用户名: 密码: 验证码:
碳基金属及金属氧化物纳米催化剂协同催化性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文研究了碳纳米管和石墨烯负载金属及金属氧化物催化剂的协同催化性能研究,通过物理化学表征、催化反应实验、分子动力学(Molecular dynamics,MD)模拟和密度泛函理论(Density functional theory,DFT)计算来深入揭示催化剂体系的宏观催化性能,催化剂体系的结构、电子特性以及协同催化表现。
     制备了碳纳米管负载CuO纳米粒子体系(CuO/CNTs) ,并研究了CuO/CNTs体系的催化性能。采用XRD、TEM和TG等多种表征手段分析CuO/CNTs的结构性质。结果发现,CuO/CNTs催化臭氧氧化效率比单独臭氧氧化效率提高了约60%,碳纳米管对CuO纳米粒子具有明显的协同效应,显著提高了水中罗丹明B的降解效率。电子顺磁共振波谱仪技术,证明了CuO/CNTs催化臭氧氧化过程产生高浓度的·OH,催化降解罗丹明B遵循自由基氧化机理。通过DFT计算发现,碳纳米管外壁C原子的p轨道和CuO纳米粒子中催化活性中心Cu原子的d轨道发生杂化作用,改变了CuO纳米粒子在催化过程的电子行为。由于碳管外壁的富电子性,CuO/CNTs催化臭氧氧化反应的过程中,电子从碳纳米管通过相界面转移到反应物,促进臭氧的分解和羟基自由基的生成。外电场的调控发现,在催化反应的过程中,碳纳米管和CuO之间的电子转移与外场是非线性关系,进一步印证了碳纳米管对CuO的催化反应具有协同作用。
     制备了CuO纳米颗粒填充碳纳米管体系(CuO@CNTs) ,并研究了CuO@CNTs体系的催化性能。用XRD、TEM和TG等手段表征发现,CuO粒子分散在碳纳米管内壁。研究结果发现,CuO@CNTs催化效率比CuO/CNTs的催化效率高约8%,CuO@CNTs催化性能稳定。电子顺磁共振波谱仪技术,证明了CuO@CNTs催化臭氧氧化过程产生高浓度的·OH,催化臭氧氧化降解罗丹明B遵循自由基氧化机理。CuO@CNTs催化产生的·OH产物浓度和催化臭氧氧化降解罗丹明B的效率均高于CuO/CNTs。DFT计算发现,CuO@CNTs体系内部活性中心Cu原子和C原子之间发生p–d杂化。由于碳纳米管的限域作用,CuO粒子的离子键对电子的强局域化作用降低,可形成扩展价带结构,增加载流子的迁移能力,促进催化反应。碳纳米管对CuO的催化作用具有协同作用。碳纳米管管壁对外电场具有屏蔽作用,可使空腔内的催化反应免受外电场的影响。
     制备了石墨烯负载Pt纳米粒子体系(Pt/graphene),并研究了Pt/graphene体系的催化性能。经过XRD、TEM、RS和AFM表征发现,Pt催化粒子可以均匀地分散在石墨烯上。考察Pt/graphene催化臭氧氧化降解2,4-二氯苯酚,以及pH和2,4-二氯苯酚初始浓度对催化性能的影响,结果发现Pt/graphene催化臭氧氧化的效率比单独臭氧氧化的效率约提高了65%,Pt/graphene的催化活性高,性能稳定。DFT计算发现,由于量子诱捕效应,Pt和石墨烯界面的相互作用降低了电子的界面转移阻力,促进了催化反应。外电场强度对Pt/graphene体系的调控作用研究进一步表明了,石墨烯和Pt之间的协同电子作用是是产生协同作用的原因。
     通过使用具有不同功能的生物分子修饰石墨烯,可以制备出具有特定催化选择性和催化活性的石墨烯基催化剂复合材料。用亮氨酸分子和DNA非共价修饰石墨烯,并研究了修饰石墨烯基Pt纳米粒子体系的催化性能。亮氨酸在石墨烯上自组装形成稳定的二维氢键网络结构,最大吸附能是?0.31eV。亮氨酸吸附改变了石墨烯表面的局部电子和空穴的传输。ssDNA可在石墨烯表面充分展开与石墨烯形成稳定的π-π相互作用,吸附能是–15.810eV。研究了亮氨酸和DNA修饰石墨烯负载Pt粒子体系催化乙醇α-H分解反应所需的活化能,亮氨酸修饰的(0.433eV)低于未修饰的(0.518eV);ssDNA修饰的(0.853eV)高于未修饰的(0.518eV)。
This paper focuses on a systematic study of the mechanism and synergetic catalytic properties of carbon nanotubes (CNTs) based and graphene based metal and metal oxide catalysts. Detailed characterization, catalytic reaction experiments, molecular dynamics (MD) simulations and density functional theory (DFT) calculations were performed to reveal the mechanism and evaluate synergistic catalytic performance of above.
     Carbon nanotube-supported CuO nanoparticle catalyst (CuO/CNTs) was prepared, and the catalytic property of CuO/CNTs was investigated. XRD, TEM, and TG were used to characterize the structural properties of the prepared CuO/CNTs system. CuO/CNTs catalyzed ozonation showed 60% higher removal rate than that of ozonation alone without CuO/CNTs. Through the study of electron paramagnetic resonance tests, it was found that high concentration of·OH was generated during CuO/CNTs catalyzed ozonation and degradation reaction of rhodamine B followed a radical oxidation mechanism. DFT calculations showed that p orbital of C atoms in the outer wall of CNTs hybridized with the d orbital of Cu atoms, electrons transferred from carbon nanotube, which is electron-rich CuO/CNTs interface, facilitating the decomposition of ozone molecules and the generation of hydroxyl radicals during reactions. Interfacial electron transfer is non-linear, which verified the synergetic effect of CNTs as revealed by the electric field regulation experiments.
     CuO nanoparticles were encapsulated into CNTs to prepare carbon nanotube-filled CuO catalyst (CuO@CNTs), the catalytic propertiy of which was also investigated. XRD, TEM and TG was used to characterize the structure of CuO@CNTs, which showed that CuO particles are dispersed on the inside wall of carbon nanotube. CuO@CNTs showed a removal rate of about 8% higher than that of CuO/CNTs. The catalytic activity of CuO@CNTs is stable. Through the study of electron paramagnetic resonance, it was found that high concentration of·OH could be generated during CuO@CNTs catalyzed ozonation than with CuO/CNTs, and the degradation reaction followed a radical oxidation mechanism. DFT calculations showed that p-d hybridization occurs between the C atoms and Cu atoms of the CuO@CNTs composite. Due to the confinement effect, ionic bond of CuO delocalized, leading to extended valence band structure and higher migration of charge carriers, promoting the catalytic reactions. Studying the modulation effect of external electric field under different intensities on the electron transfer in the catalytic reaction, revealed that CNTs have a synergetic effect on the catalytic properties of CuO. It was found that carbon nanotubes can shield the external electric field to sustain the catalytic reation in the tube up to higher electric field intensity range that would not lead to the breakdown of carbon nanotube. This shielding effect of carbon nanotubes can be imployed to achieve confinded reaction complex environments.
     Graphene-supported Pt nanoparticles catalyst (Pt/graphene) was prepared and used for degradation of 2,4-dichlorophenol to investigate its catalytic property. Pt/graphene was characterized by XRD, TEM, RS, and AFM, which shows that Pt nanoparticles dispersed on graphene. With Pt/graphene catalyzed ozonation the removal rate is about 65% higher than with ozonation alone. DFT calculations showed the interaction between Pt and graphene, and the quantum-trapping effect enable faster electron transfer throught phases, leading to superious catalytic effect. The regulation effect of external electric field on Pt/graphene system further verified that synergetic electronic interaction between graphene and Pt played an essential role for the synergetic effect on catalytic behavior of Pt.
     Leucine and DNA molecules were used to functionalize graphene. Leucine molecules self-assembled on graphene and formed two-dimensional stable hydrogen bond network with a binding energy of ?0.31eV. The adsorpted leucine changed the local electronic properties of graphene. ssDNA extend fully on graphene with a stableπ-πstacking with the binding energy of–15.810eV. Functionalizing graphene with different biological molecules produces graphene based Pt particles. The transfer direction of electrons through interface was reversed and the electronic properties and redox of the functionalized graphene-based Pt nanoparticles catalyst was modified, regulating the catalytic selectivity and activity the catalyst. For Leucine-functionalized Pt/graphene catalyst, the energy barrier forα-dehydrogenation of ethanol is 0.433eV, which is lower than that of Pt/graphene (0.518eV). In comparison, ssDNA-functionalized Pt/graphene catalyst showed higher energy barrier of 0.853eV.
引文
1. S. Iijima. Helical microtubules of graphitic carbon. Nature 1991, 354(6348): 56-58.
    2. P. M. Ajayan. Nanotubes from carbon. Chem. Rev. 1999, 99(7): 1787-1800.
    3. H. Dai. Carbon nanotubes: Synthesis, integration, and properties. Acc. Chem. Res. 2002, 35(12):1035-1044.
    4. J. M. Planeix, N. Coustel, B. Coq, V. Brotons, P. M. Ajayan. Application of carbon nanotubes as supports in heterogeneous catalysis. J. Am. Chem. Soc. 1994, 116(17): 7935-7936.
    5. R. Hirlekar, M. Yamagar, H. Garse, M. Vij, V. Kadam. Carbon nanotubes and its applications: A review. AJPCR 2009, 2(4): 17-27.
    6. R. H. Baughman, A. A. Zakhidov, W. A. de Heer. Carbon nanotubes-the route toward applications. Science 2002(5582): 297: 787-791.
    7. P. M. Ajayan, T. W. Ebbesen, T. Ichihashi, S. Iijima, K. Tanigaki, and H. Hiura. Opening carbon nanotubes with oxygen and implications for filling. Nature 1993, 362(6420): 522-525.
    8. S. C. Tsang, Y. K. Chen, P. J. F. Harris, M. L. H. Green. A simple chemical method of opening and filling carbon nanotubes. Nature 1994, 372(6502): 159-162.
    9. C. Guerret-Plécourt, Y. L. Bouar, A. Loiseau, H. Pascard. Relation between metal electronic structure and morphology of metal compounds inside carbon nanotubes. Nature 1994, 372(22): 761-765.
    10. S. Seraphin, D. Zhou, J. Jiao, J. C. Withers, R. Loutfy. Yttrium carbide in nanotubes. Nature 1993, 362(6420): 503-503.
    11. W. Chen, X. Pan, X. Bao. Tuning of redox properties of iron and iron oxides via encapsulation within carbon nanotubes. J. Am. Chem. Soc. 2007, 129(23): 7421-7426.
    12. D. Jain, R. Wilhelm. An easy way to produceα-iron filled multiwalled carbon nanotubes. Carbon 2007, 45(3): 602-606.
    13. A. V. Bazilevsky, K. Sun, A. L. Yarin, C. M. Megaridis. Selective intercalation of polymers in carbon nanotubes. Langmuir 2007, 23(14):7451-7455.
    14. J. P. Tessonnier, L. Pesant, G. Ehret, M. J. Ledoux, C. Pham-Huu. Pd nanoparticles introduced inside multi-walledcarbon nanotubes for selective hydrogenation of cinnamaldehyde intohydrocinnamaldehyde. Appl. Catal. A, 2005, 288(1-2): 203-210.
    15. X. Pan, Z. Fan, W. Chen, Y. Ding, H. Luo, X. Bao. Enhanced ethanol production inside carbon-nanotube reactors containing catalytic particles. Nat. Mater. 2007, 6(7): 507-511.
    16. K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, A. A. Firsov. Exfoliating graphite yields stable carbon films. Science 2004, 306(5696): 666-669.
    17. N. Tombros, C. Jozsa, M. Popinciuc, H. T. Jonkman, B. J. van Wees. Electronic spin transport and spin precession in single graphene layers at room temperature. Nature 2007, 448(7153): 571-574.
    18. K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I. Katsnelson, I. V. Grigorieva, S. V. Dubonos, A. A. Firsov. Two-dimensional gas of massless Dirac fermions in graphene. Nature 2005, 438(7065): 197-200.
    19. K. S. Novoselov, Z. Jiang, Y. Zhang, S. V. Morozov, H. L. Stormer, U. Zeitler, J. C. Maan, G. S. Boebinger, P. Kim, A. K. Geim. Room-temperature quantum hall effect in graphene. Science 2007, 315(5817): 1379-1379.
    20. L. H. Tang, Y. Wang, Y. M. Li, H. B. Feng, J. Lu, J. H. Li. Preparation, structure, and electrochemical properties of reduced graphene sheet films. Adv. Funct. Mater. 2009, 19(17): 2782-2789.
    21. M. J. McAllister, J. L. Li, D. H. Adamson, H. C. Schniepp, A. A. Abdala, J. Liu, M. Herrera-Alonso, D. L. Milius, R. Car, R. K. Prud'homme, I. A. Aksay, Graphene by oxidation and thermal expansion of graphite. Chem. Mater. 2007, 19(18): 4396-4404.
    22. T. O. Wehling, K. S. Novoselov, S. V. Morozov, E. E. Vdovin, M. I. Katsnelson, A. K. Geim, A. I. Lichtenstein. Molecular doping of graphene. Nano Lett. 2008, 8(1): 173-177.
    23. S. Watcharotone, D. A. Dikin, S. Stankovich, R. Piner, I. Jung, G. H. B. Dommett, G. Evmenenko, S. E. Wu, S. F. Chen, C. P. Liu, S. T. Nguyen, R. S. Ruoff. Graphene-silica composite thin films as transparent conductors. Nano Lett. 2007, 7(7):1888-1892.
    24. X. Li, X. Wang, L. Zhang, S. Lee, H. Dai. Chemically derived, ultrasmooth graphene nanoribbon semiconductors. Science 2008, 319(5867): 1229-1232.
    25. Y. Si, E. T. Samulski. Exfoliated graphene separated by platinum nanoparticles. Chem. Mater. 2008, 20(21): 6792-6797.
    26. R. Pasricha, S. Gupta, A. K. Srivastava. A facile and novel synthesis of ag-graphene-based nanocomposites. Small 2009, 5(20): 2253-2259.
    27. S. Stankovich, D. A. Dikin, G. H. B. Dommett, K. M. Kohlhaas, E. J. Zimney, E. A. Stach, R. D. Piner, S. T. Nguyen, R. S. Ruoff. Graphene-based composite materials. Nature 2006, 442(7100): 282-286.
    28. S. Guo, S. Dong, Wang, E. Three-dimensional Pt-on-Pd bimetallic nanodendrites supported on graphene nanoshee. ACS Nano, 2010, 4(1): 547-555
    29. E. J. Yoo, T. Okata, T. Akita, M. Kohyama, J. Nakamura, I. Honma. Enhanced electrocatalytic activity of Pt subnanoclusters on graphene nanosheet Surface. Nano Lett. 2009, 9(6): 2255-2259.
    30. L. Dong, R. R. S. Gari, Z. Li, M. M. Craig, S. Hou. Graphene-supported platinum and platinum@ruthenium nanoparticles with high electrocatalytic activity for methanol and ethanol oxidation. Carbon 2010, 48(3): 781-787.
    31. R. Kou, Y. Shao, D. Wang, M. H. Engelhard, J. H. Kwak, J. Wang, V. V. Viswanathan, C. Wang, Y. Lin, Y. Wang, I. A. Aksay, J. Liu. Enhanced activity and stability of Pt catalysts on functionalized graphene sheets for electrocatalytic oxygen reduction. Electrochem. Commun. 2009, 11(5): 954-987.
    32. S. J. He, B. Song, D. Li, C. F. Zhu, W. P. Qi, Y. Q. Wen, L. H. Wang, S. P. Song, H. P. Fang, C. H. Fan. A graphene nanoprobe for rapid, sensitive, and multicolor fluorescent DNA analysis. Adv. Funct. Mater. 2010, 20(3): 453-459.
    33. C. H. Lu, H. H. Yang, C. L. Zhu, X. Chen, G. N. Chen. A graphene platform for sensing biomolecules. Angew. Chem. Int. Ed. 2009, 48(26): 4785-4787.
    34. H. W. Ch. Postma. Rapid sequencing of individual DNA molecules in graphene nanogaps. Nano Lett. 2010, 10(2): 420-425.
    35. J. B. Liu, Y. L. Li, Y. M. Li, J. H. Li, Z. X. Deng. Noncovalent DNA decorations of graphene oxide and reduced graphene oxide toward water-soluble metal-carbon hybrid nanostructures via self-assembly. J. Mater. Chem. 2010, 20(5): 900-906.
    36. F. Liu, J. Y. Choi, T. S. Seo. DNA mediated water-dispersible graphene fabrication and gold nanoparticle-graphene hybrid. Chem. Commun. 2010, 46(16): 2844-2146.
    37. J. Liu, S. Fu, B. Yuan, Y. Li, Z. Deng. Toward a universal“adhesive nanosheet”for the assembly of multiple nanoparticles based on a protein-induced reduction/decoration of graphene oxide. J. Am. Chem. Soc. 2010, 132(21): 7279-7281.
    38. P. J. F. Harris. Carbon nanotubes and related structures. Cambridge University Press: Cambridge, U.K., 2003.
    39. J. W. G. Wilder, L. C. Venema, A. G. Rinzler, R. E. Smalley, C. Dekker. Atomic structure and electronic properties of single-walled carbon nanotubes. Nature 1998, 391(6662): 59-62.
    40. S. Frank, P. Poncharal, Z. L. Wang, W. A. de Heer. Carbon nanotube quantumresistors. Science 1998, 280(5370): 1744-1746.
    41. S. Sanvito, Y. K. Kwon, D. Tománek, C. J. Lambert. Fractional quantum conductance in carbon nanotubes. Phys. Rev. Lett. 2000, 84(9): 1974-1977.
    42. A. Thess, R. Lee, P. Nikolaev, H. Dai, P. Petit, J. Robert, C. Xu, Y. H. Lee, S. G. Kim, A. G. Rinzler, D. T. Colbert, G. Scuseria, D. Tománek, J. E. Fischer, R. E. Smalley. Crystalline ropes of metallic carbon nanotubes. Science 1996, 273(5274): 483-487.
    43. P. G. Collins, P. Avouris. Nanotubes for electronics. Sci. Amer. 2000, 283: 38-45.
    44. J. Hone, M. Whitney, A. Zettle. Thermal conductivity of single-walled carbon nanotubes. Synth. Met. 1999, 103(3): 2498-2499.
    45. J. W. Che, T. ?a??n, W. A. Goddard. Thermal conductivity of carbonnanotubes. Nanotechnology 2000, 11(2): 65-69.
    46. D. H. Robertson, D. W. Brenner, J. W. Mintmire. Energetics of nanoscale graphitic tubules. Phys. Rev. B 1992, 45(21): 12592-12595.
    47. M. F. Yu, B. S. Files, S. Arepalli, R. S. Ruoff. Tensile loading of ropes of single wall carbon nanotubes and their mechanical properties. Phys. Rev. Lett. 84(24): 5552-5555.
    48. N. Pugno. The role of defects in the design of the space elevator cable: from nanotube to megatube, Acta Mater. 2000, 55(15): 5269-5279.
    49. X. L. Xie, Y. W. Mai, X. P. Zhou. Dispersion and alignment of carbon nanotubes in polymer matrix: A review. Mater. Sci. Eng. R 2005, 49(4): 89-112.
    50.李玲,李忠.碳纳米管的性质及应用.山东师范大学学报:自然科学版2005, 20(1): 98-99.
    51.韦东远.碳纳米管的产业发展潜力日益凸显.新材料产业2010, (6): 21-23.
    52. D. A. Tryk, A. Fujishima, K. Honda. TiO2 photocatalysts and diamond electrodes. Electrochim. Acta 2000, 45(15-16):2363-2376.
    53. O. Carp, C. L. Huisman, A. Reller. Photoinduced reactivity of titanium dioxide. Prog. Solid State Chem. 2004, 32(1-2): 33-177.
    54. U. Diebold. The surface science of titanium dioxide. Surf. Sci. Rep. 2003, 48(5-8): 53-239.
    55. M. R. Hoffmann, S. T. Martin, W. Choi, D. W. Bahnemann. Environmental applications of semiconductor photocatalysis. Chem. Rev. 1995, 95(1): 69-96
    56. Z. Zhang, C. C. Wang, R. Zakaria, and J. Y. Ying. Role of particle size in nanocrystalline TiO2-based photocatalysts. J. Phys. Chem. B, 1998, 102(52): 10871-10878.
    57. R. Asahi, T. Morikawa, T. Ohwaki, K. Aoki, Y. Taga. Visible-lightphotocatalysis in nitrogen-doped titanium oxides. Science 2001, 293(5528): 269-271.
    58. Y.H. Zhang, A. Reller. Nanocrystalline iron-doped mesoporous titania and its phase transition. J. Mater. Chem. 2001, 11(10): 2537-2541.
    59. J. Wang, S. Una, K. J. Klabunde. Visible light photocatalysis in transition metal incorporated titania-silica aerogels. Appl. Catal. B 2004, 48(2): 151-154
    60. D. Eder, M. S. Motta, A. H. Windle. Iron-doped Pt-TiO2 nanotubes for photo-catalytic water splitting. Nanotechnology 2009, 20(5): 055602.
    61. D. Eder, M. S. Motta, A. H. Windle. Nanoengineering with residual catalyst from CNT templates. Acta Mater. 2010 58(13): 4406-4413
    62. M. Anpo, Y. Ichihashi, M. Takeuchi, H. Yamashita. Design of unique TiO2 photocatalysts by an advanced metal ion-implantation method and photocatalytic reactions under visible light irradiation. Res. Chem. Intermed. 1998, 24(2): 143-149.
    63. Y. Ou, J. D. Lin, S.M Fang, D. W. Liao. MWNT-TiO2: Ni composite catalyst: A new class of catalyst for photocatalytic H2 evolution from water under visible light illumination. Chem. Phys. Lett. 2006, 429(1-3): 199-203.
    64. Y. Yu, J. C. Yu, J. G. Yu, Y. C. Kwok, Y. K. Che, J. C. Zhao, L. Ding, W. K. Ge, P. K. Wong. Enhancement of photocatalytic activity of mesoporous TiO2 by using carbon nanotubes. Appl. Catal. A 2005, 289(2): 186-196.
    65. N. Bouazza, M. Ouzzine, M. A. Lillo-Ródenas, D. Eder, A. Linares-Solano. TiO2 nanotubes and CNT-TiO2 hybrid materials for the photocatalytic oxidation of propene at low concentration. Appl. Catal. B 2009, 92(3-4): 377-383.
    66. W. D. Wang, P. Serp, P. Kalck, J. L. Faria. Visible light photode-gradation of phenol on MWNT-TiO2 composite catalysts prepared by a modified sol-gel method. J. Mol. Catal. A 2005, 235(1-2): 194-199.
    67. W. D. Wang, P. Serp, P. Kalck, J. L. Faria. Photocatalytic degradation of phenol on MWNT and titania composite catalysts prepared by a modified sol-gel method. Appl. Catal. B 2005, 56(4): 305-312.
    68. Y. Yao, G. Li, S. Ciston, R. M. Lueptow, K. A. Gray. Photoreactive TiO2/carbon nanotube composites: Synthesis and reactivity. Environ. Sci. Technol. 2008, 42(13): 4952-4957.
    69. S. H. Lee, S. Pumprueg, B. Moudgil, W. Sigmund. Inactivation of bacterial endospores by photocatalytic nanocomposites. Colloids Surf. B 2005, 40(2): 93-98.
    70. L. Q. Jiang, L. Gao. Fabrication and characterization of ZnO-coated multi-walled carbon nanotubes with enhanced photocatalytic activity. Mater. Chem.Phys. 2005, 91(2-3): 313-316.
    71. K. Byrappa, A. S. Dayananda, C. P. Sajan, B. Basavalingu, M. B. Shayan, K. Soga, M. Yoshimura. Hydrothermal preparation of ZnO:CNT and TiO2:CNT composites and their photocatalytic applications. J. Mater. Sci. 2008, 43(7): 2348-2355.
    72. Z. Jusys, R. J Behm. Methanol oxidation on a carbon-supported Pt fuel cell catalysta kinetic and mechanistic study by differential electrochemical mass spectrometry. J. Phys. Chem. B 2001, 105(44): 10874-10883.
    73. B. Rajesh, K. Ravindranathan Thampi, J. M. Bonard, B. Viswanathan. Preparation of a Pt-Ru bimetallic system supported on carbon nanotubes. J. Mater. Chem. 2000, 10(8): 1757-1759.
    74. M. Y. Wang, J. H. Chen, K. Z. Cui, B. Liu, H. H. Zhou, Y. Z. Kuang. Preparation of Pt-MoOx/CNT electrode and its electrocatalytic property for ethanol electrooxidation. Chin. J. Chem. 2006, 24(7): 881-886.
    75. H. Song, X. Qiu, F. Li, W. Zhu, L. Chen. Ethanol electro-oxidation on catalysts with TiO2 coated carbon nanotubes as support. Electrochem. Commun. 2007, 9(6): 1416-1421.
    76. H. Song, X. Qiu, F. Li. Effect of heat treatment on the performance of TiO2-Pt/CNT catalysts for methanol electro-oxidation. Electrochim. Acta 2008, 53(10): 3708-3713.
    77. H. Yu, K. Zeng, X. Fu, Y. Zhang, F. Peng , H. Wang, J. Yang. RuO2·xH2O supported on carbon nanotubes as a highly active catalyst for methanol oxidation. J. Phys. Chem. C 2008, 112(38): 11875-11880.
    78. L. Cao, F. Scheiba, Ch. Roth, F. Schweiger, C. Cremers, U. Stimming, H. Fuess, L. Q. Chen, W. T. Zhu, X. P. Qiu. Novel nanocomposite Pt/RuO2·xH2O/carbon nanotube catalysts for direct methanol fuel cell. Angew. Chem. Int. Ed. 2006, 45 (32): 5315-5319
    79. C. H. Li, Z. X. Yu, K. F. Yao, S. F. Ji, J. Liang. Nitrobenzene hydrogenation with carbon nanotube-supported platinum catalyst under mild conditions. J. Mol. Catal. A 2005, 226(1): 101-105.
    80. X. B. Fu, H. Yu, F. Peng, H. J. Wang, Y. Qian. Facile preparation of RuO2/CNT catalyst by a homogenous oxidation precipitation method and its catalytic performance. Appl. Catal. A 2007, 321(2): 190-197.
    81. B. Huang, R. Huang, D. Jin, D. Ye. Low temperature SCR of NO with NH3 over carbon nanotubes supported vanadium oxides. Catal. Today 2007, 126(3-4): 279-283.
    82. X. W. Chen, Z. Zhu, M. Haevecker, D. Su, R. Schloegl. Carbon nanotube-induced preparation of vanadium oxide nanorods: Application as a catalyst forthe partial oxidation of n-butane. Mater. Res. Bull. 2007, 42(2): 354-361
    83. B. Pietruszka, F. DiGregorio, N. Keller, V. Keller. High-efficiency WO3/carbon nanotubes for olefin skeletal isomerization. Catal. Today 2005, 102-103: 94-100.
    84. H. M. Yang, P. H. Liao. Preparation and activity of Cu/Zno-CNTs nano-catalyst on steam reforming of methanol. Appl. Catal. A 2007, 317(2): 226-233.
    85. J. C. Juan, Y. Jiang, X. Meng, W. Cao, M. A. Yarmob, J. C. Zhang. Supported zirconium sulfate on carbon nanotubes as water-tolerant solid acid catalyst. J. Mater. Res. Bull. 2007, 42(7): 1278-1285.
    86. D. Zhang, C. Pan, L. Shi, H. Mai, X. Gao. Controllable synthesis and highly efficient electrocatalytic oxidation performance of SnO2/CNT core-shell structures. Appl. Surf. Sci. 2009, 255(9): 4907-4912.
    87. X. W. Chen, Z. Zhu, M. Havecker, D. S. Su, R. Schl?gl. Carbon nanotube-induced preparation of vanadium oxide nanorods: Application as a catalyst for the partial oxidation of n-butane. Mater. Res. Bull. 2007, 42(2): 354-261.
    88. Y. Saito, T. Yoshikawa. Bamboo-shaped carbon tube filled partially with nickel. J. Cryst. Growth 1993, 134(1-2): 154-156.
    89. P. M. Ajayan, S. Iijima. Capillarity-induced filling of carbon nanotubes. Nature, 1993, 361 (6410): 333-334.
    90. S. Seraphin, D. Zhou, J. Jiao, J. Withers, R. Loutfy. Yttrium carbide in nanotubes. Nature 1993, 362(6420): 503-503.
    91. J. Sloan, J. Hammer, M. Zwiefka-Sibley, M. L. H. Green. The opening and filling of single walled carbon nanotubes (SWTs). Chem. Commun. 1998, 3(3): 347-348.
    92. M. Monthioux, E. Flahaut, J. P. Cleuziou. Hybrid carbon nanotubes: Strategy, progress, and perspectives. J. Mater. Res. 2006, 21: 2774-2793.
    93. B. W. Smith, M. Monthioux, D. E. Luzzi. Encapsulated C-60 in carbon nanotubes. Nature 1998, 396 (6709): 323-324.
    94. D. Ugarte, A. Chatelain, W. A. de Heer. Nanocaplillarity and chemistry in carbon nanotubes. Science 1996, 274(5294): 1897-1899.
    95. N. Thamavaranukup, H. A. Hoppe, L. Ruiz-Gonzalez, P. M. F. J. Costa, J. Sloan, A. Kirkland, M. L. H. Green. Single-walled carbon nanotubes filled with MOH (M=K, Cs) and then washed and refilled with clusters and molecules. Chem. Commun. 2004, 15: 1686-1687.
    96. P. C. P. Watts, W. K. Hsu, V. Kotzeva, G. Z. Chen. Fe-filled carbon nanotube-polystyrene: RCL composites. Chem. Phys. Lett. 2002, 366(1-2): 42-50.
    97. J. Chancolon, F. Archaimbault, A. Pineau. S. Bonnamy. Filling of carbon nanotubes with selenium by vapor phase process. J. Nanosci. Nanotechnol.2006, 6(1): 82-86.
    98. G. Brown, S. R Bailey, J. Sloan, C. Xu, S. Friedrichs, E. Flahaut, K. S. Coleman, J. L. Hutchison, R. E. Dunin-Borkowski, M. L. H. Green. Electron beam induced in situ clusterisation of 1D ZrCl4 chains within single-walled carbon nanotubes. Chem. Comm. 2001, (9): 845-846.
    99. E. Dujardin, T. W. Ebbesen, H. Hiura, K. Tanigaki. Capillarity and wetting of carbon nanotubes. Science 1994, 265(5180): 1850-1852.
    100. B. M. Kim, S. Qian, H. H. Bau. Filling carbon nanotubes with particles. Nano Lett. 2005, 5 (5): 873-878.
    101. E. Castillejos, P. J. Debouttière, L. Roiban, A. Solhy, V. Martinez, Y. Kihn, O. Ersen, K. Philippot, B. Chaudret, P. Serp. An efficient strategy to drive nanoparticles into carbon nanotubes and the remarkable effect of confinement on their catalytic performance. Angew. Chem. Int. Ed. 48(14): 2529-2533.
    102. A. Capobianchi, S. Foglia, P. Imperatori, A. Notargiacomo, M. Giamatteo, T. Del Buono, E. Palange. Controlled filling and external cleaning of multi-wall carbon nanotubes using a wet chemical method. Carbon 2007, 45(11): 2205-2208.
    103. Q. Fu, G. Weinberg, D. S. Su. Selective filling of carbon nanotubes with metals by selective washing. New Carbon Mater. 2008, 23: 17-20.
    104. R. Carter, J. Sloan, A. I. Kirkland, R. R. Meyer, P. J. D. Lindan, G. Lin, M. L. H. Green, A. Vlandas, J. L. Hutchison, J. H. Harding. Correlation of structural and electronic properties in a new low-dimensional form of mercury telluride. J. Phys. Rev. Lett. 2006, 96(21): 215501(1-4).
    105. G. L. Che, B. B. Lakshmi, C. R. Martin, E. R. Fisher. Metal-nanocluster-filled carbon nanotubes: Catalytic properties and possible applications in electrochemical energy storage and production. Langmuir 1999, 15 (3): 750-758.
    106. A. M. Zhang, J. L. Dong, Q. H. Xu, H. K. Rhee, X. L. Li. Palladium cluster filled in inner of carbon nanotubes and their catalytic properties in liquid phase benzene hydrogenation. Catal. Today 2004, 93-95: 347-352.
    107. W. Chen, Z. L. Fan, X. L. Pan, X. H. Bao. Effect of confinement in carbon nanotubes on the activity of fischer-tropsch iron catalyst. J. Am. Chem. Soc. 2008, 130(29): 9414-9419.
    108. M. Boudart, G. Djega-Mariadossou. Kinetics of heterogeneous catalytic reactions. Princeton U. Press: Princeton, NJ, 1984.
    109. J. A. Dumesic, D. F. Rudd, L. M. Aparicio, J. E. Rekoska, A. A. Trevin?. The microkinetics of heterogeneous catalysis. ACS Professional reference book, Washington, DC, 1993.
    110. H. J. J. van Dam, M. F. Guest, P. Sherwood, J. M. H. Thomas, J. H. van Lenthe, J. N. J. van Lingen, C. L. Bailey, I. J. Bush. Large scale electronic structure calculations in the study of the condensed phase. Theochem. 2006, 771(1-3): 33-41.
    111. D. Duca, F. Ferrante, G. L. Manna. Theoretical study of palladium cluster structures on carbonaceous supports. J. Phys. Chem. C 2007, 111(14): 5402-5408.
    112. H. Valencia, A. Gil, G. Frapper. Trends in the adsorption of 3d transition metal atoms onto graphene and nanotube surfaces: A DFT study and molecular orbital analysis. J. Phys. Chem. C 2010, 114(33): 14141-14153.
    113. Y. Sun, X. B. Yang, J. Ni. Bonding differences between single iron atoms versus iron chains with carbon nanotubes: First-principles calculations. Phys. Rev. B 2007, 76(3): 035407(1-8).
    114. H. Sevin?li, M. Topsakal, E. Durgun, S. Ciraci. Electronic and magnetic properties of 3d transition-metal atom adsorbed graphene and graphene nanoribbons. Phys. Rev. B 2008, 77(19): 195434(1-7).
    115. K. T. Chan, J. B. Neaton, M. L. Cohen. First-principles study of metal adatom adsorption on graphene. Phys. Rev. B 2008, 77(23): 235430(1-12).
    116. E. Durgun, S. Dag, S. Ciraci, O. Gülseren. Energetics and electronic structures of individual atoms adsorbed on carbon nanotubes. J. Phys. Chem. B 2004, 108(2): 575-582.
    117. Y. Yagi, T. M. Briere, M. H. F. Sluiter, V. Kumar, A. A. Farajian, and Y. Kawazoe. Stable geometries and magnetic properties of single-walled carbon nanotubes doped with 3d transition metals: A first-principles study. Phys. Rev. B 2004, 69(7): 075414(1-9).
    118. P. Jensen, J. Gale, X. Blasé. Catalysis of nanotube plasticity under tensile strain. Phys. Rev. B 2002, 66(19): 193403(1-4).
    119. A. Maiti, A. Ricca. Metal-nanotube interactions-binding energies and wetting properties. Chem. Phys. Lett. 2004, 395(1-3): 7-11.
    120. D. H. Chi, N. T. Cuong, N. A. Tuan, Y. Kim, H. T. Bao, T. Mitani, T. Ozaki, H. Nagao. Electronic structures of Pt clusters adsorbed on (5, 5) single wall carbon nanotube. Chem. Phys. Lett. 2006, 432(1-3): 213-217.
    121. M. Menon, A. N. Andriotis, G. E. Froudakis. Curvature dependence of the metal catalyst atom interaction with carbon nanotubes walls. Chem. Phys. Lett. 2000, 320(5-6): 425-434.
    122. K. Imura, H. Ohoyama, T. Kasai. Structures and its dipole moments of half-sandwich type metal-benzene (1:1) complexes determined by 2-m long electrostatic hexapole. Chem. Phys. 2004, 301(2-3): 183-187.
    123. I. Suarez-Martinez, C. P. Ewels, X. X. Ke, G. V. Tendeloo, S. Thiess, W. Drube, A. Felten, J. J. Pireaux, J. Ghijsen, C. Bittencourt. Study of the interface between rhodium and carbon nanotubes. ACS Nano, 2010, 4 (3): 1680-1686.
    124. K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I. Katsnelson, I. V. Grigorieva, S. V. Dubonos, A. A. Firsov. Electric field effect in atomically thin carbon films. Science 2004, 306(5696): 666-669.
    125. Jannik C. Meyer, A. K. Geim, M. I. Katsnelson, K. S. Novoselov, T. J. Booth, S. Roth. The structure of suspended graphene sheets. Nature 2007, 446(7131): 60-63.
    126. R. Saito, G. Dresselhaus, M. Dresselhaus. Physical properties of carbon nanotubes. London: Imperial College Press 1998.
    127. J. W. G. Wildoer, L. C. Venema, A. G. Rinzler, R. E. Smalley, C. Dekker. Electronic structure of atomically resolved carbon nanotubes. Nature 1998, 391(6662): 59-62.
    128. R. A. Jishi, D. Inomata, K. Nakao, M. S. Dresselhaus, G. Dresselhaus. Electronic and lattice properties of carbon nanotubes. J. Phys. Soc. Jpn. 1994, 63(6): 2252-2260.
    129. P. G. Klemens. Theory of the a-plane thermal conductivity of graphite. J. Wide Bandgap Mater. 2000, 7(4): 332-339
    130. A. A. Balandin, S. Ghosh, W. Z. Bao, I. Calizo, D. Teweldebrhan, F. Miao, C. N. Lau. Superior thermal conductivity of single layergraphene. Nano lett. 2008, 8(3): 902-907.
    131. L. P. Shi, S. J. Xiong. Phonon thermal condance of disordered graphene srips with armchair edges. Phys. Let. A, 2009, 373(5): 563-569.
    132. D. L. Nika, E. P. Pokatilov, A. S. Askerov, A. A. Balandin. Phonon thermal conduction in graphene: role of umklapp and edge roughness scattering. Phys. Rev. B 2009, 79(20): 155413.
    133. J. W. Jiang, J. S. Wang, B. W. Li. Thermal conductance of graphene and dimerite. Phys. Rev. B 2009, 79(20): 205418(1-6).
    134. A. K. Geim, K. S. Novoselov. The rise of graphene. Nat. Mater. 2007, 6(3): 183-191.
    135. A. K. Geim. Graphene: Status and prospects. Science 2009, 324(5934): 1530-1534.
    136. C. N. R. Rao, A. K. Sood, K. S. Subrahmanyam, A. Govindaraj. Graphene: The new two-dimensional nanomaterial. Angew. Chem. Int. Ed. 2009, 48(42): 7752-7777.
    137. M. J. Allen, V. C. Tung, R. B. Kaner. Honeycomb carbon: A review ofgraphene. Chem. Rev. 2010, 110(1): 132-145.
    138.黄毅,陈永胜.石墨烯的功能化及其相关应用.中国科学B辑:化学2009, 39(9): 887-896
    139.傅强,包信和.石墨烯的化学研究进展.科学通报2009, 54(18): 2657-2666.
    140. G. M. Scheuermann, L. Rumi, P. Steurer, W. Bannwarth, R. Mülhaupt. Palladium nanoparticles on graphite oxide and its functionalized graphene derivatives as highly active catalysts for the suzuki-miyaura coupling reaction. J. Am. Chem. Soc. 2009, 131(23): 8262-8270.
    141. R. Kou, Y. Y. Shao, D. H. Wang, M. H. Engelhard, J. H. Kwak, J. Wang, V. V. Viswanathan, C. M. Wang, Y. H. Lin, Y. Wang, I. A. Aksay, J. Liu. Enhanced activity and stability of Pt catalysts on functionalized graphene sheets for electrocatalytic oxygen reduction. Electrochem. Commun. 2009, 11(5): 954-957.
    142. C. Xu, X. Wang, J. W. Zhu. Graphene-metal particle nanocomposites. J. Phys. Chem. C 2008, 112(50): 19841-19845.
    143. B. Seger, P. V. Kamat. Electrocatalytically active graphene-platinum nanocomposites. Role of 2-D carbon support in PEM fuel cells. J. Phys. Chem. C 2009, 113(19): 7990-7995.
    144. R. Muszynski, B. Seger, P. Kamat. Decorating graphene sheets with gold nanoparticles. J. Phys. Chem. C 2008, 112(14): 5263-5266.
    145. E. Yoo, T. Okata, T. Akita, M. Kohyama, J. Nakamura, I. Honma. Enhanced electrocatalytic activity of Pt subnanoclusters on graphene nanosheet surface. Nano Lett. 2009, 9(6): 2255-2259.
    146. X. Z. Zhou, X. Huang, X. Y. Qi, S. X. Wu, C. Xue, F. Y. C. Boey, Q. Y. Yan, P. Chen, H. Zhang. In situ synthesis of metal nanoparticles on single-layer graphene oxide and reduced graphene oxide surfaces. J. Phys. Chem. C 2009, 113(25): 10842-10846.
    147. I. V. Lightcap, T. H. Kosel, P. V. Kamat. Anchoring semiconductor and metal nanoparticles on a two-dimensional catalyst mat. Storing and shuttling electrons with reduced graphene oxide. Nano Lett. 2010, 10(2): 577-583
    148. G. Williams, B. Seger, P. V. Kamat. TiO2-graphene nanocomposites. UV-assisted photocatalytic reduction of graphene oxide. ACS Nano 2008, 2(7): 1487-1491.
    149. G. Williams, P. V. Kamat. Graphene-semiconductor nanocomposites. excited state interactions between ZnO nanoparticles and graphene oxide. Langmuir 2009, 25(24): 13869-13873.
    150. Y. H. Ng, I. V. Lightcap, K. Goodwin, M. Matsumura, P. V. Kamat. To what extent do graphene scaffolds improve the photovoltaic and photocatalytic response of TiO2 nanostructured films? J. Phys. Chem. Lett. 2010, 1 (15): 2222-2227.
    151. Y. H. Ng, A. Iwase, A. Kudo, R. Amal. Reducing graphene oxide on a visible-light BiVO4 photocatalyst for an enhanced photoelectrochemical water splitting. J. Phys. Chem. Lett. 2010, 1(17): 2607-2612.
    152.张晓艳,李浩鹏,崔晓莉. TiO2/石墨烯复合材料的合成及光催化分解水产氢活性.无机化学学报2009, 25(11): 1903-1907.
    153. X. Y. Zhang, H. P. Li, X. L. Cui, Y. Lin. Graphene/TiO2 nanocomposites: Synthesis, characterization and application in hydrogen evolution from water photocatalytic splitting. J. Mater. Chem. 2010, 20(14): 2801-2806.
    154. B. Seger, P. V. Kamat. Electrocatalytically active graphene-platinum nanocomposites: Role of 2-D carbon support in pem fuel cells. J. Phys. Chem. C 2009, 113(19): 7990-7995.
    155. R. Muszynski, B. Seger, P. V. Kamat. Decorating graphene sheets with gold nanoparticles. J. Phys. Chem. C 2008, 112(14): 5263-5266.
    156. G. H. Lu, S. Mao, S. Park, R. S. Ruoff, J. H. Chen. Noncovalent decoration of graphene oxide sheets with nanocrystals. Nano Res. 2009, 2, 192-200.
    157. Y. C. Si, E. T.Samulski. Exfoliated graphene separated by platinum nanoparticles. Chem. Mater. 2008, 20(21): 6792-6797.
    158. C. Xu, X. Wang, J. W. Zhu. Graphene-metal particle nanocomposites. J. Phys. Chem. C 2008, 112(50): 19841-19845.
    159. G Gon?alves, A. A. P. Marques Paula, C. Granadeiro, H. Nogueira, M. K. Singh, J. Gracio. Surface modification of graphene nanosheets with gold nanoparticles: The role of oxygen moieties at graphene surface on gold nucleation and growth. Chem. Mater. 2009, 21(20): 4796-4802.
    160. J. F. Shen, M. Shi, N. Li, B. Yan, H. W. Ma, Y. Z. Hu, M. X. Ye. Facile synthesis and application of Ag-chemically converted graphene nanocomposite. Nano Res. 2010, 3(5): 339-349.
    161. T. Cassagneau, J. H. Fendler. Preparation and layer-by-layer self-assembly of silver nanoparticles capped by graphite oxide nanosheets. J. Phys. Chem. B 1999, 103(11): 1789-1793.
    162. A. Ghosh, K. S. Subrahmanyam, K. S. Krishna, S. Datta, A. Govindaraj, S. K. Pati, C. N. R. Rao. Uptake of H2 and CO2 by graphene. J. Phys. Chem. C 2008, 112(40): 15704-15707.
    163. N. A. Kaskhedikar, J. Maier. Lithium storage ion carbon nanostructures. Adv.Mater. 2009, 21(25-26): 2664-2680.
    164. M. H. Liang, L. J. Zhi. Graphene-based electrode materials for rechargeable lithium batteries. J. Mater. Chem. 2009, 19(33): 5871-5878.
    165. S. M. Paek, E. Yoo, I. Honma. Enhanced cyclic performance and lithium storage capacity of SnO2/graphene nanoporous electrodes with three-dimensionally delaminated flexible structure. Nano Lett. 2009, 9(1): 72-75.
    166. D. E. Jiang, B. G. Sumpter, S. Dai. How do aryl groups attach to a graphene sheet? J. Phys. Chem. B 2006, 110(47): 23628-23632.
    167. Y. H. Lu, W. Chen, Y. P. Feng, P. M. He. Tuning the electronic structure of graphene by an organic molecule. J. Phys. Chem. B 2008, 113(1): 2-5.
    168. E. Bekyarova, M, E. Itkis, P. Ramesh, C. Berger, M. Sprinkle, W. A. de Heer, R. C. Haddon. Chemical modification of epitaxial graphene: Spontaneous grafting of aryl groups. J. Am. Chem. Soc. 2009, 131(4) 1336-1337.
    169. E. Bekyarova, M. E. Itkis, P. Ramesh, R. C. Haddon. Chemical approach to the realization of electronic devices in epitaxial graphene. Phys. Stat. Sol. RRL. 2009, 3(6): 184-186.
    170. Q. H. Wang, M. C. Hersam. Room-temperature molecular-resolution characterization of self-assembled organic monolayers on epitaxial graphene. Nat. Chem. 2009, 1: 206-211.
    171. H. Huang, S. Chen, X. Y. Gao, W. Chen, A. T. S. Wee. Structural and electronic properties of PTCDA thin films on epitaxial graphene. ACS Nano 2009, 3(11): 3431-3436.
    172. Q. Zhang, Y. Qiao, F. Hao, L. Zhang, S. Wu, Y. Li, J. Li, X. M. Song. Fabrication of a biocompatible and conductive platform based on a singlestranded DNA/graphene nanocomposite for direct electrochemistry and electrocatalysis. Chem. Eur. J. 2010, 16(27): 8133-8139.
    173. R. Kannan, V. K. Pillai. Noncovalent DNA decorations of graphene oxide and reduced graphene oxide toward water-soluble metal-carbon hybrid nanostructures via self-assembly, Journal of the Indian Institute of Science 2009, 89(4): 425-436.
    174. C. Rajesh, C. Majumder, H. Mizuseki, Y. Kawazoe. A theoretical study on the interaction of aromatic amino acids with graphene and single walled carbon nanotube Journal of Chemical Physics, 2009, 130(12): 124911(1-6).
    175. F. Ma, Z. X. Zhang, H. S. Jia, X. G. Liu Y. Y. Hao, B. S. Xua. Adsorption of cysteine molecule on intrinsic and Pt-doped graphene: A first-principle study. J. Mol. Struct. (Theochem) 2010, 955(1-3): 134-139.
    176. M. Pumera, R. Scipioni, H. Iwai, T. Ohno, Y. Miyahara, M. Boero. A mechanism of adsorption ofβ-Nicotinamide adenine dinucleotide on graphenesheets: Experiment and theory. Chem. Eur. J. 2009, 15(41): 10851-10856.
    177. J. D. Wuesta, A. Rochefortw. Strong adsorption of aminotriazines on graphene. Chem. Commun. 2010, 46(17): 2923-2925.
    178. W.G. Schmidt, K. Seino, M. Preuss, A. Hermann, F. Ortmann, F. Bechstedt. Organic molecule adsorption on solid surfaces: Chemical bonding, mutual polarisation and dispersion interaction. Appl. Phys. A 2006, 85(4): 387-397.
    179. H. Valencia, A. Gil, G. Frapper. Trends in the adsorption of 3d transition metal atoms onto graphene and nanotube surfaces: A DFT study and molecular orbital analysis. J. Phys. Chem. C 2010, 114(33): 14141-14153.
    180. I. Gierz, C. Riedl, U. Starke, C. R. Ast, K. Kern. Atomic hole doping of graphene. Nano Lett. 2008, 8(12): 4603–4607.
    181. Y. J. Gan, L. T. Sun, F. Banhart. One- and two-dimensional diffusion of metal atoms in graphene. Small 2008, 4(5), 587-591.
    182. Z. Zhou, F. Gao, D. W. Goodman. Deposition of metal clusters on single-layer graphene/Ru(0001): Factors that govern cluster growth. Surf. Sci. 2010, 604(13-14): L31-L38.
    183. I. Cabria, M. J. Lopez, J. A. Alonso. Theoretical study of the transition from planar to three-dimensional structures of palladium clusters supported on graphene. Phys. Rev. B 2010, 81(3): 035403(1-5).
    184. O. U. Akturk, M. Tomak. AunPtn clusters adsorbed on graphene studied by first-principles calculations. Phys. Rev. B 2009, 80(8): 085417(1-6).
    185. K. M. McCreary, K. Pi, A. G. Swartz, Wei Han, W. Bao, C. N. Lau, F. Guinea, M. I. Katsnelson, R. K. Kawakami. Effect of cluster formation on graphene mobility. Phys. Rev. B 2010, 81(11): 115453(1-5).
    186. E. J. G. Santos, A. Ayuela, S. B. Fagan, J. Mendes Filho, D. L. Azevedo, A. G. Souza Filho, D. Sanchez-Portal. Switching on magnetism in Ni-doped graphene: Density functional calculations. Phys. Rev. B 2008, 78(19): 195420(1-5).
    187. K. T. Chan, J. B. Neaton, M. L. Cohen. First-principles study of metal adatom adsorption on graphene. Phys. Rev. B 2008, 77(23): 235430(1-12).
    188. H. Sevin?li, M. Topsakal, E. Durgun, S. Ciraci. Electronic and magnetic properties of 3d transition-metal atom adsorbed graphene and graphene nanoribbons. Phys. Rev. B 2008, 77(19): 235430(1-8).
    189. A. V. Krasheninnikov, P. O. Lehtinen, A. S. Foster, P. Pyykk?, R. M. Nieminen. Embedding transition-metal atoms in graphene: structure, bonding, and magnetism. Phys. Rev. Lett. 2009, 102(12): 126807(1-4).
    190. D. W. Boukhvalov, M. I. Katsnelson. Destruction of graphene by metal adatoms. Appl. Phys. Lett. 2009, 95(2): 023109(1-3).
    191. G. Kim, S. H. Jhi, S. Lim, N. Park. Effect of vacancy defects in graphene on metal anchoring and hydrogen adsorption. Appl. Phys. Lett. 2009, 94(17): 173102(1-3).
    192. Y. H. Lu, M. Zhou, C. Zhang, Y. P. Feng. Metal-embedded graphene: A possible catalyst with high activity. J. Phys. Chem. C 2009, 113(47): 20156-20160.
    193. Y. F. Li, Z. Zhou, G. T. Yu, W. Chen, Z. F. Chen. CO catalytic oxidation on iron-embedded graphene: Computational quest for low-cost nanocatalysts. J. Phys. Chem. C 2010, 114(14): 6250-6254.
    194. M. Zhou, A. H. Zhang, Z. X. Dai, Y. P. Feng, C. Zhang. Strain-enhanced stabilization and catalytic activity of metal nanoclusters on graphene. J. Phys. Chem. C 2010, 114(39): 16541-16546.
    195. D. Sholl, J. A. Steckel. Density functional theory: A practical introduction, Wiley-Interscience, 2009.
    196. R. Dreizler, E. Gross. Density functional theory. Plenum Press, New York, 1995.
    197. A. D. Becke. Density-functional thermochemistry III The role of exact exchange. J. Chem. Phys. 1993, 98(7): 5648-5652.
    198. C. Lee, W. Yang, R. G. Parr. Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys. Rev. B 1988, 37(2): 785-789.
    199. L. H. Thomas. The calculation of atomic fields. Proc. Cambridge Phil. Soc. 1927, 23(05): 542-548
    200. E. Fermi, E. Segre. Theory of hyperfine structure. Z. Phys.1933, 82, 729-749.
    201. W. Kohn, L. Sham. Self-consistent equations including exchange and correlation, effcts. Phys. Rev. A 1965, 140(4A): A1133-A1138.
    202. D. C. Langreth, J. P. Perdew. Theory of nonuniform electronic systems. Phys. Rev. B 1980, 21: 5469-5493.
    203. J. P. Perdew. Transport and relacation of hot condition electrons an organic dielectric. Phys. Rev. B 1986, 33: 8822-8827.
    204. J. P. Perdew. Gneralized gradient approximation for exchange and correlation: A look backward and forward. Physica. B 1991, 172(1-2): 1-6.
    205. J. P. Perdew, Y. Wang. Theory of the cyslotron resonance spectrum of a polaron in two dimensions. Phys. Rev. B 1986, 34(12): 8800-8809.
    206. J. P. Perdew, J. A. Chevary, S. H. Vosko, K. A. Jackson, M. R. Pederson, D. J. Singh, C. Fiolhais. Atoms, molecules, solids, and surfaces: Applications of the generalized gradient approximation for exchange and correlation. Phys. Rev. B, 1992, 46: 6671-6687.
    207. J. P. Perdew, K. Burke, M. Ernzerhof. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77(18): 3865–3868.
    208. J. P. Perdew. Electronic structure of solids. Akademie Verlag, Berlin. 1991.
    209. A. D. Beck. Density functional thermochemistryⅠthe eeffct of the exchange-only gradient correction. J. Chem. Phys.1992, 96(3): 2155-2160.
    210. C. Lee, W. Wang, R. G. Parr. Development of the colle-salveutti correlation-energy formula into a functional of the electron densiyt. Phys. Rev. B 1988 37(2): 785-789.
    211. A. D. Becke. Density-functional themrochemistryⅡthe effct of the perdew-wang generalized-gradient correlation correction. J. Chem. Phys. 1992(97): 9173-9177
    212. A. D. Becke, Density-functional thermochemistryⅢthe role of exact exchange. J. Chem. Phys. 1993 98(7): 5648-5662
    213. J. K. Labanowski, J. W. Andzelm. Density functional methods in chemistry. Springer-Verlag, New York. 1991.
    214. J. P. Perdew, K. Burke, M. Ernzerhof. Generalized Gradient Approximation Made Simple. Phys. Rev. Lett. 1996, 77(18), 3865-3868.
    215. D. C. Rapaport. The art of molecular dynamics simulation. 1996 ISBN 0-521-44561-2.
    216. J. M. Haile. Molecular dynamics simulation: Elementary methods. 2001 ISBN 0-471-18439-X.
    217. T. Schlick. Molecular modeling and simulation. Springer. 2002 ISBN 0-387-95404-X.
    218. B. J. Alder, T. E. Wainwright. Phase transition for a hard sphere system. J. Chem. Phys. 1957, 27: 1208-1209.
    219. B. J. Alder, T. E. Wainwright. Studies in molecular dynamics I general method. J. Chem. Phys. 1959, 31(2): 459-466.
    220. A. Rahman. Correlations in the motion of atoms in liquid argon. Phys. Rev. A 1964, 136(2A): A405-A411.
    221. F. H. Stillinger. A. Rahman. Improved simulation of liquid water by molecular dynamics. J. Chem. Phys. 1974, 60(4): 1545-1557
    222. J. A. McCammon, B. R. Gelin, M. Karplus. Dynamics of folded proteins. Nature 1977, 267: 585-590.
    223. V. Gogonea. The QM/MM method: An overview. Internet Electron. J. Mol. Des. 2002, 1(4): 173-184.
    224. W. Hummers, A. Offema. Preparation of graphitic oxide. J. Am. Chem. Soc. 1958, 80: 1339-1339.
    225. L. Gagliardi, D. De Orsi, G. Cavazzutti, G. Multari, D. Tonelli. HPLC determination of rhodamine B (C.I. 45170) in cosmetic products. Chromatographia. 1996, 43(1-2):76-78.
    226. D. V. Sweet. Registry of Toxic Effects of Chemical Substances. 1985-86 Edition; U.S. Department of health and human services: Cincinnati, OH. DHHS (NIOSH) Publication 1987, 87-114: 313.
    227. B. O. Opeolu, O. S. Fatoki, J. Odendaal. Development of a solid-phase extraction method followed by HPLC-UV detection for the determination of phenols in water. Inter. J. Phys. Sci. 2010, 5(5): 576-581.
    228. B. N. Estevinho, I. Martins, N. Ratola, A. Alves, L. Santos. Removal of 2,4-dichlorophenol and pentachlorophenol from waters by sorption using coal fly ash from a Portuguese thermal power plant. J. Hazard. Mater. 2007, 143(1-2): 535-540.
    229. G. Kresse, J. Hafner. Ab initio molecular dynamics for liquid metals. Phys. Rev. B 1993, 47(1): 558-561.
    230. G. Kresse, J. Furthmuller. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 1996, 54(16): 11169-11186.
    231. G. Kresse, J. Furthmuller. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 1996, 6(1): 15-50.
    232. A. Stashans, R. Rivera. H-doped PbTiO3: Structure and electronic properties-Int. J. Quant. Chem. 2007, 107(6): 1508-1513.
    233. G Hummer, J C Rasaiah, J P Noworyta. Water conduction through the hydrophobic channel of a carbon nanotube. Nature 2001, 414(6860): 188-190.
    234. K. M. Bratlie, H. Lee, K. Komvopoulos, P. Yang, G. A. Somorjai. Platinum nanoparticle shape effects on benzene hydrogenation selectivity. Nano Lett. 2007, 7(10): 3097-3101.
    235. H. Lee, S. Habas, S. Kweskin, D. Butcher, G. Somorjai, P. Yang. Morphological control of catalytically active platinum nanocrystals. Angew. Chem. Int. Ed. 2006, 45(46): 7824 -7828.
    236. N. Govind, M. Petersen, G. Fitzgerald, D. King-Smith, M. Andzelm. A generalized synchronous transit method for transition state location. J. Comput. Mater. Sci. 2003, 28(2): 250-258.
    237. R. Wing, H. Drew, T. Takano, C. Broka, S. Tanaka, K. Itakura, R. E. Dickerson. Crystal structure analysis of a complete turn of B-DNA. Nature 1980, 287: 755-758.
    238. M. L. Kopka, A. V. Fratini, H. R. Drew, R. E. Dickerson. Ordered waterstructure around a B-DNA dodecamer: A quantitative study. J. Mol. Biol. 1983, 163(1): 129-146.
    239. H. R. Drew, D. Samson, R. E. Dickerson. Structure of B-DNA Dodecamer at 16 K. Proc. Natl. Acad. Sci. 1982, 79: 4040-4044.
    240. J.C. Phillips, R. Braun, W. Wang, J. Gumbart, E. Tajkhorshid, E. Villa, C. Chipot, R.D. Skeel, L. Kale, K. Schulten. Scalable molecular dynamics with NAMD. J. Comput. Chem. 2005, 26(16): 1781-1802.
    241. T. Darden, D. York, L. Pedersen. Particle mesh Ewald: An N-log(N) method for Ewald sums in large systems. J. Chem. Phys. 1993, 98(12): 10089-10092.
    242. L. A. Girifalco, M. Hodak. Van der Waals binding energies in graphitic structures. Phys. Rev. B 2002, 65(12):125404(1-5).
    243. F. Tournus, J. C. Charlier. Ab initio study of benzene adsorption on carbon nanotubes. Phys. Rev. B 2005, 71(16):165421(1-8).
    244. F. Tournus, S. Latil, M. I. Heggie, J. C. Charlier.π-Stacking interaction between carbon nanotubes and organic molecules. Phys. Rev. B 2005, 72(7):075431(1-5).
    245. L. M. Woods, S. C. Badescu, T. L. Reinecke. Adsorption of simple benzene derivatives on carbon nanotubes. Phys. Rev. B 2007, 75(15):155415(1-9).
    246. A. J. Fischer, P. E. Blochl. Adsorption and scanning-tunnelingmicroscope imaging of benzene on graphite and MoS2. Phys. Rev. Lett. 1993, 70(21):3263-3266.
    247. A. Janotti, S. H. Wei, D. J. Singh. First-principles study of the stability of BN and C. Phys. Rev. B 2001, 64(17): 174107(1-5).
    248. S. J. Vosko, L. Wilk, M. Nusair. Accurate spin-dependent electron liquid correlation energies for local spin density calculations: A critical analysis. Can. J. Phys. 1980, 58(8): 1200-1211.
    249. K. N. Kudin, B. Ozbas, H. C. Schniepp, R. K. Prudhomme, I. A. Aksay, R. Car. Raman spectra of graphite oxide and functionalized graphene sheets. Nano Lett. 2008, 8(1): 36-41.
    250. J. Rivera-Utrilla, M. Sánchez-Polo. Ozonation of 1,3,6-naphthalenesulphonic acid catalysed by activated carbon in aqueous phase. Appl. Catal. B 2002, 39(4): 319-329.
    251. M. Sánchez-Polo, U. von Gunten, J. Rivera-Utrilla. Efficiency of activated carbon to transform ozone into·OH radicals: Influence of operational parameters. Water Res. 2005, 39(14): 3189-3198.
    252. F. J. Beltrán, F. J. Rivas, L. A. Fernández, P. M.álvarez, R. Montero-de-Espinosa. Kinetics of catalytic ozonation of oxalic acid in water with activated carbon. Ind. Eng. Chem. Res. 2002, 41(25): 6510-6517.
    253. P. C. C. Faria, J. J. M.órf?o, M. F. R. Pereira. Ozonation of aniline promoted by activated carbon. Chemosphere 2007, 67(4): 809-815.
    254. J Ma, M. H. Sui, T. Zhang, C. Y. Guan. Effect of pH on MnOx/GAC catalyzed ozonation for degradation of nitrobenzene. Wat. Res. 2005, 39(5): 779-786.
    255. Serp P, Corrias M, Kalck P. Carbon nanotubes and nanofibers in catalysis. Appl. Catal. A 2003, 253(2): 337-358.
    256. P. Kari, S. Mika. Heterogeneous water phase catalysis as an environmental application: A review. Chemosphere 2002, 48(10): 1047-1060.
    257. A. Kuznetsova, D. Douglas, V. Namneko, J. T. Yates, J. Liu, R. E. Smalley. Enhancement of adsorption inside of single-walled nanotubes: Opening the entry ports. Chem. Phys. Lett. 2000, 321(3-4): 292-296.
    258. G. Q. Yu, S. H. Lee, J. J. Lee. Effects of thermal annealing on amorphous carbon nitride films by r.f. PECVD. Diamond Relat. Mater. 2002, 11(9): 1633-1637.
    259. J. Ristein, R.T. Stief, L. Ley, W. Beyer. A comparative analysis of a-C:H by infrared spectroscopy and mass selected thermal effusion. J. Appl. Phys. 1998, 84(7): 3836-3847.
    260. R. Andreozzi, V. Caprioa, A. Insolab, R. Marottac. Advanced oxidation processes (AOP) for water purification and recovery. Catal. Today.1999, 53(1): 51-59.
    261. J. Hoigné, H. Bader. Rate constants of reaction of ozone with organic and inorganic compounds in water part II dissociating organic compounds. Water Res. 1983, 17(2): 185-194.
    262. J. Hoigné, H. Bader. The role of hydroxyl radical reactions in ozonation processes in aqueous solutions. Water Res. 1976, 10(5): 377-386.
    263. J. Ma, N. J. D. Graham. Degradation of atrazine by manganese-catalysed ozonation: Influence of radical scavengers. Water Res. 2000, 34(15): 3822-3828.
    264. B. Kasprzyk-Hordern, M. Zió?ek, J. Nawrocki. Catalytic ozonation and methods of enhancing molecular ozone reactions in water treatment. Appl. Catal. B 2003, 46(4): 639-669.
    265. W. Chamulitrat, M. F. Hughes, T. E. Eling, R. P. Mason. Superoxide and peroxyl radical generation from the reduction of polyunsaturated fatty acid hydroperoxides by soybean lipoxygenase. Arch. Biochem. Biophys. 1991, 290(1): 153-159.
    266. A. Stashans, R. Rivera. H-doped PbTiO3: Structure and electronic properties. Int. J. Quant. Chem. 2007, 107(6): 1508-1513.
    267. G. Hummer, J. C. Rasaiah, J. P. Noworyta. Water conduction through the hydrophobic channel of a carbon nanotube. Nature, 2001, 414(6860): 188-190.
    268. W. Li, G. V. Gibbs, S. T. Oyama. Mechanism of ozone decomposition on a manganese oxide catalyst. 1. In situ Raman spectroscopy and ab initio molecular orbital calculations. J. Am. Chem. Soc. 1998, 120(35): 9041-9046.
    269. F. J. Beltrán, J. Rivas, P.álvarez, R. Montero-de-Espinosa. Kinetics of heterogeneous catalytic ozone decomposition in water on an activated carbon. Ozone Sci. Eng. 2002, 24(4): 227-237.
    270. C. Cooper, R. Burch. An investigation of catalytic ozonation for the oxidation of halocarbons in drinking water preparation. Wat. Res. 1999, 33(18): 3695-3700
    271. C. Q. Sun. Surface and nanosolid core-level shift: Impact of atomic coordination-number imperfection. Phys. Rev. B 2004, 69(4): 045105(1-8).
    272. C. Q. Sun, Y. Wang, Y. G. Nie, Y. Sun, J. S. Pan, L. K. Pan. Z. Sun. Elucidating the 4f binding energy of an isolated Pt atom and its bulk shift from the measured surface- and size-induced Pt 4f core level shift. J. Phys. Chem. C 2009, 113(52): 21889-21894.
    273. C. Q. Sun, Y. Wang, Y. G. Nie, Y. Sun, J. S. Pan, L. K. Pan, Z. Sun. Adatoms-induced local bond contraction, quantum trap depression, and charge polarization at Pt and Rh surfaces. J. Phys. Chem. C 2009, 113(52): 21889-21894.
    274. W. Xia, J. H. Li, W. Z. Weng, H. L. Wan. Can superoxide species be formed at small La-O clusters in the presence of oxygen? A DFT study. Chem. Phys. Let. 2006, 423(4-6): 427-433.
    275. X. Huang, H. J. Zhai, T. Waters, J. Li, L. S. Wang. Experimental and theoretical characterization of superoxide complexes [W2O6(O2-)] and [W3O9(O2-)]: Models for the interaction of O2 with reduced W sites on tungsten oxide surfaces. Angew Chem. Int. Ed. 2006, 45(4): 657-660.
    276. Z. Liu, J. T. Robinson, X. M. Sun, H. J. Dai. PEGylated nanographene oxide for delivery of water-insoluble cancer drugs. J. Am. Chem. Soc. 2008, 130(33): 10876-10877.
    277. J. R. Lomeda, C. D. Doyle, D. V. Kosynkin, W. F. Hwang, J. M. Tour. Diazonium functionalization of surfactant-wrapped chemically converted graphene sheets. J. Am. Chem. Soc. 2008, 130(48): 16201-16206.
    278. Y. F. Xu, Z. B. Liu, X. L. Zhang, Y. Wang, J. G. Tian, Y. Huang, Y. F. Ma, X. Y. Zhang, Y. S. A. Chen. Graphene hybrid material covalently functionalized with porphyrin: Synthesis and optical limiting property. AdV. Mater. 2009, 21(12): 1275-1279.
    279. A. J. Patil, J. L. Vickery, T. B. Scott, Mann, S. Aqueous stabilization and self-assembly of graphene sheets into layered bio-nanocomposites using DNA. Adv. Mater. 2009, 21(31): 3159-3164.
    280. J. Kim, L. J. Cote, F. Kim, J. Huang. Visualizing graphene based sheets by fluorescence quenching microscopy. J. Am. Chem. Soc. 2010, 132(1): 260-267.
    281. Y. Wang, Y. M. Li, L. H. Tang, J. Lu, J. H. Li. Electrochemical DNA sensors: from nanoconstruction to biosensing. Electrochem. Commun. 2009, 11(4): 889-892.
    282. L. J. Cote, R. Cruz-Silva, J. X. Huang. Flash reduction and patteming of graphite oxide and its polymer composite. J. Am. Chem. Soc. 2009, 131, 11027-11032.
    283. H. L. Guo, X. F. Wang, Q. Y. Qian, F. B. Wang, X. H. Xia. A green approach to the synthesis of graphene nanosheets. ACS Nano 2009, 3(9): 2653-2659.
    284. W. Gao, L. B. Alemany, L. J. Ci, P. M. Ajayan. New insights into the structure and reduction of graphite oxide. Nature Chem. 2009, 1: 403-408.
    285. Z. S. Wu, W. C. Ren, L. B. Gao, J. P. Zhao, Z. P. Chen, B. L. Liu, D. M. Tang, B. Yu, C.B. Jiang, H. M. Cheng. Synthesis of graphene sheets with high electrical conductivity and good thermal stability by hydrogen arc discharge exfoliation. ACS Nano 2009, 3(2): 411-417.
    286. J. B. Liu, Y. L. Li, Y. M. Li, J. H. Li, Z. X. Deng. Noncovalent DNA decorations of graphene oxide and reduced graphene oxide toward water-soluble metal–carbon hybrid nanostructures via self-assembly. J. Mater. Chem. 2010, 20(5): 900-906.
    287. X. G. Han, Y. L. Li, Z. X. Deng. DNA-wrapped single walled carbon nanotubes as rigid templates for assembling linear gold nanoparticle arrays. Adv. Mater. 2007, 19(11). 1518-1522.
    288. Y. L. Li, X. G. Han, Z. X. Deng. Grafting single-walled carbon nanotubes with highly hybridizable DNA sequences: Potential building blocks for DNA-programmed material assembly. Angew. Chem. Int. Ed. 2007, 46(39): 7481-7484.
    289. V. Hlady, J. Buijs. Protein adsorption on solid surfaces. Curr. Opin. Biotechnol. 1996, 7(1): 72-77.
    290. K. Bradley, M. Briman, A. Star, G. Grüner. Charge transfer from adsorbed protein. Nano Lett. 2004, 4 (2): 253-256.
    291. C. J. Murphy, M. R. Arkin, Y. Jenkins, N. D. Ghatlia, S. H. Bossmann, N. J. Yurro, J. K. Barton. Long-range photoinduced electron transfer through a DNA helix. Science 1993, 262(5136): 1025-1029.
    292. D. B. Hall, R. E. Holmlin, J. K. Barton. Oxidative DNA damage throughlong-range electron transfer. Nature 1996, 382(6593): 731-734.
    293. Y. J. Ye, Y. Jiang, Y. J. Ye. Electronic structures and long-range electron transfer through DNA molecules. INT J. Quantum Chem. 2000, 78: 112-130.
    294. C. Staii, M. Chen, A. Gelperin, A. T. Johnson. DNA-decorated carbon nanotubes for chemical sensing. Nano Lett. 2005, 5(9): 1774-1778.
    295. L. D. A. Siebbeles. Organic solar cells: Two electrons from one photon. Nature Chem. 2010, 2: 608-609.
    296. Y. J. Ye. R. S. Chen. A. Martinez. P. Otto, J. Ladik. Calculated state densities of aperiodic nucleotide base stacks. Physica B 279(4): 246-252.
    297. E. S. Jeng, A. E. Moll, A. C. Roy, J. B. Gastala, M. S. Strano. Detection of DNA hybridization using the near-infrared band-gap fluorescence of single-walled carbon nanotubes. Nano Lett. 2006, 6 (3): 371-375.
    298. M. Zheng, A. Jagota, E. D. Semke, B. A. Diner, R. S. McLean, S. R. Lustig, R. E. Richardson, N. G. Tassi. DNA-assisted dispersion and separation of carbon nanotubes. Nat. Mater. 2003, 2 (5): 338-342.
    299. M. Zheng, A. Jagota, M. S. Strano, A. P. Santos, P. Barone, S. G. Chou, B. A. Diner, M. S. Dresselhaus, R. S. Mclean, G. B. Onoa, G. G. Samsonidze, L.D. Semke, M. Usrey, D. J. Walls. Structure-based carbon nanotube sorting by sequence-dependent DNA assembly. Science 2003, 302(5650): 1545-1548.
    300. S. Meng, P. Maragakis, C. Papaloukas, E. Kaxiras. DNA nucleoside interaction and identification with carbon nanotubes. Nano Lett. 2007, 7(1): 45-50.
    301. D. L. Nelson, M. M. Cox, Lehninger, Principles of Biochemistry. 3rd Ed. Worth Publishing: New York, 2000. ISBN 1-57259-153-6.
    302. G. Calleja, B. Coto, A. M. Morales-Cas. Adsorption energy distribution in activated carbon from grand canonical Monte Carlo calculation. Appl. Surf. Sci. 2006, 252(12): 4345-4352.
    303. P. Podkoscielny, A. Dabrowski, M. Bulow. Heterogeneity of nanoporous solids in adsorption from solutions-evaluation of energy distribution functions for adsorption in micropores of activated carbons by a comparative method. Appl. Surf. Sci. 2002, 196: 312-321.
    304. R. Alain, J. D. Wuest. Interaction of substituted aromatic compounds with graphene. Langmuir 2009, 25(1): 210-215.
    305. C. S. Lin, R. Q. Zhang. Geometric and electronic structures of carbon nanotubes adsorbed with flavin adenine dinucleotide: A theoretical study. J. Phys. Chem. C 2007, 111(11): 4069-4073.
    306. J. Lu, S. Nagase, X. W. Zhang, D. Wang, M. Ni, Y. Maeda, T. Wakahara, T. Nakahodo, T. Tsuchiya, T. Akasaka, Z. X. Gao, D. P. Yu, H. Q. Ye, W. N. Mei,Y. S. Zhou. Selective interaction of large or charge-transfer aromatic molecules with metallic single-wall carbon nanotubes: Critical role of the molecular size and orientation. J. Am. Chem. Soc. 2006, 128(15): 5114-5118.
    307. M. Y. Han, B. ?zyilmaz, Y. B. Zhang, P. Kim. Energy band-gap engineering of graphene nanoribbons. Phys. Rev. Lett. 2007, 98: 206805(1-4).
    308. D. L. Irving, S. B. Sinnott, A. S. Lindner. Interaction of functionalized benzene molecules with carbon nanopores. Chem. Phys. Lett. 2004, 389(1-3): 96-100.
    309. H. Chang, J. D. Lee, S. M. Lee, Y. H. Lee. Adsorption of NH3 and NO2 molecules on carbon nanotubes. Appl. Phys. Lett. 2001, 79(23): 3863-3865.
    310. R. R. Johnson, A. T. C. Johnson, M. L. Klein. Probing the structure of DNA?carbon nanotube hybrids with molecular dynamics. Nano Lett. 2008, 8 (1): 69-75.
    311. R. R. Johnson, A. Kohlmeyer, A. T. C. Johnson, M. L. Klein. Free energy landscape of a DNA-Carbon nanotube hybrid using replica exchange molecular dynamics. Nano Lett. 2009, 9(2): 537-541.
    312. J. R?ezá?, P. Hobza. On the nature of DNA-duplex stability. Chem. Eur. J. 2007, 13(10): 2983-2989.
    313. G. Lu, P. Maragakis, E. Kaxiras. Carbon nanotube interaction with DNA. Nano Lett. 2005, 5(5): 897-900.
    314. E. S. Snow, F. K. Perkins, E. J. Houser, ?. C. B?descu, T. L. Reinecke. Chemical detection with a single-walled carbon nanotube capacitor. Science 2005, 307(5717): 1942-1945.
    315. S. J. Sowerby, C. A. Cohn, W. M. Heckl, N. G. Holm. Differential adsorption of nucleic acid bases: Relevance to the origin of life. Proc. Natl. Acad. Sci. USA. 2001, 98(3): 820-822.
    316. S. Gowtham, R. H. Scheicher, R. Ahuja, R. Pandey, S. P. Karna, Physisorption of nucleobases on graphene: Density-functional calculations. Phys. Rev. B 2007, 76(3): 033401(1-4).
    317. Z. W. Tang, H. Wu, J. R. Cort, G. W. Buchko, Y. Y. Zhang, Y. Y. Shao, I. A. Aksay, J. Liu, Y. H. Lin. Constraint of DNA on functionalized graphene improves its biostability and specificity. Small 2010, 6(11): 1205-1209.
    318. H. F. Wang, Z. P. Liu. Comprehensive mechanism and structure-sensitivity of ethanol oxidation on platinum: New transition-state searching method for resolving the complex reaction network. J. Am. Chem. Soc. 2008, 130(33): 10996-11004.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700