripture-Adams DD, et al. Negative regulation of neural stem/progenitor cell proliferation by the Pten tumor suppressor gene in vivo[J]. Science,2001, 294(5549):2186-2189.
    [67]Maslov AY, Barone TA, Plunkett RJ, et al. Neural stem cell detection, characterization and age related changes in the subvert ricular zone of mice[J]. Neurosci,2004,24(7):1726-1733.
    [68]Yu Y, Flint A, Dvorin EL, et al. AC133-2, a novel isoform of human AC133 stem cell antigen[J]. Biol Chem,2002,277(23):20711-20716.
    [69]Jian Wang, Per O.Sakariassen, Oleg Tsinkalovsky, et al. CD133 negative glioma cells form tumors in nude rats and give rise to CD133 positive cells[J]. Int J Cancer,2008,122:761-768.
    [70]李光辉,陈正堂,尹昌林,等.人胶质瘤干细胞内在自我更新能力[J].中华神经外科疾病研究杂志,2007,6(3):210-213
    [71]Morrison SJ, Qian D, Jerabek L, et al. A genetic determinant that specifically regulates the frequency of hematopoietic stem cells[J]. J Immunol,2002,168(2):635-642.
    [72]Tunici P, Bissola L, Lualdi E, et al. Genetic alterations and in vivo tumorigenicity of neurospheres derived from an adult glioblastoma[J]. Mol Cancer,2004,3:25.
    [73]Duelli D, Lazeblik Y. Cell fusion:a hidden enemy[J]. Cancer Cell,2003,3(5):445-448.
    [74]Pawelek J. Tumour cell hybridization and metastasis revisited[J]. Melanoma Res; 2000, 10(6):507-514.
    [75]Vignery A. Osteoclasts and giant cells:macrophage-macrophage fusion mechanism[J]. Int J Exp Pathol,2000,81(5):291-304.
    [76]Bergsmedh A, Szeles A, Henriksson M, et al. Horizontal transfer of oncogenes by uptake of apoptotic bodies[J]. Proc Natl Acad Sci USA,2001,98(11):6407-6411.
    [77]Hadnagy A, Gaboury L, Beaulieu R, et al. SP analysis may be used to identify cancer stem cell populations[J]. Exp Cell Res,2006,312(19):3701-3710.
    [78]蒋海东.肿瘤干细胞的起源[J].实用肿瘤学杂志,2007,’22(6):542-545.
    [79]朱玉德,季晓燕,黄强,等.人脑胶质瘤干细胞的初步研究[J].中华神经外科杂志,2007,23(2):127-130.
    [80]Beier D,Hau P,Proescholdt M,et al. CD133(+) and CD133(-) glioblastoma derived cancer stem cells show differential growth characteristics and molecular profiles[J]. Cancer Res,2007, 67(9):4010-4015.
    [81]GU JH,Gang LI. Dendritic cell-based immunotherapy for malignant gliom. Neurosci Bu11,2008,24(1):39-44.
    [82]Koido S, Hara E, Homma S,et al. Cancer vaccine by fusions of dendritic and cancer cells. Clin Dev Immuno1,2009,2009:657369.
    [83]Gao JX. Cancer stem cells:the lessons from pre-cancerous stem cells. J. Cell. Mol. Med.,2008,12(1):67-96.
    [84]冀保卫,田道锋,陈谦学,等.脑胶质瘤干细胞的培养及鉴定.中华实验外科杂志,2009,26(11):190-190.
    [85]沈恒,王军民,田道锋,等.小鼠骨髓来源树突状细胞的体外培养及鉴定.中华实验外科杂志,2009,26(12):151-151.
    [86]R.M.Steinman,J.Banchereau. "Taking dendritic cells into medicine". Nature,2007, 449(7161):419-426.
    [87]Monti P, Leone BE, Zerbi A, et al. Tumor-derived MUC1 mucins interact with differentiating monocytes and induce IL-10 high IL-12 Low regulatory dendritic cell. J Immunol,2004, 172(12):7341-7349.
    [88]Jayesh S,Boussad C,Kevin S,et al. Role of stem cells in cancer and stem cells. Cancer Cell Internationa1,2007,7:9.
    [89]Singh SK, Hawkins C, Clarke ID, et al. Identification of a cancer stem cell in human brain tumors. Cancer Res,2003,63(18):5821-5828.
    [90]Pellegatta S,Poliani PL,Corno D,et al. Neurospheres enriched in cancer stem-like cells are highly effective in eliciting a dendritic cell-mediated immune response against malignant gliomas. Cancer Res,2006,66(21):10247-10252.
    [91]Bernard DJ, Courjal F, Maurizis JC, et al. Effect of epidermal growth factor in HLA class I and class II transcription and protein expression in human breast adenocarcinoma cell lines. Br J Cancer 1992,66:88-92.
    [92]Sun L, Carpenter G. Epidermal growth factor activation of NF-kB is mediated through IkBa degradation and intracellular free calcium. Oncogene 1998,16:2095-2102.
    [93]Zhao J, Freeman GJ, Gray GS, et al. A cell type-specific enhancer in the human B7.1 gene regulated by NF-kB. J Exp Med 1996,183:777-789.
    [94]Li J, Liu Z, Jiang S, et al. T suppressor lymphocytes inhibit NF-kB-mediated transcription of CD86 gene in APC. J Immunol 1999,163:6386-6392.
    [95]龚菲力.医学免疫学.2版.北京:北京科学技术出版社,2004:164-165,205.
    [1]MacDonald TJ, Rood BR, Santi MR, et al. Advances in the diagnosis, molecular genetics, and treatment of pediatric embryonal CNS tumors [J]. Oncologist,2003,8(2):174-186.
    [2]Kopper L, Hajdu M. Tumor Stem Cells[J]. Pathology Oncology Research,2004,10(2):69-73.
    [3]Guo W, Lasky JL, Wu H. Cancer Stem Cells[J]. Pediatr Res,2006,59(4 Pt 2):59-64.
    [4]Bjerkvig R, Tysnes BB, Aboody KS, et al. The origin of the cancer stem cell:current controversies and new insights[J]. Nature Reviews (cancer):2005,5(11):899-904.
    [5]Dean M, Fojo T, Bates S. Tumour stem cells and drug resistance[J]. Nat Rev Cancer,2005,5(4): 275-284.
    [6]Lapidot T, Sirard C, Vormor J, et al. A cell initiating human acute myeloid leukaemia after transplantation into SCID mice[J]. Nature,1994,367(6464):645-648.
    [7]Bonnet D, Dick J E. Human acute myeloid leukemia is organized as a hierarchy that originates from a primitive hematopoietic cell[J]. Nat Med,1997,3(7):730-737.
    [8]Dick J E. Acute myeloid leukemia stem cells[J]. Ann N Y A cad Sci,2005,1044:1-5.
    [9]Reya T, Morrison SJ, Clarke MF, et al. Stem cells, cancer and cancer stem cells[J]. Nature,2001, 4 (6859):105-111.
    [10]Hemmati H D, Nakano I, Lazareff JA, et al. Cancerous stem cells can arise from pediatric brain tumors[J]. Proc Nat Acad Sci USA,2003,100(25):15178-15183.
    [11]Singh SK, Jawkins C, Clarke ID, et al. Identification of a cancer stem cell in human brain tumors[J]. Cancer Res,2003,63(18):5821-5828.
    [12]Singh SK, Clarke ID, TerasakiM, et al. Identification of human brain tumor initiating cells[J]. Nature,2004,432(7015):396-401.
    [13]Yuan X, Curtin J, Xiong Y, et al. Isolation of cancer stem cells from adult glioblastoma multiforme[J]. Ocogene,2004,23(58):9392-9400.
    [14]Kondo T, Setoguchi T, Taga T. Persistence of a small subpopulation of cancer stem-like cells in the C6 glioma cell line[J]. PNAS,2004,101(3):781-786.
    [15]Pellegatta S, Poliani P L, Corno D, et al. Neurospheres enriched in cancer stem-like cells are highly effective in eliciting a dendritic cell-mediated immune response against malignant gliomas[J]. Cancer Res,2006,66(21):10247-10252.
    [16]Zhang XP, Zheng G, Zou L, et al. Notch activation promotes cell proliferation and the formation of neural stem cell-like colonies in human glioma cells[J]. Mol Cell Biochem,2008,307(1-2): 101-108.
    [17]尹昌林,吕胜青,唐莉,等.免疫磁珠法分选人脑胶质瘤干细胞及其培养和鉴定[J].中国神经肿瘤杂志,2007,5(4):251-256.
    [18]秦琨,姜晓丹,肖志诚,等.脑胶质瘤干细胞鉴定与增殖及耐药特性的实验研究[J].中华神经医学杂志,2008,7(4):372-375.
    [19]Morrison SJ, Qian D, Jerabek L, et al. A genetic determinant that specifically regulates the frequency of hematopoietic stem cells[J]. J Immunol,2002,168(2):635-642.
    [20]A1-Hajj M, Becker MW, Wicha M, et al. Therapeutic implications of cancer stem cells[J]. Curr Opin Genet Dev,2004,14(1):43-47.
    [21]Bonnet D, Dick JE. Human acute myeloid leukemia is organized as a hierarchy that originates from a primitive hematopoietic cell [J].Nat Med 1997,3(7):730-737.
    [22]Wang JC, Dick JE. Cancer stem cells:lessons from leukemia[J]. Trends Cell Biol 2005,15(9): 494-501.
    [23]Cozzio A, Passegue E, Ayton PM, et al. Similar MLL-associated leukemias arising from self-renewing stem cells and short-lived myeloid progenitors[J]. Genes Dev 2003,17(24): 3029-3035.
    [24]Jamieson CH, Ailles LE, Dylla SJ, et al. Gran-ulocyte-macrophage progenitors as candidate leukemic stem cells in blast-crisis CML[J]. N Engl J Med 2004,351(7):657-667.
    [25]Holland EC, Celestino J, Dai C, et al. Combined activation of Ras and Akt in neural progenitors induces glioblastoma formation in mice [J]. Nat. Genet.2000,25(1):55-57.
    [26]Kondo T, Raff M. Oligodendrocyte precursor cells reprogrammed to become multipotential CNS stem cells[J]. Science,2000,289(5485):1754-1757.
    [27]Holland EC. Glioma genesis:genetic alterations and mouse models[J]. Nat Rev Genet.2001, 2(2):120-129.
    [28]车晓明,崔大明,汪洋,等.胶质母细胞瘤肿瘤干细胞体外分离培养鉴定及生物学特性的研究[J].中国临床神经科学.2007,15(6):561-569.
    [29]陈刚,秦尚振,马廉亭等.人胚神经干细胞体外培养和超微结构观察[J].中国临床神经外科杂志,2006,11(2):92-95.
    [30]Duelli D, Lazeblik Y. Cell fusion:a hidden enemy[J]. Cancer Cell,2003,3(5):445-448.
    [31]Pawelek J. Tumour cell hybridization and metastasis revisited[J]. Melanoma Res,2000,10(6): 507-514.
    [32]Vignery A. Osteoclasts and giant cells:macrophage-macrophage fusion mechanism[J]. Int J Exp Pathol,2000,81(5):291-304.
    [33]Bergsmedh A, Szeles A, Henriksson M, et al. Horizontal transfer of oncogenes by uptake of apoptotic bodies[J]. Proc Natl Acad Sci USA,2001,98(11):6407-6411.
    [34]Hadnagy A, Gaboury L, Beaulieu R, et al. SP analysis may be used to identify cancer stem cell populations[J]. Exp Cell Res,2006,312(19):3701-3710.
    [35]Ignatova TN, Kukekov VG, Laywell ED, et al. Human cortical glial tumors contain neural stem-like cells expressing astroglial and neuronal markers in vitro[J]. Glia,2002,39(3): 193-206.
    [36]Inagaki A, Soeda A, Oka N, et al. Long-term maintenance of brain tumor stem cell properties under at non-adherent and adherent culture conditions[J]. Biochemical and Biophysical Research Communications,2007,361(3):586-592.
    [37]Bissell MJ, Labarge MA. Context, tissue plasticity, and cancer:are tumor stem cells also regulated by the microenvironment[J]. Cancer Cell,2005,7(1):17-23.
    [38]KuciaM, RecaR, Miekus K, et al. Traffickingof normal stem cells and metastasis of cancer stem cells involve similar mechanisms:pivotal role of the SDF21 CXCR4 axis[J]. Stem cells,2005, 23(7):879-894.
    [39]Li F, Tiede B, Massague J, et al. Beyond tumorigenesis:cancer stem cells in metastasis [J]. Cell Res,2007,17(1):3-14.
    [40]Bao S, Wu Q, Mc Lendon RE, et al. Glioma stem cells promote radioresistance by preferential activation of the DNA damage response[J]. Nature,2006,444(7120):756-760.
    [41]Marin L, Minguela A, Torio A, et al. Flow cytometric quantification of apoptosis and proliferation in mixed lymphocyte culture[J]. Cytometry A,2003,51(2):107-118.
    [42]Balajee AS, Geard CR. Replication protein A and C-H2AX foci assenmly is triggered by cellular response to DNA double-strand breaks[J]. Exp Cell Res,2004,300(2):320-334.
    [43]Chen M S, Woodward WA, Behbod F, et al. Wnt/β-catenin mediates radiation resistance of Scal+progenitors in an immortalized mammary gland cell line[J]. J Cell Sci,2007,120(Pt 3): 468-477.
    [44]Phillips TM. Mc Bride WH, Pajonk F, et al. The response of CD24-/low/CD44+ breast cancer-initiating cells to radiation[J]. J Natl Cancer Inst,2006,98(24):1777-1785.
    [45]Wang J, Guo LP, Chen LZ, et al. Identification of cancer stem cell like side population cells in human nasopharyngeal carcinoma cell line [J]. Cancer Res,2007,67(8):3716-3724.
    [46]毕长龙,方加胜,陈风华,等.CD133+胶质瘤干细胞化疗耐受机制分析[J].中南大学学报,2007,32(4):568-573.
    [47]Gottesman MM, Fojo T, Bates SE. Multidrug resistance in cancer:Role of ATP-dependent transporters[J]. Nat. Rev. Cancer,2002,2(1):48-58.
    [48]Goodell MA, Brose K, Paradis G, et al. Isolation and functional properties of murine hematopoietic stem cells that are replicating in vivo[J]. J Exp.Med.,1996,183(4),1797-1806.
    [49]Shmelkov SV, Jun L, St Clair R, et al. Alternative promoters regulate transcription of the gene that encodes stem cell surface protein AC 133[J]. Blood,2004,103(6):2055-2061.
    [50]Maw MA, Corbeil D, Koch J, et al. A frame shift mutation in prominin (mouse)-like 1 causes human retinal degeneration[J]. Hum Mol Genet,2000,9(1):27-34.
    [51]Richardson GD, Robson CN, Lang SH, et al. CD133, a novel marker for human prostatic epithelial stem cells[J]. J Cell Sci,2004,117(16):3539-3545.
    [52]Bar EE, Chaudhry A, Lin A, et al. Cyclopamine mediate hedgehog pathway inhibition dep letes stem like cancer cells in glioblastoma. Stem Cells,2007,25 (10):2524-2533.
    [53]Fan X, Matsui W, Khaki L, et al. Notch pathway inhibition depletes stem like cells and blocks engraftment inembryonal brain tumors. Cancer Res,2006,66(15):7445-7452.
    [54]Pu P, Zhang Z, Kang C, et al. Downregulation of Wnt2 and beta-catenin by siRNA suppresses malignant glioma cell growth. Cancer Gene Ther,2009,16(4):351-361.
    [55]Leung C, Lingbeek M, Shakhova O, et al. Bmil is essential for cerebellar development and is overexp ressed in human medullo-blastomas. Nature,2004,428 (6980):337-341.
    [56]Godlewski J, Nowicki MO, Bronisz A, et al. Targeting of the Bmi-1 oncogene/stem cell renewal factor by microRNA-128 inhibits glioma proliferation and self-renewal. Cancer Res, 2008,68(22):9125-9130.
    [57]Gadji M, Crous AM, Fortin D, et al. EGF receptor inhibitors in the treatment of glioblastoma multiform:old clinical allies and newly emerging therapeuticconcepts. Eur J Pharmacol, 2009,25(625):23-30.
    [58]Furnari FB, Fenton T, Bachoo RM, et al. Malignant astrocytic glioma:genetics,biology, and paths to treatment.Genes Dev,2007,21(21):2683-2710.
    [59]Han L, Zhang AL, Xu P, et al. Combination gene therapy with PTEN and EGFR siRNA suppresses U251 malignant glioma cell growth in vitro and in vivo. Med Oncol,2009,8(5): 3-7.
    [60]Lindvall C, et al. The WNT signaling receptor, LRP5, is required for mammary ductal stem cell activity and WNTl-induced tumorigenesis[J]. J Biol Chem,2006,281(46):35081-35087.
    [61]Moraes RC, Zhang XM, Harrington N, et al. Constitutive activation of smoothened (SMO) in mammary glands of transgenic mice leads to increased proliferation, altered differentiation and ductal dysplasia[J]. Development,2007,134(6):1231-1242.
    [62]Zhang XP, Zheng G, Zou L, et al. Notch activation promotes cell proliferation and the formationof neural stem cell-like colonies in human glioma cells[J]. Mol Cell Biochem,2008, 307(1-2):101-108.
    [63]Fan X, Matsui W, Khaki L, et al. Notch pathway inhibition depletes stem-like cells and blocks engraftment in embryonal brain tumors[J]. Cancer Res,2006,66(15):7445-745.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700