用户名: 密码: 验证码:
海底热液口温度场声学测量技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
海底火山活动产生了热液喷口,热液流体的最高温度可达400℃,在喷发的热液流体和周围海水之间形成了陡峭的温度场分布。热液口周围温度场的分布对于海洋环境监测、准确测量热液热通量、研究热液成矿机制及热液口生物群落,有着重要的科学意义。
     由于海底热液口高温、高压、浑浊等恶劣环境特性,目前国内外主要采用热电偶等接触式传感器,测量有限点的热液口温度值,尚未建立有效的温度场监测手段。
     在国家自然科学基金重点项目“深海热液原位长期观测系统方法与技术研究”(编号:40637037)和国家863计划课题“深海热液温度场及速度场原位声学探测系统的研制”(编号:2007AA09Z213)的资助下,本文在数值仿真分析和实验观测的基础上,结合水声学、信号处理和反问题理论,对海底热液口温度场声学测量技术进行了较为系统的研究,主要研究内容与结论有:
     1.从数值模拟和实验观测两方面揭示了高浓度悬浮颗粒物及热液气泡群对声波的衰减规律。采集了台湾龟山岛浅海热液区喷口噪声,并对其进行了频谱特性分析,结果表明,实际海底热液口噪声的频率成分主要分布在3kHz以下的低频段。特别地,在数值仿真和实验观测结果指导下,提出了温度场声学测量系统最优工作频率的选择依据和方法。综合考虑了环境噪声和声波信号在高浓度悬浮颗粒物海水中的衰减特性,最终确定采用频率范围为18kHz-23kHz的扫频信号作为发射声源。
     2.建立多径信号时延估计问题信号模型。提出一种已知声源信号直接互相关时延估计方法——ASSCC法,该方法采用已知基准波形,可不考虑发射信号中的噪声干扰,避免了噪声相关对时延估计产生的不利影响,与参照算法相比具有更优的时延估计性能。理论分析了多径信道时延估计的克拉美罗下界,给出了多径信号条件下的时延估计方差。提出了两种新颖的水声换能器声中心距离及响应时间标定方法,为后续的系统研制和实验研究奠定了基础。
     3.详细研究了温度场重建算法,提出了基于总体最小二乘法和基于抗差最小二乘法的温度场重建方法。前者针对输入和输出观测数据中均含有噪声的温度场重建问题,进行自适应迭代,提高了算法的鲁棒性,使得算法简单、稳定性好;后者继承并发展了经典最小二乘法的思想,在保留其计算量小等优点的同时,增强抗差性,克服了测量粗差可能导致重建结果奇异的问题,保证了温度场声学重建方法良好的工程实用性。对影响温度场图像重建精度的因素进行了详细的仿真研究,结果表明温度场重建精度除受传感器数量及位置分布影响之外,与测量区域大小、网格划分数、声波飞渡时间测量精度及测量粗差等因素都有直接关系。
     4.进行海底热液温度场声学测试系统集成研究。根据系统的实际工况和布放方式,给出了完整的集成方案,提出了新颖的水声换能器机架结构设计、密封舱结构设计。研制了一套海底热液口温度场声学测量系统。系统采用标准水听器作为水下接收/发射换能器,使用高速数据采集系统同步采样多路信号,进行声波飞渡时间延迟估计,最后由上位机软件重建温度场。
     5.开展了海底热液口温度场声学测量系统在水池条件下的模拟实验。首先,进行了标定实验,测量得到了每一对水声换能器的声中心距离和响应时间值;然后在试验水池中,测量了模拟温度场,验证了声学测温方法的可行性。在云南省龙陵县茄子山水库热泉区,进行了系统湖试应用研究。湖底热泉位于北纬24°32’33”,东经98°47’44”。实验结果表明,重建温度场的最大相对误差为1.11%。
     系统的成功研制和湖试应用,说明了海底热液口温度场声学测量方法的可行性,同时积累了一定量的技术和经验,为今后的海底原位测量铺平了道路。本文的研究成果在水质监测、核物理研究、化学工程及农业工程领域同样具有广阔的应用前景。
The hydrothermal vents are a direct result of the volcanic activity happening under ocean water. Hydrothermal fluid temperatures may be as high as 400℃. Steep temperature fields are formed between the outflowing fluids and the seawater around it. The temperature distributions around the hydrothermal vents in deep-ocean are of fundamental importance in marine environmental monitoring, precise measurement of the heat flux from the hydrothermal vents, submarine hydrothermal mineralization and our understanding of the environmental impacts on the vent organisms.
     However, in addition to obvious obstacles of high temperature and pressure, the corrosive nature of hydrothermal fluid and high load of particle in the fluid prevent a lot of non-intrusive methods such as infrared, laser and acoustic monitoring from being used to measure temperature of a hydrothermal vent. Placing a matrix of contact-type temperature sensors such as thermocouple sensors and resistance thermocouple sensors near the hydrothermal vents orifice is the most common practice to measure individual 1D profile of temperature around deep-sea hydrothermal vents.
     This dissertation is supported by the National Natural Science Foundation of China (Project title:Methodology and Technical Study of Long-term In-situ Observation System for Seafloor Hydrothermal. Grant No.:40637037) and the National High Technology Research and Development Program of China (Project title:Development of Acoustic In-situ Detector of Temperature Field and Velocity Field around the Deep-sea Hydrothermal Vents. Grant No.: 2007AA09Z213). By means of experimental observations and data analysis, as well as numerical simulation, the acoustic measurement techniques for determining the temperature distribution around seafloor hydrothermal vents are studied in this dissertation. The main contributions of this work are as follows:
     1. Ocean is a complicated and changeable channel which may distort the signals and degrade the performance of acoustic measurement system. The attenuation rules in suspended particles and bubble group are investigated numerically. The sound generated by the Kueishantao Island's hydrothermal activity in northeast Taiwan and the ambient noise are measured by the author. The acoustic spectrum of the recorded signals shows that vents radiate significant acoustic energy at all frequencies up to 3 kHz. The vents generate a broadband acoustic signal with power levels 10~30 dB above the ambient noise level. In this thesis we propose optimal frequencies for the acoustic temperature field measurement system around deep-sea hydrothermal vents. Higher frequencies are immune to most natural and artificial sound sources encountered during in-situ measurement. However, from an attenuation and cost perspective, lower frequency operation is more desirable. So the choice of operating frequency in acoustic in-situ detector has to be made by compromise. We choose working frequency band of 18-25 kHz for a given acoustic in-situ detection system.
     2. We propose a high resolution multipath time-delay estimation scheme based on the active sound souce cross-correlation (ASSCC). This method uses a known reference waveform that neglects the negative influence caused by noise and has superior performance on time-delay estimation. We study the Cramer-Rao bound of the multipath time-delay estimation scheme, and give the variance of estimation. We also present two novel algorithms to automatically determine the center-to-center distances of underwater transducers in our system for in-situ measurements of temperature distribution around deep-sea hydrothermal vents.
     3. We have made a scrutiny into the reconstruction algorithm. Two novel 2-D temperature field reconstruction methods are proposed, which are based on the total least squares (TLS) and the robust least square regression (RLS) respectively. It is shown that in the presence of observation noises, comparing with the results obtained from a conventional least squares approach, a TLS solution leads to significant improvements in the quality of reconstructed images. To deal with the gross errors in measurement, we make use of the RLS method, which is based on the Huber estimate and is computed by means of the iteratively reweighted least squares algorithm. It is shown that even a single outlier can degrade a least squares solution considerably. The robust estimators, thanks to an iterative downweighting process, gradually ignore those outliers that lead to large residuals.
     An analysis is performed on the relevant factors affecting reconstruction quality. As our results indicate, the quality of temperature field not only depends on such parameters as the quantity and placement of the transducers, but also depends on the the area of the measurement plane, the number of grids, the accuracy of the time-of-flight measurements, gross errors and other factors.
     4. A new acoustic measurement system of temperature distribution around seafloor hydrothermal vents has been developed. Regarding the measuring system, hydrophones are used as transmitters and receivers. The signal correlation analysis is performed to obtain accurate acoustic wave transit time from the transmitted and received acoustic signals. Both the transmitter emission start time and the receiver capture start time are also estimated using a novel algorithm based on the time-of-flight measurements at different water temperatures. The reconstruction of the 2-D temperature field which is an ill-posed problem, is conducted by total least-squares method and the robust least square regression.
     5. The laboratory experiments and lake trial have been carried out to study the integrated performance of the acoustic measurement system of temperature distribution around seafloor hydrothermal vents. First we perform the system calibration, and get the response time and the center-to-center distance between a transmitter and a receiver. Next, we confirm the feasibility of the acoustic measurement techniques for determining the temperature distribution around seafloor hydrothermal vents by a tank test. Then, an experimental study is performed on acoustic imaging of underwater temperature fields in Lake Qiezishan, located in Longling Country, Yunnan Province, China. There are hot springs and craters beneath Lake Qiezishan, which lies at 24°32'33" north latitude and 98°47'44" east longitude. Experimental results confirm that acoustic tomography is a powerful tool for studying a small scale temperature field around the hydrothermal vents in seafloor, and stands as a good candidate to replace intrusive methods. The maximum relative error between the data measured by the sound probes and that measured by the thermocouples is within 1.11%.
     Surely, as a new and primitive studying method, it needs further improvement and perfection yet. In our opinion, a significant improvement in temperature field reconstruction can only be obtained if high precision measurement of TOF data, a low condition number of matrix A, and an effective inversion method are available. The underwater acoustic measurement system has the advantage that it can also be used in applications such as water quality monitoring, nuclear, chemical engineering and agriculture.
引文
[1]Baker, E. T., Lavelle, J. W. and Massoth, G. J. Hydrothermal particle plumes over the southern Juan de Fuca Ridge. Nature,1985,316,342-344.
    [2]杜同军,翟世奎,任建国.海底热液活动与海洋科学研究.青岛海洋大学学报(自然科学版),2002,32(4),597-602.
    [3]秦蕴珊,栾锡武.现代海底热液活动的调查研究方法.地球物理学进展,2002,17(4),592-597.
    [4]Corliss, J. B., Dymond, J., Gordon, L. I., Edmond, J. M., von Herzen, R. P., Ballard, R. D., Green, K., Williams, D., Bainbridge, A., Crane, K. and van Andel, T. H. Submarine thermal springs on the Galapagos Rift. Science,1979,203,1073-1083.
    [5]Spiess, F. N., Macdonald, K. C., Atwater, T., Ballard, R., Carranza, A., Cordoba, D., Cox, C., Diaz Garcia, V. M., Francheteau, J., Guerrero, J., Hawkins, J., Haymon, R., Hessler, R., Juteau, T., Kastner, M., Larson, R., Luyendyk, B., Macdougall, J. D., Miller, S., Normark, W., Orcutt, J. and Rangin, C. East Pacific Rise:Hot springs and geophysical experiments. Science,1980,207, 1421-1433.
    [6]Lupton, J. E., Delaney, J. R., Johnson, H. P. and Tivey, M. K. Entrainment and vertical transport of deep-ocean water by buoyant hydrothermal plumes. Nature,1985,316,621-623.
    [7]Gendron, J. F., Cowen, J. P., Feely, R. A. and Baker, E. T. Age estimate for the 1987 Megaplume on the Southern Juan de Fuca Ridge using excess radon and manganese partitioning. Deep-Sea Res., 1993,40(8),1559-1567.
    [8]Lupton, J. E. and Craig, H. A major helium-3 source at 15 S on the East Pacific Rise. Science,1981, 214,13-18.
    [9]Baker, E. T. and Massoth, G. J. Characteristics of hydrothermal plumes from two vent fields on the Juan de Fuca Ridge. northeast Pacific Ocean, Earth Planet. Sci. Lett,1987,85,59-73.
    [10]Rona, P. A., and Speer, K. G. An Atlantic hydrothermal plume:TAG area, Mid-Atlantic Ridge crest near 26 N. Journal of Geophysical Research,1989,94(B10),13879-13893.
    [11]Baker, E. T., German, C. R. and Elderfield, H. Hydrothermal plumes overspreading center axes: Global distributions and geological inferences. American Geophysical Union, Washington DC, 1995.
    [12]Lupton, J. E. Hydrothermal plumes:Near and far field. American Geophysical Union, Washington DC:Geophysical Monograph 91,1995.
    [13]McDuff, R. E. Physical dynamics of deep-sea hydrothermal plumes. Physical, chemical, biological and geological interactions in hydrothermal systems. AGU Monograph 91,1995,357-368.
    [14]G Prieur & Godfroy. http://www.interridge.org/files/interridge/Prieur_IRTI_revised.pdf.2007.
    [15]Fornari, D. J., Shank, T. Von Damm, K. L., Gregg, T. K. P., Lilley, M., Levai, G., Bray, A., Haymon, R. M., Perfit, M. R. and Lutz, R. Time-series temperature measurements at high-temperature hydrothermal vents, East Pacific Rise 9°49'-51'N:evidence for monitoring a crustal cracking event. Earth and Planetary Science Letters,1998,160,419-431.
    [16]Tivey, M. K., Bradley, A. M., Joyce, T. M. and Kadko, D. Insights into tide-related variability at seafloor hydrothermal vents from time-series temperature measurements. Earth and Planetary Science Letters,2002,202,693-707.
    [17]Glasby, G. P. and Kasahara, J. Influence of tidal effects on the periodicity of earthquake activity in diverse geological settings with particular emphasis on submarine hydrothermal systems. Earth-Science Reviews,2001,52,261-297.
    [18]Schultz, A. and Elderfield, H. Controls on the physics and chemistry of seafloor hydrothermal circulation. Philosophical Transactions of the Royal Society of London Series A-Mathematical Physical and Engineering Sciences,1997,355 (1723),387-425.
    [19]栾锡武,赵一阳,秦蕴珊,初凤友.热液系统输向大洋的热通估算.海洋学报,2002,24(6),59-66.
    [20]Lee, R. W. Thermal tolerances of deep-sea hydrothermal vent animals from the northeast pacific. Biol Bull,2003,205(2),98-101.
    [21]Richard E. Thomson, John R. Delaney, Russell E. McDuff, David R. Janecky and James S. McClain. Physical characteristics of the Endeavour Ridge hydrothermal plume during July 1988. Earth and Planetary Science Letters,1992,111(1),141-154.
    [22]Baker, E. T., German, C. R., and Elderfield, H. Hydrothermal plumes over spreading-center axes: Global distributions and geological inferences, Seafloor Hydrothermal Systems:Physical, Chemical, Biological, and Geological Interactions. Geophysical Monograph 91, American Geophysical Union, 1995,47-71.
    [23]Thomson, R. E. and Davis, E. E. Hydrothermal venting and geothermal heating in Cascadia Basin. Journal of geophysical research,1995,100,6121-6141.
    [24]Fornari, D. J., Voegeli, F. and Olsson, M. Improved low-cost, time-lapse temperature loggers for deep ocean and sea floor observatory monitoring. Ridge Events,1996,7,13-16.
    [25]Ding, K., Seyfried Jr., W. E., Tivey, M. K., Bradley, A. M. In-Situ measurement of dissolved H2 and H2S in high temperature hydrothermal vent fluids at the Main Endeavour field, Juan de Fuca Ridge. Earth Planet. Sci. Lett.,2001,186,417-425.
    [26]Wu, H. C., Chen, Y., Yang, C. J., Zhang, J. F., Zhou, H. Y., Peng, X. T. Mechatronic integration and implementation of in situ multipoint temperature measurement for seafloor hydrothermal vent. Science in China, Series E:Technological Sciences,2007,37(3),438-445.
    [27]伊藤文夫,坂井正康.Fundamental studies of acoustic measurement and reconstructing combustion temperature in large boilers. Transactions of the Japan Society of Mechanical Engineers, B,1987,53(489),1610-1614.
    [28]John A Kleppe. Advance in Acoustic Pyrometry. ASA 131st Meeting, Indianapolis,1996,4 (99), 2535-2574.
    [29]John A Kleppe. Adapt acoustic pyrometer to measure flue-gas flow. Power,1995,139(8),46-47.
    [30]Woodham, A. V., S. F. G. a. Rapid Furnace Temperature Distribution Measurement by Sonic Pyrometry. Report, Editor, Marchwood Engineering Laboratories Southampton, UK.,1983.
    [31]Green, S. F. Acoustic temperature and velocity measurement in combusti-ongases. In:Proc. Eighth Int. Heat Transfer Conf. SanFrancisco,USA,1986,555-560.
    [32]Green, S. F. An Acoustic Technique for Rapid Temperature Distribution Measurement. J. Acoust. Soc. Am.,1985,77(2),759-764.
    [33]L. J. Muzio, D. E., Green, S. F. Acoustic pyrometry:new boiler diagnostic tool. Power Engineering, 1989,93(11),49-52.
    [34]W.Derichs, F. H., Menzel, K., Reinartz, E. Acoustic pyrometry:acorrelation between temperature distributions and the operating conditions in a brown coal fired boiler. In:The Second International Conference on Clean Combustion Technologies, Lisbon, Portugal,1993.
    [35]CODEL. Acoustic Pyrometer. Sensor Review,1999,19(2),148-149.
    [36]Lu, J. W., Takahashi, K. Set al. Acoustic Computer Tomographic Pyrometry for Two-Dimensional Measurement of Gases Taking into Account the Effect of Refraction of Sound Wave Paths. Journal of Combustion Measurement and Science,2000,11(6),692-697.
    [37]G. Kychakoff, A. F. H., Boyd, S.P. Use of Acoustic Temperature Measurements in the Cement Manufacturing Pyroprocess. In:2005 IEEE Cement Industry Technical Conference.Kansas City, Missouri, USA,2005,23-33.
    [38]冯鸣译.声学高温计—锅炉诊断的新工具.发电设备,1990,(4),33-36.
    [39]邵富群,吴建云.声学法复杂温度场的重组测量.控制与决策,1999,14(2),120-124.
    [40]沈国清,安连锁,姜根山.炉膛烟气温度声学测量方法的研究与进展.仪器仪表学报,2003,24(sl),555-558.
    [41]姜根山,安连锁,杨昆.温度梯度场中声线传播路径数值研究.中国电机工程学报,2004,24(10),210-214.
    [42]沈国清,安连锁,姜根山等.基于声学CT重建炉膛二维温度场的仿真研究.中国电机工程学报,2007,27(2),11-14.
    [43]沈国清,安连锁,姜根山等.电站锅炉声学测温中时间延迟估计的仿真研究.中国电机工程学报,2007,27(11),57-61.
    [44]沈国清,安连锁,张波等.基于声波理论的锅炉燃烧监测方法及其技术关键.中国工程热物理学报,2005,27(s2),139-142.
    [45]沈国清,安连锁,张波等.电站锅炉声学测温中的声源选择及其声信号互相关特性分析.现代电力,2006,23(3),41-46.
    [46]沈国清.基于声波理论的炉膛温度场在线监测技术研究.华北电力大学博士学位论文.北京:华北电力大学,2007.
    [47]田丰.声学法燃煤锅炉炉膛火焰温度场图像重建研究.东北大学博士论文.沈阳:东北大学,2004.
    [48]田丰,邵富群,王福利.基于正则方法与迭代技术相结合的复杂温度场重建算法.东北大学学报,2003,24(4),307-310.
    [49]田丰,孙小平,邵富群,王福利,王琳霖.基于高斯函数与正则化法的复杂温度场图像重建算法研究.中国电机工程学报,2004,24(5),212-220.
    [50]Munk, W., Worceser, P. F., Wunsch, C. Ocean Acoustic Tomography. Cambridge University Press, 1995.
    [51]Send, U. P. F., Worcester, P. F., Cornuelle, B. D., Tiemann, C. O., et al. Integral measurements of mass transport and heat content in the Strait of Gibralatar from acoustic transmissions. Deep-Sea Res.,2002,49,4069-4095.
    [52]The ATOC Consortium. Ocean climate change:comparison of acoustic tomography, satellite altimetry, and modeling. Science,1998,281,1327-1332.
    [53]Duckworth, G., LePage, K., Farrel, T. Low-frequency long-range propagation and reverberation in the Central Arctic:Analysis of experimental results. J. Acoust. Soc. Am.,2001,110,747-760.
    [54]廖光洪,朱小华,林巨,郑红,梁楚进.海洋声层析应用与观测研究综述.地球物理学进展,2008,23(6),1782-1790.
    [55]Zheng, H., Gohda, N., Noguchi, H. Reciprocal sound transmission experiment for current measurement in the seto inland sea. J Oceanogr,1997,53,117-127.
    [56]Zheng, H. Study on development and application of the coastal acoustic tomography system. Hiroshima:Hiroshima Univ,1997.
    [57]张仁和,刘红,何怡.水平不变海洋声道中的WKBZ简正波方法.声学学报,1994,19(1),1-12.
    [58]张仁和,李风华.浅海声传播的波束位移射线简正波理论.中国科学(A),1999,29(3),241-251.
    [59]王少强,吴立新,王慧文,张仁和.2001南中国海实验温度场与声传播起伏及内潮(波)特征反演.自然科学进展,2004,14(6),635-640.
    [60]Crone, T. J., Wilcock, W. S. D., McDuff, R. E. Flow rate perturbations in a black smoker hydrothermal vent in response to a mid-ocean ridge earthquake swarm. Geochemistry, Geophysics, Geosystems,2010,11, Q03012, doi:10.1029/2009GC002926.
    [61]Rona, P. A., Bemis, K. G., Silver, D., Jones, C. D. Acoustic imaging, visualization, and quantification of buoyant hydrothermal plumes in the Ocean, Marine Geophysical Researches 23, 2002,147-168.
    [62]Bemis, K. G., Rona, P. A., Jackson, D., Jones, C. D. Time-Averaging Fluctuating Seafloor Hydrothermal Plumes:Measurements by Remote Acoustic Sensing, Geophysical Research Abstracts 5,2003,6-11.
    [63]Jackson, D. R., Jones, C. D., Rona, P. A., Bemis, K. G. A method for Doppler acoustic measurement of black smoker flow fields. Geochemistry, Geophysics, Geosystems,2003, doi:10.1029/2003GC000509.
    [64]Orr, M. H. and Hess, F. R. Remote acoustic monitoring of natural suspensate distributions, active suspensate resuspension and slope/shelf water intrusions. J. Geophys. Res.,1987,83,4062-4068.
    [65]Hay, A. E. Remote acoustic imaging of the plume from a submarine spring in an Arctic fjord. Science,1984,225,1154-1156.
    [66]Pan, H. C., Chen, Y., Mao, J., Fan, W. Progress in developing a device for measuring heat flux from the hydrothermal vent in deep ocean using acoustic method.2008, Proceedings of the OCEANS 2008 MTS/IEEE Quebec conference & Exhibition, Qubec City, Canada,080515-036.
    [67]Duda, T. F., and Trivett, D. A. Predicted scattering of sound by diffuse hydrothermal vent plumes at mid-ocean ridges. J. Acoustic.Soc.Am.,1998,103(1),330-335.
    [68]惠俊英.水下声信道.长沙:国防工业出版社,2007.
    [69]Manickam, T. G., Vaccaro, R. J. and Tufts, D. W. A least-squares algorithm for multipath time-delay estimation. IEEE Transactions on Signal Processing,1994,42(11),3229-3233.
    [70]杨士莪.水声传播原理.哈尔滨:哈尔滨工程大学出版社,2007.
    [71]Chen,C. T., Millero, F. J. Speed of sound in seawater at high pressures. J. Acoust. Soc. Am.,1977, 62,1129-1135.
    [72]Coppens, A. Simple equations for the speed of sound in Neptunian waters. J. Acoust. Soc. Am., 1981,69,862-863.
    [73]Fofonoff, N. P., Millard, R. C. Algorithms for computation of fundamental properties of seawater. UNESCO technical papers in marine science. No.44, Division of Marine Sciences. UNESCO, Place de Fontenoy,75700 Paris,1983.
    [74]Mackenzie, K. Nine-term equation for the sound speed in the oceans. J. Acoust. Soc. Am.,1981,70, 807-812.
    [75]樊炜,潘华辰,陈鹰.深海探测电极腔液-液高效驱替机理的研究.机械工程学报,2010,46(4),143-149.
    [76]Sarradin, P. M., Lannuzel, D., Waeles, M., Crassous, P., Le Bris, N., Caprais, J. C., Fouquet, Y., Fabri, M. C., Riso, R. Dissolved and particulate metals (Fe, Zn, Cu, Cd, Pb) in two habitats from an active hydrothermal field on the EPR at 13°N. Sci. Tot. Env.,2008,392 (1),119-129.
    [77]Richards, S. D., Leighton, T. G. and Brown, N. R. Visco-Inertial Absorption in Dilute Suspensions of Irregular Particles. Proceedings of the Royal Society of London, Series A.,2003,459, 2153-2167.
    [78]Urick, R.J. Principles of Underwater Sound.3rd Edition, McGraw-Hill,1983.
    [79]Seewald, J., Cruse, A. and Saccocia, P. Aqueous volatiles in hydrothermal fluids from the Main Endeavour Field, northern Juan de Fuca Ridge:temporal variability following earthquake activity. Earth and Planetary Science Letters,2003,216(4),576-90.
    [80]Charlou, J. L., Donval, J. P., Fouquet, Y, Jean-Baptiste, P. and Holm, N. Geochemistry of high H2 and CH4 vent fluids issuing from ultramafic rocks at the Rainbow hydrothermal field (36°14'N, MAR). Chemical Geology,2002,191,345-359.
    [81]Schmidt, K., Koschinsky, A., Garbe-Schonberg, D., de Carvalho, L. M. and Seifert, R. Geochemistry of hydrothermal fluids from the ultramafic-hosted Logatchev hydrothermal field,15 degrees N on the Mid-Atlantic Ridge:Temporal and spatial investigation. Chemical Geology,2007, 242(1-2),1-21.
    [82]张建生,林书玉,刘鹏,苗润才,杨万民.船舶尾流气泡幕中的声速.中国科学,G辑,2007,37(6),783-788.
    [83]孙贵新.水中气泡群对水声信号传播的影响.辽宁师范大学学报(自然科学版),2006,29(3),308-310.
    [84]Crone, T. J., Wilcock, W. S. D., Barclay, A. H. and Parsons, J. The sound generated by mid-ocean ridge black smoker hydrothermal vents. PLoS ONE,2006, 1(1):e133, doi:10.1371/journal.pone.0000133.
    [85]Lovell, J. M., Findlay, M. M., Moate, R.M. and Yan, H. Y. The hearing abilities of the prawn Palaemon serratus. Comparative Biochemistry and Physiology, Part A,2005,140,89-100.
    [86]Fay, R. R. Hearing in Vertebrates:a Psychophysics Databook. Winnetka, Illinois:Hill-Fay Associates,1988.
    [87]Horch, K. An organ for hearing and vibration sense in the ghost crab Ocypode. Journal of Comparative Physiology A:Neuroethology, Sensory, Neural, and Behavioral Physiology,1971,73, 1-21.
    [88]Ivana, J., Luciano, S. and Martin, V. Acoustic tomography method for measuring temperature and wind velocity. IEEE International Conference on Acoustics, Speech, and Signal Processing,2006,4, 1141-1144.
    [89]Procunier, R. W. and Sharp, G. W. Optimum frequency for detection of acoustic sources in the upper atmosphere. Acoust. Soc. Am,1971,49,622-626.
    [90]汪德昭,尚尔昌.水声学.北京:科学出版社,1981.
    [91]马晓红,陆晓燕,殷福亮.改进的互功率谱相位时延估计方法.电子信息学报,2004,26(1),53-59.
    [92]Nikias, C. L., Raghuveer, M. R. Bispectrum estimation:a digital signal processing framework. Pro. IEEE,1987,75(7),869-891.
    [93]Scarbrough, K., Tremblay, R. J. and Carter, G. C. Performance predictions for coherent and incoherent processing techniques of time delay estimation. IEEE Trans. Acoust., Speech, Signal Processing,1983,31,1191-1196.
    [94]Scarbrough, K., Tremblay, R. J. and Carter, G. C. Performance predictions for coherent and incoherent processing techniques of time delay estimation. IEEE Trans. Acoust., Speech, Signal Processing,1983,31,1191-1196.
    [95]罗振.炉膛燃烧噪声环境下声波飞行时间测量方法研究.沈阳航空工业学院硕士学位论文.沈阳:沈阳航空工业学院,2006.
    [96]Youn, D. H., Ahmed, N., Carter, G. C. An adaptive approach for time delay estimation of band limited signals. IEEE Trans. ASSP,1983,31(3),780-784.
    [97]行鸿彦,刘照泉,万明习.基于小波变换的广义相关时延估计算法.声学学报,2002,27(1),88-93.
    [98]黎英云.微弱多径信号时延估计技术研究.华中科技大学博士学位论文.武汉:华中科技大学,2009.
    [99]Carter, G. C. Coherence and Time Delay Estimation. Proceedings of the IEEE,1987,75 (2),236-255.
    [100]Ash, J. N. and Moses, R. L. Acoustic time delay estimation and sensor network self-localization: experimental results. Journal of the Acoustical Society of America,2005,118,841-850.
    [101]Weiss, A. J. and Weinstein, E. Fundamental limitations in passive time delay estimation-Part I: Narrow-band systems. IEEE Trans. Acoust., Speech, Signal Processing,1983,31,472-486.
    [102]王宏禹,邱天爽.自适应噪声抵消与时间延迟估计.大连:大连理工大学出版社,1999.
    [103]杨进.供水管道泄露检测定位中的信号分析及处理研究.重庆大学博士学位论文.重庆:重庆大学,2007.
    [104]Ge, F. X., Shen, D. X., Peng, Y. N. Li, V. O. K. Super-Resolution Time Delay Estimation in Multipath Environment. IEEE Transcations on Circuits and Systems—Ⅰ:Regular Papers,2007, 54(9),1977-1986.
    [105]王魏.CDMA蜂窝网络移动台无线定位技术的研究.国防科学技术大学博士学位论文.长沙:国防科学技术大学,2006.
    [106]Zhang, J., Kennedy, R. A., Abhayapala, T. D. Cramer-Rao Lower Bounds for the time delay estimation of UWB signals. IEEE Communications Society,3424-3428.
    [107]Zhang, F. Matrix Theory: Basic Results and Techniques. Springer-Verlag, New York Inc., New York,1999.
    [108]Sachar, J. M., Silverman, H. F. and Patterson Ⅲ, W. R. Position calibration of large-aperture microphone arrays. Proc. IEEE Int. Conf. Acoust., Speech, Signal Processing,2002,2,1797-1800.
    [109]Raykar,V. C., Kozintsev, I. V. and Lienhart, R. Position Calibration of Microphones and Loudspeakers in Distributed Computing Platforms. IEEE Transactions on Speech and Audio Processing,2005,13,70-83.
    [110]Jacobsen, F., Barrera-Figueroa, S. and Rasmussen, K. A note on the concept of acoustic center. Acoust. Soc. Am.,2004,115,1468-1473.
    [111]J.R.Cox, Jr. Physical limitations on free-field microphone calibration. Ph.D. thesis,, Massachusetts Institute of Technology,1954.
    [112]Rasmussen, K. Acoustic centre of condenser microphones. The Acoustics Laboratory, Technical University of Denmark, Report 5,1973.
    [113]IEC Publication 486. Precision method for free-field calibration of one-inch condenser microphones by the reciprocity technique.1974.
    [114]IEC International Standard 61094-3. Measurement microphones, Part 3:Primary methods for free-field calibration of laboratory standard microphones by the reciprocity technique.1995.
    [115]Rasmussen K. and Sandermann Olsen, E. Intercomparison on free-field calibration of microphones. The Acoustics Laboratory, Technical University of Denmark, Report PL-07,1993.
    [116]Bramanti M. Acoustic pyrometer system for tomographic thermal imaging in power plant boilers. IEEE Transactions on Instrument & Measurement,1996,45(1),159-161.
    [117]张贤达.现代信号处理.北京:清华大学出版社,2002.
    [118]田丰,孙小平,邓福军,邵富群,王福利.声学法电站锅炉温度场重建算法的研究与比较.量子电子学报,2003,20(5),607-612.
    [119]Fierro, R. D., Golub, G. H., Hansen, P. C. and O'Leary, D. P. Regularization by truncated total least squares. SIAM J. Sci. Comput.,1997,18(1),1223-1241.
    [120]Markovsky and Van Huffel, S. Overview of total least squares methods. Signal Process.,2007,87, 2283-2302.
    [121]Huffel, S. and Lemmerling, P. (editors). Total Least Squares and Errors-in-Variables Modeling: Analysis, Algorithms and Applications. Kluwer,2002.
    [122]Beck, A. and Ben-Tal,A. A global solution for the structured total least squares problem with block circulant matrices. SIAM J. Matrix Anal. Appl.,2006,27(1),238-255.
    [123]Fan, X. The constrained total least squares with regularization and its use in ill-conditioned signal restoration. Ph.D. thesis, Mississippi:Elec. Comput. Eng. Dept., Mississippi State Univ.,1992.
    [124]Beck and Ben-Tal, A. On the solution of the Tikhonov regularization of the regularized total least squares problem. SIAM J. Optim.,2006,17,98-118.
    [125]Abatzoglou,T. J., Mendel, I. M. and Harada, G. A. The constrained total least squares technique and its applications to harmonic superresolution. IEEE Trans. Signal Process.,1991,39(5),1070-1087.
    [126]Botting, B. Structured total least squares for approximate polynomial operations. Master's thesis, School of Computer Science, Univ. of Waterloo,2004.
    [127]Beck, A. The matrix-restricted total least-squares problem. Signal Process.,2007,87(10), 2303-2312.
    [128]Chen, W., Chen, M. and Zhou, J. Adaptively regularized constrained total least squares image restoration. IEEE Trans. Image Process.,2000,9(4),588-596.
    [129]Beck, A. Ben-Tal, A. and Teboulle, M. Finding a global optimal solution for quadratically constrained fractional quadratic problem with applications to the regularized total least squares. SIAM J. Matrix Anal. Appl.,2006,28(2),425-445.
    [130]De Moor, B. Structured total least squares and L2 approximation problems. Linear Algebra Appl.,1993,188-189,163-207.
    [131]De Moor, B. Structured total least squares and L2 approximation problems. Linear Algebra Appl.,1993,188-189,163-207.
    [132]周江文.抗差最小二乘法.武汉:华中理工大学出版社,1990.
    [133]Yang, Y., Song, L. and Xu, T. Robust estimator for correlated observations based on bifactor equivalent weights. Journal of Geodesy,2002,76,353-358.
    [134]杨元喜.抗差估计理论及其应用.北京:八一出版社,1993.
    [135]Gastwirth, J. L. and Rubin, H. The behavior of robust estimators on dependent data. Ann Statist, 1975,3(5),1070-1100.
    [136]Guttman, Land Lin, D. K. J. Robust recursive estimation for correlated observations. Statist Prob Lett,1995,23,79-92.
    [137]Wisniewski Z. A concept of robust estimation of variance coefficient (VR-estimation). Boll Geod Sci Aff LⅧ,1999, (3),291-310.
    [138]Zhou, J., Huang, Y., Yang, Y. and Ou, J. Robust least squares method. Huazhong University of Science and Technology, Wuhan,1997.
    [139]Hampel, F. R., Rousseeuw, P. J., Ronchetti, E. M. and Stahel, W. A. Robust Statistics. John Wiley & Sons, New York,1987.
    [140]黄幼才.数据探测与抗差估计.北京:测绘出版社,1990.
    [141]陈希孺,陈桂景,吴启光,赵林城.线性模型中的估计理论.北京:科学出版社,1985.
    [142]Yohai, V. J. and Maronna, R. A. Asymptotic behavior of M-estimators for the linear model. Ann Statist,1979, (7),258-268.
    [143]Yang, Y. Estimators of Covariance Matrix at Robust Estimation Based on Influence Functions. ZfV, 1997,122(4),166-174.
    [144]Fan, W., Chen, Y., Pan, H. C., Ye, Y., Cai, Y., Zhang, Z. J., Experimental study on underwater acoustic imaging of 2-D temperature distribution around hot springs on floor of Lake Qiezishan, China. Experimental Thermal and Fluid Science, DOI:10.1016/j.expthermflusci.2010.06.005
    [145]Bramanti M. Acoustic pyrometer system for tomographic thermal imaging in power plant boilers. IEEE Transactions on Instrument & Measurement,1996,45(1),159-161.
    [146]虢顺民,徐锡伟,向宏发,周瑞琦,董兴权,张晚霞.龙陵-澜沧新生断裂带地震破裂分段与地震预测研究.地震地质,2002,24(2),133-143.
    [147]虢顺民,向宏发,徐锡伟,等.滇西南龙陵-澜沧断裂带:大陆地壳上一条新生的破裂带.科学通报,1999,44(19),2118-2121.
    [148]Zhou, R. Q., Guo, S. M., He, W. A study on the rupturing model of the double main shocks in the Longling-Lancang fault zone, Yunnan. Seismology and Geology,1998,20 (3),255-260 (in Chinese).
    [149]Bramanti M, Salerno EA, Tonazzini A, Pasin S, Gray A. An acoustic pyrometer system for tomographic thermal imaging in power plant boilers. IEEE Trans Instrum Meas.,1996, 45(1):159-67.
    [150]Birchfield, S. T. and Subramanya, A. Microphone Array Position Calibration by Basis-Point Classical Multidimensional Scaling, Speech and Audio Processing. IEEE Transactions,2005,13(5), 1025-1034.
    [151]Bramanti, M., Salerno, E. A., Tonazzini, A., Pasini, S. and Gray, A. An acoustic pyrometer system for tomographic thermal imaging in power plant boilers. IEEE Transactions on Instrumentation and Measurement,1996,45(1),159-167.
    [152]Marczak, W. Water as a standard in the measurements of speed of sound in liquids. J. Acoust. Soc. Am.,1997,102(5),2776-2779.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700