用户名: 密码: 验证码:
气候环境作用定量模式及其在混凝土结构寿命预计中应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
气候环境作用是钢筋混凝土结构耐久性设计和使用寿命预计的重要影响因素。为了使气候环境作用能与荷载作用一样,采用定量方法进行耐久性设计和使用寿命预测,本文试图将气候环境作用与混凝土微环境响应结合起来,并建立与混凝土微环境相关的耐久性退化模型。
     恒定人工气候环境下,基于混凝土内部温度响应和相关基本物理量的试验研究,分析了混凝土微环境的温度响应规律,并结合传热过程的基本理论,建立了人工气候环境下混凝土微环境温度响应预计模型。
     恒定人工气候环境下,基于混凝土内部相对湿度响应规律以及混凝土湿质扩散系数的研究,并结合传质学基本理论,建立了人工气候环境下混凝土微环境相对湿度响应预计模型;同时,研究了混凝土微环境相对湿度、温度与含水量关系。
     开展了自然气候环境下混凝土微环境响应的长期试验研究,基于试验结果,分析了自然气候环境下混凝土微环境的滞后响应规律;同时,鉴于自然气候环境有遮挡条件与无遮挡条件下混凝土微环境响应的差异,开展了日照、降水对混凝土微环境的影响研究。
     基于自然气候环境温度和相对湿度的变化,采用一定数学处理方法,提出了自然气候环境温度和相对湿度作用谱构筑方法;基于气候环境作用谱,利用人工气候环境下混凝土微环境响应预计模型,计算自然气候环境下混凝土微环境响应值;基于混凝土微环境响应的变化及其对耐久性退化的影响规律分析,提出混凝土微环境响应谱的概念和构筑方法。
     通过分析混凝土内钢筋锈蚀速率的控制因素,利用金属腐蚀动力学方程和钢筋锈蚀的电化学原理,建立了混凝土内钢筋锈蚀速率的电化学基本模型;借助基本模型,并基于一系列试验研究和理论推导分析,最终建立了考虑混凝土微环境影响的钢筋锈蚀速率时变预计模型。开展了自然气候环境下混凝土内钢筋锈蚀速率的长期试验,得到了自然气候环境下混凝土内钢筋锈蚀速率的真实发展规律,并对其进行机理分析;基于气候环境作用谱、混凝土微环境响应谱以及钢筋锈蚀速率预计模型的研究结果,提出了自然气候环境下混凝土内钢筋锈蚀速率的预计方法。
     阐述了钢筋混凝土结构使用寿命的全过程,并给出各阶段使用寿命的相关计算模型。最后,综合上述研究结果,提出混凝土材料与结构的使用寿命预计策略,包括新建混凝土结构耐久性设计的使用寿命预计和基于寿命预计的耐久性试验设计。
     该论文有图276幅,表41个,参考文献186篇。
Actions of climate environment are important factors influencing durability design and prediction of service life of reinforced concrete structures. To make the actions of climate environment, with the similar to load, being used for durability design and prediction of service life by quantitative methods, this dissertation attempts to link the actions of climate environment and the responses of concrete’s micro-environment together, and establish the durability degradation model related to concrete’s micro-environment.
     In artificially controlled constant climate environment, based on the experimental studies of the internal temperature response of concrete and corresponding basic physical parameters, the temperature response laws of concrete’s micro-environment were analyzed, and combined with the basic theory of heat transfer process, the prediction model of concrete’s micro-environmental temperature response under artificial climate environment is established.
     In the artificially controlled constant climate environment, based on the researches of the response laws of relative humidity inner concrete and the concrete’s humidity diffusion coefficients, and combined with the basic theory of mass transfer, the prediction model of concrete’s micro-environmental relative humidity response under artificial climate environment is established; at the same time, the relationship of relative humidity, temperature and moisture content in concrete’s micro-environment was studied.
     The long-term experimental study of concrete’s micro-environmental responses under natural climate was carried out, based on testing results, then the hysteretic laws of concrete’s micro-environmental response under natural environment were analyzed; at the same time, considering the difference of concrete’s micro-environmental responses under between shelter and open-air conditions of natural environment, the effects of sunlight and rainfall on the concrete’s micro-environment were studied.
     The methods for building climatic action spectra of temperature and relative humidity are proposed using certain mathematical treatment, based on the natural climate environmental changes in temperature and relative humidity; based on the climatic action spectra, the theoretical values of concrete’s micro-environmental response under natural climate were calculated using the prediction models of concrete’s micro-environmental responses under artificial climate environment; based on the analysis of the changes of concrete’s micro-environmental responses and their effects on durability degradation, the concepts and building methods of response spectra in concrete’s micro-environment also are proposed.
     Through the control factors of steel corrosion rate in concrete being analyzed, a basic electrochemical model of steel corrosion rate in concrete is founded using the kinetics equations of metal corrosion and the electrochemical principles of steel corrosion; with the basic model, and based on a series of experiments and theoretical derivation, the prediction model of time-variation corrosion rate of reinforced bars in concrete is established ultimately considering the impacts of concrete’s micro-environment.
     The real development of steel corrosion rate in concrete under natural climate environment was obtained by the long-term test, and its mechanism analysis also was carried out; based on the research results of climatic action spectra, concrete’s micro-environmental response spectra and prediction model of steel corrosion rate, the prediction method of corrosion rate of reinforced bars in concrete under natural climate is presented.
     The whole process of service life of reinforced concrete structure is expounded, and the relevant calculation models of service life in different stages are proposed. Finally, combining the above results, the strategies for predicting the service life of concrete materials and structures are presented, including the prediction of service life in the durability design of new concrete structures and the design of durability testing based on the life prediction.
引文
[1]李果,戴靠山,袁迎曙.钢筋混凝土耐久性实验方法研究[J].淮海工学院学报,2002,11(3):56-59.
    [2]洪定海.混凝土中钢筋的腐蚀与保护[M].北京:中国铁道出版社,1998.
    [3] SHODJA H M, KIANI K, HASHEMIAN A. A model for the evolution of concrete deterioration due to reinforcement corrosion[J]. Mathematical and Computer Modelling, 2010, 52(9-10): 1403-1422.
    [4]中华人民共和国建设部.混凝土结构设计规范GB50010-2002 [S].北京:中国建筑工业出版社,2002.
    [5]耿欧,袁迎曙,李果.钢筋混凝土耐久性人工气候加速退化试验的相关性研究[J].混凝土,2004(1):29-31.
    [6]张令茂,江文辉.混凝土自然碳化及其与人工加速碳化相关性研究[J].西安冶金建筑学院学报,1990,22(3):207-214.
    [7]姬永升.人工气候混凝土耐久性模拟试验研究[D].徐州:中国矿业大学建筑工程学院,2001.
    [8]李果,袁迎曙,耿欧.气候条件对混凝土碳化速度的影响[J].混凝土,2004(11):49-51.
    [9]蒋利学,张誉,刘亚芹,等.混凝土碳化深度的计算与试验研究[J].混凝土,1996(4):12-17.
    [10] JIANG L H, LIN B Y, CAI Y B. A model for predicting carbonation of high-volume fly ash concrete[J]. Cement and Concrete Research, 2000, 30(5):699-702.
    [11] WANG X Y, LEE H S. A model for predicting the carbonation depth of concrete containing low-calcium[J]. Construction and Building Materials, 2009, 23(2): 725-733.
    [12] SONG H W, KWON S J, et al. Predicting carbonation in early-aged cracked concrete[J]. Cement and Concrete Research, 2006, 36(5):979-989.
    [13]刘欣.与混凝土微环境相关的碳化速率预计模型[D].徐州:中国矿业大学力学与建筑工程学院,2010.
    [14]金伟良,张奕,卢振勇.非饱和状态下氯离子在混凝土中的渗透机理及计算模型[J].硅酸盐学报,2008,36(10):1362-1369.
    [15]徐惠.碳化和氯盐侵蚀环境下粉煤灰混凝土的耐久性能研究[D].徐州:中国矿业大学建筑工程学院,2009.
    [16]施养杭,罗刚.有限差分法氯离子侵入混凝土计算模型[J].华侨大学学报(自然科学版),2004,25(1):58-61.
    [17] HAN S H. Influence of diffusion coefficient on chloride ion penetration of concretestructure[J]. Construction and Building Materials, 2007, 21(2): 370-378.
    [18] NIELSEN E P, GEIKER M R. Chloride diffusion in partially saturated cementitious material. Cement and Concrete Research, 2003, 33(1): 133-138.
    [19] LOPEZ W, GONZALEZ J A. Influence of the degree of pore saturation on the resistivity of concrete and the corrosion rate of steel reinforcement[J]. Cement and Concrete Research, 1993, 23(2):368-376.
    [20] ENEVOLDSEN J N, HANSSON C M, HOPE B B. The influence of internal relative humidity on the rate of corrosion of steel embedded in concrete and mortar[J]. Cement and Concrete Research, 1994, 24(7):1373-1382.
    [21] SONG X B, LIU X L. Experiment research on corrosion of reinforcement in concrete through cathode-to-anode area ratio [J]. ACI Materials Journal, 2000, 97(2): 148-155.
    [22] LIANG M T, JIN W L, et al. Predeterminate model of corrosion rate of steel in concrete[J]. Cement and Concrete Research, 2005, 35(9):1827-1833.
    [23] LIU T, WEYERS R W. Modeling the dynamic corrosion process in chloride contaminated concrete structures [J]. Cement and Concrete Research, 1998, 28(3):365-379.
    [24]卫军,桂志华,王艺霖.混凝土中钢筋锈蚀速率的预测模型[J].武汉理工大学学报,2005,27(6):45-47.
    [25]李果.钢筋混凝土耐久性的环境行为与基本退化模型研究[D].徐州:中国矿业大学建筑工程学院,2004.
    [26]姬永升.自然与人工气候环境下钢筋混凝土退化过程的相关性研究[D],徐州:中国矿业大学建工学院,2007.
    [27]耿欧.混凝土构件中钢筋锈蚀速率预计模型研究[D].徐州:中国矿业大学建筑工程学院,2008.
    [28]王林科.钢筋混凝土腐蚀构件的可靠性分析[D].西安:西安建筑科技大学,1994.
    [29]陈健,徐伟.清水混凝土耐久性的内部结构微观分析[J].建筑施工,2005,27(10):62-64.
    [30]冯乃谦,邢锋.高性能混凝土技术[M].北京:原子能出版社,2000.
    [31]刘伟,邢锋,谢友均.水灰比、矿物掺合料对混凝土孔隙率的影响[J].低温建筑技术,2006,28(1):12-14.
    [32] CARPINTERI A. Fractal nature of material microstructure and size effects on apparent mechanical properties [J]. Mechanics of Materials, 1994, 18 (2):89-101.
    [33]刘军,田悦,刘智.低温条件下矿物掺合料对混凝土孔隙率的影响[J].沈阳建筑大学学报(自然科学版),2007,23(4):597-601.
    [34]杨英姿,邓红卫,高小建,等.混凝土气孔结构测定方法研究进展[J].低温建筑技术,2006,28(4):1-3.
    [35]马文彬.气候环境变化与混凝土内微环境的响应规律研究[D].徐州:中国矿业大学建筑工程学院,2007.
    [36]孙红萍.表层混凝土导热系数与湿质扩散系数的规律研究[D].徐州:中国矿业大学建筑工程学院,2009.
    [37]肖建庄,宋志文,张枫.混凝土导热系数试验与分析[J].建筑材料学报,2010,13(1):17-21.
    [38] KIM K H, JEON S E, et al. An experimental study on thermal conductivity of concrete [J]. Cement and Concrete Research, 2003, 33(3): 363-371.
    [39]蒋正武,王培铭.等温干燥条件下混凝土内部相对湿度的分布[J].武汉理工大学学报,2003,25(7):18-21.
    [40] DELGADO J M P Q. Measurement of diffusion coefficients in building materials using the initial rate of sorption [J]. Diffusion and Defect Data. Part A, Solid State Data, Defect and Diffusion Forum. 2006, Vols. 258-260: 85-90.
    [41]陆秀峰.自然环境条件下混凝土孔隙水饱和度分布[J].四川建筑科学研究,2007,33(5):114-117.
    [42] KALOUSEK G L,PORTER L C,BENTON E J. Concrete for long-term service in sulfate environment[J]. Cement and Concrete Research,1972,2(1):79-90.
    [43]陶峰,王林科,王庆霖等.服役钢筋混凝土构件承载力的实验研究[J].工业建筑,1996,26(4):17-20.
    [44] AlMUSALLAM A A, AlGAHTANL A S, et al. Effect of reinforcement corrosion on bond strength [J]. Construction and Building Materials, 1996, 10(2):123-129.
    [45]化工部化工机械研究院主编.腐蚀与防护手册:腐蚀理论.试验及监测[M].北京:化学工业出版社,1989.
    [46]梁咏宁,袁迎曙.硫酸盐腐蚀后混凝土单轴受压应力应变全曲线[J].混凝土,2005(7):59-61.
    [47] AlMUSALLAM A A. Effect of degree of corrosion on the properties of reinforcing steel bars [J]. Construction and Building Materials, 2001, 15 (8):361-368.
    [48] FANG C Q, LUNDGREN K, et al. Bond behaviour of corroded reinforcing steel bars in concrete [J]. Cement and Concrete Research, 2006, 36(10):1931-1938.
    [49]史庆轩,李小健,牛荻涛.钢筋锈蚀前后混凝土偏心受压构件承载力试验研究[J].西安建筑科技大学学报,1999,31(3):218-221.
    [50]张喜德,蓝文武,等.钢筋混凝土受弯构件受压区钢筋锈蚀影响的试验研究[J].工业建筑,2005,35(7):46-49.
    [51] CHUNG L, CHO S H, et al. Correction factor suggestion for ACI development length provisions based on flexural testing of RC slabs with various levels of corroded reinforcing bars [J]. Engineering Structures, 2004, 26(8):1013-1026.
    [52] YUAN Y S, JI Y S, SURENDRA P S. Comparison of two accelerated corrosion techniques for concrete structures[J]. ACI Structural Journal, 2007, 104(3):342-345.
    [53] CONVEY P, WYNN-WILLIAMS D D. Antarctic soil nematode response to artificial climate amelioration[J]. European Journal of Soil Biology, 2002, 38(3-4): 255-259.
    [54] VARGAS-ARISTA B, HALLEN J M, ALBITER A. Effect of artificial aging on the microstructure of weldment on API 5L X-52 steel pipe[J]. Materials Characterization, 2007, 58(8-9): 721-729.
    [55] ITO M, NAGAI K. Analysis of degradation mechanism of plasticized PVC under artificial aging conditions[J]. Polymer Degradation and Stability, 2007, 92(2): 260-270.
    [56] ZHAO Q L, LI X G, GAO J, et al. Degradation evaluation of ethylene-propylene-diene monomer (EPDM) rubber in artificial weathering environment by principal component analysis[J]. Materials Letters, 2009, 63(1): 116-117.
    [57] HU J W, LI X G, GAO J, et al. UV aging characterization of epoxy varnish coated steel upon exposure to artificial weathering environment[J]. Materials & Design, 2009, 30(5): 1542-1547.
    [58] BENZARTI K, CHATAIGNER S, QUIERTANT M, et al. Accelerated ageing behaviour of the adhesive bond between concrete specimens and CFRP overlays. Construction and Building Materials, 2011, 25(2): 523-538.
    [59] CHEN Y, DAVALOS J F, RAY I, et al. Accelerated aging tests for evaluations of durability performance of FRP reinforcing bars for concrete structures[J]. Composite Structures, 2007, 78(1): 101-111.
    [60] MUMENYA S W, TAIT R B, ALEXANDER M G. Mechanical behaviour of textile concrete under accelerated ageing conditions[J]. Cement and Concrete Composites, 2010, 32(8): 580-588.
    [61] MAHMOUD A M, AMMAR H H, MUKDADI O M, et al. Non-destructive ultrasonic evaluation of CFRP-concrete specimens subjected to accelerated aging conditions[J]. NDT & E International, 2010, 43(7): 635-641.
    [62]刘树文,蒋祖华,祁黎.汽车非金属材料的实验室加速老化和户外自然老化[J].广东塑料,2005(5):44-46.
    [63]张凯,黄渝鸿,等.橡胶材料加速老化试验及其寿命预测方法[J].化学推进剂与高分子材料,2004,2(6):44-48.
    [64]刘奎芳,陈洁.塑料在湿热和亚湿热气候大气暴露与人工加速试验相关性探讨[J].环境技术,2001,19(4):8-13.
    [65] GULMINE J V, AKCELRUD L. Correlations between structure and accelerated artificial ageing of XLPE[J]. European Polymer Journal, 2006, 42(3): 553-562.
    [66]朱坚莺.化学建材的自然老化与人工气候老化及其相关性[J].化学建材,2001,17(5):23-25.
    [67]袁迎曙.钢筋混凝土结构耐久性研究策略[A].土建结构工程的安全性与耐久性(工程科技论坛),北京,2001:384-387.
    [68]杨晓然,张伦武,张勇智.自然环境加速试验技术[J].装备环境工程,2004,1(1):7-11.
    [69]罗振华,蔡键平,等.耐候性有机涂层加速老化试验研究进展[J].合成材料老化与应用,2003,32(3):31-35.
    [70]吕清芳.混凝土结构耐久性环境区划标准的基础研究[D].杭州:浙江大学建筑工程学院,2007.
    [71]张誉,蒋利学,等.混凝土结构耐久性概论[M].上海:上海科学技术出版社,2003:262-265.
    [72]刘西拉.混凝土结构耐久性的实用设计方法[J].四川建筑科学研究,1990,16(4):5-6.
    [73]李田,刘西拉.混凝土结构耐久性分析与设计[M].北京:科学出版社,1999:34-36.
    [74]金伟良,吕清芳,等.混凝土结构耐久性设计方法与寿命预测研究进展[J].建筑结构学报,2007,28(1):7-13.
    [75] NARASIMHAN H, CHEW M Y L. Integration of durability with structural design: An optimal life cycle cost based design procedure for reinforced concrete structures[J]. Construction and Building Materials, 2009(2): 918-929.
    [76] LIU Y P. Modeling the time-to-corrosion cracking of the cover concrete in chloride contaminated reinforced concrete structures [D]. Blacksburg, Virginia: Department of Civil Engineering, Virginia Polytechnic Institute and State University, 1996: 95-103.
    [77] DEBY F, CARCASSES M, SELLIER A. Probabilistic approach for durability design of reinforced concrete in marine environment[J]. Cement and Concrete Research, 2009, 39(5):466-471.
    [78]刘秉京.概率性能基础的使用寿命设计[J].中国港湾建设,2006(2):20-26.
    [79] SARJA A. Reliability principles, methodlogy and methods for lifetime design[J]. Materials and Structures, 2010, 43(1): 261-271.
    [80] ISO 15686-1: Building and Constructed Assets——Service Life Planning. Part1: General Principles[S]. 2000.
    [81]赵尚传.钢筋混凝土结构基于可靠度的耐久性评估与试验研究[D].大连:大连理工大学土木建筑学院,2001.
    [82] BHARGAVA K, GHOSH A K, et al. Modeling of time to corrosion-induced cover cracking in reinforced concrete structures[J]. Cement and Concrete Research, 2005, 35(11): 2203-2218.
    [83] BHARGAVA K, GHOSH A K, et al. Analytical model for time to cover cracking in RC structures due to rebar corrosion[J]. Nuclear Engineering and Design, 2006, 236(11): 1123-1139.
    [84] BHARGAVA K, GHOSH A K, et al. Model for cover cracking due to rebar corrosion in RC structures [J]. Engineering Structures, 2006, 28(8): 1093-1109.
    [85] LU C H, JIN W L, LIU R G. Reinforcement corrosion-induced cover cracking and its time prediction for reinforced concrete structures[J]. Corrosion Science, 2011, 53(4): 1337-1347.
    [86] MALUMBELA G, ALEXANDER M, MOYO P. Model for cover cracking of RC beams due to partial surface steel corrosion[J]. Construction and Building Materials, 2011, 25(2): 987-991.
    [87]蒋晓静,宋晓冰,王维.温度对钢筋混凝土结构中钢筋腐蚀的影响[J].工业建筑,2004,34(5):11-14.
    [88]钱磊,宋晓冰,刘西拉.氯离子环境下温度对钢筋混凝土结构中钢筋腐蚀的影响[J].建筑技术开发,2004,31(7):54-55.
    [89] ZIVICA V, KRAJCI L, et al. Significance of the ambient temperature and the steel material in the process of concrete reinforcement corrosion [J]. Construction and Materials, 1997, 11(2):99-102.
    [90] LYONS R, ING M, AUSTIN S. Influence of diurnal and seasonal temperature variations on the detection of corrosion in reinforced concrete by acoustic emission [J]. Corrosion Science, 2005, 47(2): 412–422.
    [91] SCHINDLER A K, RUIZ J M, RASMUSSEN R O, et al. Concrete pavement temperature prediction and case studies with the FHWA HIPERPAV models[J]. Cement & Concrete Composites, 2004, 26(5): 463-471.
    [92] BALLIM Y. A numerical model and associated calorimeter for predicting temperature profiles in mass concrete[J]. Cement & Concrete Composites, 2004, 26(6): 695-703.
    [93] NORRIS A, SAAFI M, ROMINE P. Temperature and moisture monitoring in concrete structures using embedded nanotechnology/micro-electromechanical systems(MEMS)sensors [J]. Construction and Building Materials, 2008, 22(2): 111-120.
    [94]杨世铭,陶文铨.传热学(第四版)[M].北京:高等教育出版社,2006.
    [95]吴胜兴.混凝土结构温度应力与温度裂缝控制研究[D].南京:河海大学土木工程学院,1994.
    [96]刘照球.混凝土结构表面对流换热研究[D].上海:同济大学土木工程学院,2006.
    [97] HARADA T, TAKEDA J, et al. Strength, elasticity and thermal properties of concrete subjected to elevated temperature [J]. Concrete for Nuclear Reactors, 1972, 34(1): 377-406.
    [98] LIE T T, CELIKKOL B. Method to calculate the fire resistance of circular reinforced concrete columns [J]. ACI Materials Journal, 1991, 88(1): 84-91.
    [99]孙无二.建筑材料导热系数的回归计算[J].低温建筑技术,1994,16(3):16-18.
    [100] Design of Concrete Structures, Eurocode No.2, Part 10: Structural Fire Design, commission of the European Communities, April 1990.
    [101] GUSTAFERRO A H, SELVAGIO S L. Fire endurance of simply supported prestressed concrete slabs [J]. Journal of the PCI, 1967, 12(1): 27-54.
    [102] FOURIER J. The analytical theory of heat [M]. Cambridge: Cambridge University Press, 1822.
    [103]张弈,郭恩震.传热学[M].南京:东南大学出版社,2004.
    [104] CAMPO A. Rapid determination of spatio-temporal temperatures and heat transfer in simple bodies cooled by convection: Usage of calculators in lieu of heisler-grober charts [J]. Int. Comm. Heat Mass Transfer, 1997, 24(4): 552-564.
    [105] OH B H, JANG S Y. Effects of material and environmental parameters on chloride penetration profiles in concrete structures [J]. Cement and Concrete Research, 2007, 37(1):47-53.
    [106] ANDRADE C, SARRIA J, ALONSO C. Relative humidity in the interior of concrete exposed to natural and artificial weathering [J]. Cement and Concrete Research, 1999, 29(8):1249-1259.
    [107] RYU D W, KO J W, NOGUCHI T. Effects of simulated environmental conditions on the internal relative humidity and relative moisture content distribution of exposed concrete[J]. Cement & Concrete Composites, 2011, 33(1): 142-153.
    [108] LOUKILI A, KHELIDJ A, RICHARD P. Hydration kinetics, change of relative humidity, and autogenous shrinkage of ultra-high-strength concrete[J]. Cement and Concrete Research, 1999, 29(4): 577-584.
    [109] YANG Q B. Inner relative humidity and degree of saturation in high-performance concrete stored in water or salt solution for 2 years[J]. Cement and Concrete Research, 1999, 29(1): 45-53.
    [110] LI C Q, LI K F, CHEN Z Y. Numerical analysis of moisture influential depth in concrete and its application in durability design[J]. Tsinghua Science and Technology, 2008, 13(S1): 7-12.
    [111] LI K F, LI C Q, CHEN Z Y. Influential depth of moisture transport in concrete subject todrying-wetting cycles[J]. Cement & Concrete Composites, 2009, 31(10): 693-698.
    [112] CAM H T, NEITHALATH N. Moisture and ionic transport in concretes containing coarse limestone powder[J]. Cement & Concrete Composites, 2010, 32(7): 486-496.
    [113] WEST R P, HOLMES N. Predicting moisture movement during the drying of concrete floors using finite elements[J]. Construction and Building Materials, 2005, 19(9): 674-681.
    [114]孙振岩,刘春明.合金中的扩散与相变[M].沈阳:东北大学出版社,2002.
    [115]张寅平.建筑环境传质学[M].北京:中国建筑工业出版社,2006.
    [116]李汝辉.传质学基础[M].北京:北京航空出版社,1987.
    [117] BAZANT Z P, NAJJAR L J. Nonlinear water diffusion in non-saturated concrete[J]. Materials and Structures, 1972, 5(25): 3-20.
    [118] PARROTT L J. Factors influencing relative humidity in concrete[J]. Magazine of Concrete Research, 1991, 43(157): 45-52.
    [119] CEB, FIP. CEB-FIP model code 1990. London: Thomas Telford House, 1993:68-69.
    [120] GRACE W R. Chloride penetration in marine concrete-a computer model for design and service life evaluation[J]. Corrosion, 1991, 47: 1-19.
    [121] WONG S F, WEE T H, et al. Study of water movement in concrete[J]. Magazine of Concrete Research, 2001, 53(3): 205-220.
    [122]李魁山,张旭,韩星,朱东明.建筑材料水蒸气渗透系数实验研究[J].建筑材料学报,2009,12(3):288-291.
    [123]赵品,谢辅洲,孙文山.材料科学基础[M].哈尔滨:哈尔滨工业大学出版社,1999.
    [124]田锦州,徐乃忠,李凤明.误差函数erf( x )近似计算及其在开采沉陷预计中的应用[J].煤矿开采,2009,13(2):33-35.
    [125] HUET B, L’HOSTIS V, et al. Steel corrosion in concrete: Determinist modeling of cathodic reaction as a function of water saturation degree[J]. Corrosion Science, 2007, 49(4):1918-1932.
    [126] COURARD L, LENAERS J F, MICHEL F, et al. Saturation level of the superficial zone of concrete and adhesion of repair systems[J]. Construction and Building Materials, 2011, 25(5): 2488-2494.
    [127] VU X H, MALECOT Y, DAUDEVILLE L, et al. Experimental analysis of concrete behavior under high confinement: Effect of the saturation ratio[J]. International Journal of Solids and Structures, 2009, 46(5): 1105-1120.
    [128]章燕豪.吸附作用[M].上海:上海科学技术文献出版社,1989:49~51.
    [129] KHUNTHONGKEAW J, TANGTERMSIRIKUL S, LEELAWAT T. Study on carbonation depth prediction for fly ash concrete [J]. Construction and Building Materials, 2006, 20(9):744-753.
    [130] BALABANIC G, BICANIC N, DUREKOVIC A. The influence of W/C ration, concrete cover thickness and degree of water saturation on the corrosion rate of reinforcing steel in concrete [J]. Cement and Concrete Research, 1996, 26(5):761-769.
    [131] SAMSON E, MARCHAND J. Modeling the effect of temperature on ionic transport in cementitious materials [J]. Cement and Concrete Research, 2007, 37(3):455-468.
    [132]张尧庭,赵溱,陈应强.气象资料的统计分析方法[M].北京:农业出版社,1979.
    [133]刘光廷,焦修刚.混凝土的湿热传导耦合分析[J].清华大学学报(自然科学版),2004,44(12):1653-1655.
    [134]李大珍.化学动力学基础[M].北京:北京师范大学出版社,1989.
    [135] TAMURA H. The role of rusts in corrosion and corrosion protection of iron and steel [J]. Corrosion Science, 2008, 50(7):1872-1883.
    [136]刘永辉.金属腐蚀学原理[M].北京:航空工业出版社,1993.
    [137]魏宝明.金属腐蚀理论及应用[M].北京:化学工业出版社,1984.
    [138] GHODS P, ISGOR O B, POUR-GHAZ M. A practical method for calculating the corrosion rate of uniformly depassivated reinforcing bars in concrete[J]. Materials and Corrosion, 2007, 58(4): 265–272.
    [139]梁成浩.金属腐蚀学导论[M].北京:机械工业出版社,1999.
    [140]刘志勇,詹镇峰.混凝土电阻率及其在钢筋混凝土耐久性评价中的应用研究[J].混凝土,2006(10):13-16.
    [141] SALEEM M, SHAMEEM M, HUSSAIN S E, et al. Effect of moisture, chloride and sulphate contamination on the electrical resistivity of Portland cement concrete[J]. Construction and Building Materials, 1996, 10(3):209-214.
    [142]弓国军,宋晓冰,孔启明.氯盐污染下混凝土的电阻率[J].工业建筑,2005,35(12):5-7.
    [143]彭涛.混凝土内钢筋锈蚀速率时变规律与机理分析[D].徐州:中国矿业大学建筑工程学院,2009.
    [144] YUAN Y S, JI Y S, JIANG J H. Effect of corrosion layer of steel bar in concrete on time-variant corrosion rate [J]. Materials and Structures, 2009, 42(10):1443-1450.
    [145]高妍.混凝土内钢筋锈蚀初期行为研究[D].徐州:中国矿业大学力学与建筑工程学院,2010.
    [146] YUAN Y S, JI Y S. Modeling corroded section configuration of steel bar in concrete structure [J]. Construction and Building Materials, 2009, 23(6):2461-2466.
    [147]姬永生,袁迎曙.恒定气候混凝土内钢筋锈蚀速率的时变特征与机理[J].中国矿业大学学报. 2007,36(2):153-158.
    [148] LIU Y P, WEYERS R E. Modeling the time-to-corrosion cracking in chloride contaminated reinforced concrete structures [J]. ACI Materials Journal, 1998, 95(6):675-681.
    [149] LI S C, WANG M B, LI S C. Model for cover cracking due to corrosion expansion and uniform stresses at infinity[J]. Applied Mathematical Modelling, 2008, 32(7): 1436-1444.
    [150] BALAFAS I, BURGOYNE C J. Environmental effects on cover cracking due to corrosion[J]. Cement and Concrete Research, 2010, 40(9): 1429-1440.
    [151] ZHANG R J, CASTEL A, FRANCOIS R. Concrete cover cracking with reinforcement corrosion of RC beam during chloride-induced corrosion process[J]. Cement and Concrete Research, 2010, 40(3): 415-425.
    [152] LEON C, DIMITRI V V. Prediction of corrosion-induced cover cracking in reinforced concrete structures[J]. Construction and Building Materials, 2011, 25(4): 1854-1869.
    [153]蒋建华,袁迎曙,李富民,等.混凝土中不同等级钢筋锈蚀行为的比较.建筑材料学报,2009,12(5):523-527.
    [154] MOLINA F J, ALONSO C, ANDRADE C. Cover cracking as a function of rebar corrosion: part 2 - Numerical model [J]. Materials and Structures, 1993, 26(9):532-548.
    [155]赵羽习,金伟良.混凝土构件锈蚀胀裂时的钢筋锈蚀率[J].水利学报,2004,35(11):97-101.
    [156]吴相豪.混凝土构件锈胀开裂时钢筋锈蚀率的解析解[J].力学与实践,2007,29(4):67-70.
    [157]王海龙,金伟良,孙晓燕.基于断裂力学的钢筋混凝土保护层锈胀开裂模型.水利学报,2008,39(7):863-869.
    [158] ZHAO Y X, JIN W L. Modeling the amount of steel corrosion at the cracking of concrete cover[J]. Advances in Structural Engineering, 2006, 9(5): 687–696.
    [159] CARE S, NGUYEN Q T, et al. Mechanical properties of rust layer induced by impressed current method in reinforced mortar[J]. Cement and Concrete Research, 2008, 38(8-9): 1079-1091.
    [160] SOYLEV T A, FRANCOIS R. Quality of steel-concrete interface and corrosion of reinforcing steel [J]. Cement and Concrete Research, 2003, 33(9): 1407-1415.
    [161]周锡武,卫军,徐港.钢筋混凝土保护层锈胀开裂的临界锈蚀量模型[J].武汉理工大学学报,2009,31(12):99-102.
    [162]冯瑞,袁迎曙,朱辉,等.钢筋非均匀锈胀力的理论分析[J].徐州工程学院学报,2008,23(4):5-10.
    [163]徐芝纶.弹性力学简明教程[M].北京:高等教育出版社,1983.
    [164]牟艳君.混凝土内钢筋锈胀效应和预测模型研究[D].徐州:中国矿业大学建筑工程学院,2006.
    [165]陈月顺,卫军,罗晓辉.钢筋混凝土锈胀开裂临界锈蚀率模型研究[J].武汉理工大学学报,2007,29(2):51-53.
    [166]施养杭,罗刚,华建兵.砼保护层胀裂时钢筋锈蚀率的计算模型[J].华侨大学学报(自然科学版),2005,26(1):54-57.
    [167]张伟平.混凝土结构的钢筋锈蚀损伤预测及其耐久性评估[D].上海:同济大学土木工程学院,1999.
    [168] MALUMBELA G, MOYO P, ALEXANDER M. Influence of corrosion crack patterns on the rate of crack widening of RC beams[J]. Construction and Building Materials, 2011, 25(5): 2540-2553.
    [169] LINDVALL, A. Environmental actions and response-reinforced concrete structures exposed in road and marine environment[J]. Publication P-11, Department of Building Materials, Chalmers University of Technology, SE-412, 96 Goteborg.
    [170]牛狄涛,董振平,浦聿修.预测混凝土碳化深度的随机模型[J].工业建筑,1999,29(9):41-45.
    [171]叶英华,董薇.由温湿度差异引起的不同城市钢筋混凝土梁耐久寿命差异分析[J].工业建筑,2007,37(S1):969-972.
    [172]吴瑾,吴胜兴.氯离子环境下钢筋混凝土结构耐久性寿命评估[J].土木工程学报,2005,38(2):59-63.
    [173] BROWNE R D.在海洋和其他氧化环境中钢筋混凝土使用寿命的设计预测[J].海工钢筋混凝土耐久性译文集,上海:交通部第三航务局科研所,1988.
    [174] FUNAHASHI M. Predicting corrosion-free service life of a conccrte structure in a chloride environment [J]. ACI Materials Journal, 1990, 87(6):581-587.
    [175] BAZANT Z P. Physical model for steel corrosion in concrete sea structures-theory[J]. ASCE Journal of Structural Division, 1977, 105(6):1137~1153.
    [176] MORINAGA S. Prediction of service life of reinforced concrete buildings based on the corrosion rate of reinforcing steel[J]. Durability of building Materials and components, Proceedings of the 5th international conference helded in Brighton, UK, 1990.
    [177] ANDRADE C, ALONSO C, MOLINA F J. Cover cracking as a function of rebar corrosion: Part I—Experimental test[J]. Materials and Structures, 1993, 26(163):453-464.
    [178]余红发,孙伟,等.混凝土在多重因素作用下的氯离子扩散方程[J].建筑材料学报,2002,5(3):240-247.
    [179]余红发,孙伟,等.混凝土使用寿命预测方法的研究Ⅰ——理论模型[J].硅酸盐学报,2002,30(6):686-690.
    [180]施养杭,罗刚.有限差分法氯离子侵入混凝土计算模型[J].华侨大学学报(自然科学版),2004,25(1):58-61.
    [181]许丽萍,吴学礼,黄士元.含Cl?环境下混凝土使用寿命预测[J].上海建材学院学报,1994,7(4):322-329.
    [182]吴庆.基于钢筋锈蚀的混凝土构件性能退化预计模型[D],徐州:中国矿业大学建工学院,2007.
    [183]惠云玲.混凝土结构中钢筋锈蚀程度评估和预测试验研究[J].工业建筑,1997,27(6): 6-9.
    [184]李海波,张正平,胡彦平.加速寿命试验方法及其在航天产品中的应用[J].强度与环境,2007,34(1):2-10.
    [185]张蕾,陈群志,宋恩鹏.军机某疲劳关键部位加速腐蚀当量关系研究[J].强度与环境,2009,36(2):45-50.
    [186] CLIFTON J R,NAUS D J. Service life prediction—state of the art report.ACI 365.1R-00,2000.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700