用户名: 密码: 验证码:
多功能分子印迹聚合物的RAFT聚合制备及性能
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
分子印迹技术是制备对目标分子具有专一识别性能的高分子合成技术,其核心是分子印迹聚合物。分子印迹聚合物具有预定性、识别性、选择性等三大特性。本项研究将分子印迹技术与可逆加成-断裂链转移聚合方法相结合,在球形硅胶、磁性硅球、磁性荧光硅球及氧化石墨烯等不同载体表面接枝分子印迹聚合物膜,合成了具有强磁响应性、荧光性和高传质速率等性能的多功能分子印迹聚合物。通过透射电子显微镜、扫描电子显微镜、荧光显微镜、傅立叶红外光谱仪、振动样品磁强计、热重分析仪和比表面分析仪等对各种功能性分子印迹聚合物进行了结构分析表征,并研究了它们对水环境中内分泌干扰物的去除与识别机制。
     以球形硅胶为载体,制备了表面具有纳米结构的“核-壳”式分子印迹聚合物微球。吸附实验结果表明:吸附符合动力学二级反应模型,吸附规律较好的符合Langmuir吸附等温式;所制备的印迹聚合物微球对模板分子表现出了较强的亲和力和较优的选择性。通过密度泛函理论模拟计算,对分子印迹聚合物微球的选择性识别机制进行了理论分析。
     以磁性硅球为载体,制备了磁性分子印迹聚合物微球。该微球表面分子印迹聚合物膜的厚度约为22nm。所制备的磁性印迹聚合物微球对模板分子具有较强的吸附结合能力和优异的分子选择识别性能,重复使用五次依然表现出较好的亲和力和选择性。产物所具有的磁响应性(Ms=0.41eum/g)能够使其在外加磁场作用下,快速地从样品中分离出来。
     以磁性荧光硅球为载体,制备了磁性荧光分子印迹聚合物微球,该微球表现出磁响应性、荧光性能和热稳定性。微球中荧光层的厚度约为8.7nm,表面分子印迹聚合物膜厚度约为5.7nm。采用荧光分析法可使模板分子的检测限达到0.19μmol/L,该微球重复使用五次后依然具有较好的荧光强度和磁性能。此外,根据Stem-volmer方程分析了产物的荧光减弱过程属于静态淬灭机理。
     以氧化石墨烯为载体,制备了氧化石墨烯基分子印迹聚合物复合材料。该复合材料中表面分子印迹聚合物膜的厚度约为3.707nm。吸附实验结果表明:制备的复合材料对模板分子表现出更高的结合能力和更优的选择性,同时它还具有很好的可重复利用性。密度泛函理论计算揭示了石墨烯基材料为模板分子提供大的π表面,与模板分子形成π-π共轭作用使体系稳定,显著改善了分子印迹聚合物性能。
Molecular imprinting is a highly accepted synthesis approach for the preparation of tailor-made recognition material with cavities that are able to selectively recognize target molecules. The molecular imprinted polymers boast the characters of prearrangement, recognition and selectivity. In this work, we have prepared multifunctional molecularly imprinted polymers with superparamagnetism, excellent fluorescent properties and fast transportation rate on different supportings such as silica gels, Fe3O4 functionalized silica gels, magnetic/optical silica gels and graphene oxide by combining reversible addition-fragmentation chain transfer (RAFT) polymerization approach and molecular imprinting technology. The resulting composites were characterized by scanning electron microscopy (SEM) and transmission electron microscopy (TEM) photoluminescence (PL) spectra, fourier transform infrared (FT-IR) analysis, vibrating sample magnetometer (VSM), thermogravimetric analysis (TGA) and BET adsorption isotherm analysis. The mechanism of their selectivity for EDCs in water was also investigated.
     The super-thin surface-imprinted core-shell magnetic molecular imprinted nanobeads were prepared with spherical silica as the support. Absorption experiments demonstrated linearized pseudo second-order kinetic model, in good agreement with Langmuir absorption isotherm. The imprinted nanobeads showed strong affinity and excellent selectivity. Density functional theory calculations verified the mechanism of selectivity and recognition of these imprinted nanobeads.
     Molecular imprinted nanobeads with core-shell structure were prepared with Fe3O4@SiO2 as the supporting. The homogeneous polymer films had the thickness of about 22 nm. The as-synthesized surface-imprinted core-shell magnetic beads showed outstanding affinity and selectivity over other structurally related compounds and the resulting composites reusability without obviously deterioration in performance was demonstrated at least five repeated cycles. In addition, the system can be easily separated under an external magnetic field.
     Molecular imprinted nanobeads with core-shell structure were prepared with magnetic Fe3O4@SiO2-Dye-SiO2 as the supporting. The polymer and FITC layer of Fe3O4@SiO2-MIP had the thickness of about 5.7 nm and 8.7 nm, respectively. The limit of detection is 0.19μmol/L measuraed by photoluminescence spectrometer and the beads can be reused for at least up to 5 times without significant loss of magnetic moment and signal intensity. In addition, the Stem-volmer equations illustrated the mechanism of fluorescent quenching. A molecularly imprinted polymer–graphene oxide (MIP-GO) hybrid material was synthesized with graphene oxide as the support. The average thickness of the polymer grafted on the GO surface is about 3.707 nm. Adsorption experiments demonstrated that the hybrid material has strong affinity, excellent selectivity and reusability. Density functional theory calculations verified that the substrate provides a significantπsurface that could overlap with theπorbitals of 2,4-DCP and obtains stability through electrostatic interaction, resulting in the formation ofπ-πstacking, and the mechanism of the significant improvements on the affinity and selectivity of the MIP-functionalized graphene materials.
引文
1姜忠义,吴洪.分子印迹技术.化学工业出版社. 2003.
    2 K. Haupt. Imprinted polymers-tailor-made mimics of antibodies and receptors. Chemical Communications. 2003, 2:171~178.
    3 R. Suedee, T. Srichana, T. Chuchome, et al. Use of molecularly imprinted polymers from a mixture of tetracycline and its degradation products to produce affinity membranes for the removal of tetracycline from water. Journal of Chromatography B. 2004, 811:191~200.
    4 L. Pauling. A theory of the structure and process of formation of antibodies. Journal of the American Chemical Society. 1940, 62:2643~2657.
    5 F. H. Dickey. The preparation of specific adsorbents. Proceedings of The National Academy of Sciences USA. 1949, 35:227~229.
    6 G. Wulff, A. Sarhan. Use of polymers with enzyme-analogous atrctures for the resolution of racemates. Angewandte Chemie International Edition. 1972, 11:341~344.
    7 G. Vlatakis, L. I. Andersson, R. Müller, et al. Drug assay using antibody mimics made by molecular imprinting. Nature. 1993, 361(2):645~650.
    8 K. Mosbach, K. Haupt. Some new developments and challenges in noncovalent molecular imprinting technology. Journal of Molecular Recognition. 1998, 11:62~68.
    9 G. Wulff. Selective binding to polymers via covalent bonds: the construction of chiral cavities as specific receptor sites. Pure and Applied Chemistry. 1982, 11:2093~2102.
    10 B. Ekberg, K. Mosbach. Molecular imprinting: a technique for producing specific separation materials. Trends in Biotechnology. 1989, 7:92~96.
    11 G. Wulff, W. Best, A. Akelah. Enzyme-analogue built polymers: 17. Investigations on the racemic resolution of aminoacids. Reactive and Functional Polymers. 1984, 2:167~174.
    12 L. I. Andersson, B. Sellergren, K. Mosbach,et al. Imprinting of amino acid derivatives in macroporous polymers. Tetrahedron Letters. 1984, 25:5211~5214.
    13 E. Benito-Pen, M. C. Moreno-Bondi, S. Aparicio, et al. Molecular engineering of fluorescent penicillins for molecularly imprinted polymer assays. Analytical Chemistry. 2006, 78:2019~2027.
    14 S. J. Li, X. Huang, M. X. Zheng, et al. Molecularly imprinted polymers: modulating molecular recognition by a thermal phase transition in the binding framework. Analytical and Bioanalytical Chemistry. 2008, 392:177~185.
    15 R. Y. Hsieh, H. A. Tsai, M. J. Syu. Designing a molecularly imprinted polymer as an artificial receptor for the specific recognition of creatinine in serums. Biomaterials. 2006, 27:2083~2089.
    16 S. Boonpangrak, V. Prachayasittikul, L. Ye. Molecularly imprinted polymer microspheres prepared by precipitation polymerization using a sacrificial covalent bond. Journal of Applied Polymer Science. 2006, 99:1390~1398.
    17 L. D. Bolisaya, J. N. Culverb, P. Kofinas. Molecularly imprinted polymers for tobacco mosaic virus recognition. Biomaterials. 2006, 27:4165~4168.
    18 C. J. Tan, Y. W. Tong. Molecularly imprinted beads by surface imprinting. Analytical and Bioanalytical Chemistry, 2007, 389:369~376.
    19 N. Zhang, B. Hu, C. Z. Huang. A new ion-imprinted silica gel sorbent for online selective solid-phase extraction of dysprosium(III) with detection by inductively coupled plasma-atomic emission spectrometry. Analytica Chimica Acta. 2007, 597:12~18.
    20 N. Zhang, J. S. Suleiman, M. He, et al. Chromium(III)-imprinted silica gel for speciation analysis of chromium in environmental water samples with ICP-MS detection. Talanta. 2008, 75:536~543.
    21 M. Randhawa, I. Gartner, C. Becker, et al. Imprinted polymers for water purification. Journal of Applied Polymer Science. 2007, 106:3321~3326.
    22 A. H. Dam, D. Kim. Metal ion-imprinted polymer microspheres derived from copper methacrylate for selective separation of heavy metal ions. Journal of Applied Polymer Science. 2008, 108:14~24.
    23 B. J. Gao, F. Q. An, Y. Zhu. Novel surface ionic imprinting materials prepared via couple grafting of polymer and ionic imprinting on surfaces of silica gel particles. Polymer. 2007, 48:2288~2297.
    24齐晶瑶,李欣,边疆.Fe(Ⅲ)分子印迹聚合物微球制备及性能.材料科学与工艺. 2007, 15(6):767~769.
    25李欣,朱建华,齐晶瑶.分子印迹技术选择吸附去除水中Cu(II)离子的研究.给水排水. 2007, 33(5):35~37.
    26 Y. H. Zhai, D. Yang, X. J. Chang, et al. Selective enrichment of trace copper(II) from biological and natural water samples by SPE using ionimprinted polymer. Journal of Separation Science. 2008, 31:195~1200.
    27 F. J. Zhang, G. X. Cheng, X. G. Ying. Emulsion and macromolecules template alginate based polymer microspheres. Reactive & Functional Polymers. 2006, 66:712~719.
    28安富强,高保娇,李刚.硅胶表面铜(Ⅱ)离子印迹聚乙烯亚胺的制备及结合特性研究.高分子学报. 2007, 4:366-373.
    29 G. Y. Jin, Y. W. Tang. Evaluation of a novel silica-supported sol-gel sorbent prepared by a surface molecular imprinting technique for the selective separ ation of estazolam from human plasma. Microchim Acta 2009, 165:143~149
    30 G. Q. Fu, H. Yu, J. Zhu. Imprinting effect of protein-imprinted polymers composed of chitosan and polyacrylamide: a re-examination. Biomaterials. 2008, 29:2138~2142.
    31 B. J. Gao, Y. Yang, J. Wang, et al. Preparation and adsorption characteristic of polymeric microsphere with strong adsorbability for creatinine. Journal of Biochemical and Molecular Toxicology. 2008, 22(3):166~174.
    32 R. G. Liu, X. Li, Y. Q. Li, et al. Effective removal of rhodamine B from contaminated water using non-covalent imprinted microspheres designed by computational approach. Biosensors and Bioelectronics. 2009, 25:629~634.
    33 W. Yao, Y. J. Fang, G. J. Li, et al. Adsorption of carbaryl using molecularly imprinted microspheres prepared by precipitation polymerization. Polymers for Advanced Technologies. 2008, 19:812~816.
    34杨律文,刘含茂,屈贺幂等.硅胶表面熊果酸分子印迹聚合物的制备和分子识别特性.应用化学. 2008, 25:137~141.
    35 L. Qin, X. W. He, W. Y. Li, et al. Molecularly imprinted polymer prepared with bondedβ-cyclodextrin and acrylamide on functionalized silica gel for selective recognition of tryptophan in aqueous media. Journal of Chromatography A. 2008, 1187:94~102.
    36 X. T. Shen, L. H. Zhu, G. X. Liu, et al. Enhanced photocatalytic degradation and selective removal of nitrophenols by using surface molecular imprinted titania. Environmental Science and Technology. 2008, 42:1687~1692.
    37 E. Lee, D. W. Park, J. O. Lee, et al. Molecularly imprinted polymers immobilized on carbon nanotube. Colloids and Surfaces A: Physicochem. Eng. Aspects. 2008, 313-314:202~206.
    38汪剑,高保娇,郭浩鹏等.硅胶表面抗蚜威分子印迹聚甲基丙烯酸的制备及识别特.功能高分子学报. 2008, 21:44~49.
    39 A. Gltekin, S. E. Diltemiz, A. Ersoz, et al. Gold-silver nanoclusters having dipicolinic acid imprinted nanoshell for Bacillus cereus spores recognition. Talanta. 2009, 78:1332~1338.
    40邱增英,钟世安.烟酸分子印迹复合膜的制备及其分离性能研究.化学学报. 2010, 68:246~250.
    41 G. J. Guan, R. Y. Liu, M. H. Wu, et al. Protein-building molecular recognition sites by layer-by-layer molecular imprinting on colloidal particles. Analyst. 2009, 134:1880~1886.
    42 S. J. Li, S. Q. Gong. A substrate-selective nanoreactor made of molecularly imprinted polymer containing catalytic silver nanoparticles. Advanced Functional Materials. 2009, 19:2601~2606.
    43 C. K. M. Faizal, T. Kobayashi. Tocopherol-targeted membrane adsorbents prepared by hybrid molecular imprinting. Polymer Engineering and Science. 2008, 48:1085~1093.
    44阚显文,尹宇新,耿志荣等.基于硅材料的分子印迹聚合物的制备及应用.化学进展. 2010, 22:107~112.
    45刘晓芳,姚冰,刘国艳等.检测猪肉中地西泮的分子印迹仿生传感器的研制.化学研究简报. 2010, 38:683~687.
    46 A. Ers?z, S. E. Diltemiz, A. A. ?zcan, et al. Synergie between molecular imprinted polymer based on solid-phase extraction and quartz crystal microbalance technique for 8-OHdG sensing. Biosensors and Bioelectronics. 2008, 24:742~747.
    47 C. Pegoraro, D. Silvestri, G. Ciardelli, et al. Molecularly imprinted poly(ethylene-co-vinyl alcohol) membranes for the specific recognition of phospholipids. Biosensors and Bioelectronics. 2008, 24:748~755.
    48 Y. Lin, Y. Shi, M. Jiang, et al. Removal of phenolic estrogen pollutants from different sources of water using molecularly imprinted polymeric microspheres. Environmental Pollution. 2008, 153:483~491.
    49 W. Luo, L. H. Zhu, C. Yu, et al. Synthesis of surface molecularly imprinted silica micro- particles in aqueous solution and the usage for selective off-line solid-phase extraction of 2,4-dinitrophenol from water matrixes. Analytica Chimica Acta. 2008, 618:147~156.
    50 L. Nffl, E. T. A. Mart, E. Jos, et al. Molecularly imprinted polymer for selective extraction of endocrine disrupters nonylphenol and its ethoxylated derivates from environmental solids. Journal of Separation Science. 2008, 31(13):2492~2499.
    51 S. F. Su, M. Zhang, B. L. Li, et al. HPLC determination of sulfamethazine in milk using surface-imprinted silica synthesized with iniferter technique. Talanta. 2008, 76:1141~1146.
    52 D. K. Alexiadou, N. C. Maragou, N. S. Thomaidis, et al. Molecularly imprinted polymers for bisphenol a for HPLC and SPE from water and milk. Journal of Separation Science. 2008, 31:2272~2282.
    53 C. W. Hsu, M. C. Yang. Enhancement of the imprinting effect in cholesterolimprinted microporous silica. Journal of Non-Crystalline Solids. 2008, 354:4037~4042.
    54 Y. Hoshino, T. Kodama, Y. Okahata, et al. Peptide lmprinted polymer nanoparticles:a pastic antibody. Journal of the American Chemical Society. 2008, 130:15242~15243.
    55王颜红,霍佳平,张红等.阿特拉津分子印迹固相萃取柱的制备及应用.分析化学研究简报. 2010, 38:678~682.
    56 V. Pichon, F. Chapuis-Hugon. Role of molecularly imprinted polymers for selective determination of environmental pollutants-A review. Analytica Chimica Acta. 2008, 622:48~61.
    57 H. N. Liu, X. L. Zhuang, M. Turson, et al. Enrofloxacin-imprinted monolithic columns synthesized using reversible additionfragmentation chain transfer polymerization. Journal of Separation Science. 2008, 31:1694~1701.
    58 L. Ye, K. Mosbach. Molecular imprinting: synthetic materials as substitutes for biological antibodies and receptors. Chemistry of Materials. 2008, 20:859~868.
    59 O. Y. F. Henry, S. A. Piletsky, D. C. Cullen. Fabrication of molecularly imprinted polymer microarray on a chip by mid-infrared laser pulse initiated polymerization. Biosensors and Bioelectronics. 2008, 23:1769~1775.
    60李婧娴,董声雄,龚琦等.分子印迹膜的制备研究进展.高分子通报. 2007, 1:40~44.
    61 X. Y. Wu, K. Goswami, K. D. Shimizu. Comparison of monofunctional and multifunctional monomers in phosphate binding molecularly imprinted polymers. Journal of Molecular Recognition. 2008, 21:410~418.
    62 A. Valero-Navarroa, A. Salinas-Castillo, J. F. Fernández-Sáncheza, et al. The development of a MIP-optosensor for the detection of monoamine naphthalenes in drinking water. Biosensors and Bioelectronics. 2009, 24:2305~2311.
    63 Y. T. Wang, Y. X. Zhou, J. Sokolov, et al. A potentiometric protein sensor built with surface molecular imprinting method. Biosensors and Bioelectronics. 2008, 24:162~166.
    64 Z. Sun, W. Schussler, M. Sengl, et al. Selective trace analysis of diclofenac in surface and wastewater samples using solid-phase extraction with a new molecularly imprinted polymer. Analytica Chimica Acta. 2008, 620:73~81.
    65 K. Yoshimatsu, L. Ye, P. Stenlund, et al. A simple method for preparation of molecularly imprinted nanofiber materials with signal transduction ability. Chemical Communications. 2008, 17:2022~2024.
    66 Z. Liu, D. G. Bucknall, M. G. Allen. Absorption performance of iodixanol imprinted polymers in aqueous and blood plasma media. Acta Biomaterialia. 2010, 6:2003~2012.
    67 H. Khan, T. Khan, J. K. Park. Separation of phenylalanine racemates using dphenylalanine imprinted microbeads as HPLC stationary phase. Separation and Purification Technology. 2008, 62:363~369.
    68 G. Q. Pan, B. Y. Zu, X. Z. Guo, et al. Preparation of molecularly imprinted polymer microspheres via reversible addition-fragmentation chain transfer precipitation polymerization. Polymer. 2009, 50:2819~2825.
    69 Y. Li, W. H. Zhou, H. H. Yang, et al. Grafting of molecularly imprinted polymers from the surface of silica gel particles via reversible addition-fragmentation chain transfer polymerization: a selective sorbent for theophylline. Talanta. 2009, 79:141~145.
    70 K. Y. Zhao, J. J. Huang, X. G. Ying, et al. Macromolecularly imprinted calcium phosphate alginate hybrid polymer microspheres with the surface imprinting of bovine serum albumin in inverse-phase suspension. Journal of Applied Polymer Science. 2008, 109:2687~2693.
    71 K. Flavin, M. Resmini. Imprinted nanomaterials: a new class of synthetic receptors. Analytical and Bioanalytical Chemistry. 2009, 393:437~444.
    72 R. F. Han, X. C. Xing, Y. Wang, et al. Separation/enrichment of active natural low content protein using protein imprinted polymer. Journal of Chromatograpy B. 2008, 873:113~118.
    73 C. Baggiani, L. Anfossi, C. Giovannoli. Molecular imprinted polymers as synthetic receptors for the analysis of myco- and phyco-toxins. Analyst. 2008, 133:719~730.
    74 J. L. Urraca, M. C. Carbajo, M. J. Torralvo, et al. Effect of the template and functional monomer on the textural properties of molecularly imprinted polymers. Biosensors and Bioelectronics. 2008, 24:155~161.
    75 M. Szwarc, M. Levy, R. Milkovich. Polymerization initiated by electron transfer to monomer a new method of formation of block polymers. Journal of the American Chemical Society. 1956, 78:2656~2657.
    76 M. Miyamoto, M. Sawamoto, T. Higashimura. Living polymerization of isobutyl vinyl ether with hydrogen iodide/iodine initiating system. Macromolecules. 1984, 17:265~506.
    77 K. J. Kubo, A. Goto, K. Sato, et al. Kinetic study on reversible addition-fragmentation chain transfer (RAFT) process for block and random copolymerizations of styrene and methyl methacrylate. Polymer. 2005, 46:9762~9768.
    78 N. Perez-Moral, A. G. Mayes. Molecularly imprinted multi-layer core-shell nanoparticles a surface grafting approach. Macromolecular Rapid Communications. 2007, 28:2170~2175.
    79 T. Otsu, M. Yoshida, T. Tazaki. A model for living radical polymerization. Die Makromolekulare Chemie Rapid Communications. 1982, 3(2):133~140.
    80 J. Z. Cao, J. P. He, C. M. Li, et al. Nitroxide-mediated radical polymerization of styrene in emulsion. Polymer Journal. 2001, 33(1):75~80.
    81 K. Matyjaszewski1, N. V. Tsarevsky. Nanostructured functional materials prepared by atom transfer radical polymerization. Nature Chemistry. 2009, 1:276~288.
    82 E. Rizzardo, J. Chiefari, B. Y. K. Chong, et al. Tailored polymers by free radical processes. Macromolecular Symposia. 1999, 143:291~307.
    83 D. Zhou, X. L. Zhu, J. Zhu, et al. Preparation and characterization of poly(styrene)/metal composites via reversible addition-fragmentation chain transfer (RAFT) polymerization. Reactive & Functional Polymers. 2009, 69:55~61.
    84孙艳,刘和文.β-环糊精黄原酸酯引发的RAFT聚合用于β-环糊精改性.功能高分子学报. 2009, 22:282~288.
    85陈智,王晓龙,邹游等. RAFT分散聚合方法制备支化聚甲基丙烯酸甲酯.高分子学报. 2009, 5:451~458.
    86刘春,林坤华,殷勤俭等. RAFT法制备高分子量窄分布的PS聚合物.高分子材料科学与工程. 2009, 25:40~42.
    87沈晓亮,周建华,马建中等.聚丙烯酸-b-聚丙烯酸丁酯的RAFT水溶液聚合及其性能.精细化工. 2010, 27:289~299.
    88 J. Chiefari, Y. K. Chong, F. Ercole, et al. Living free-radical polymerization by reversible addition-fragmentation chain transfer: the RAFT process. Macromolecules. 1998, 31:5559~5562.
    89 G. Moad, E. Rizzardo, S. H. Thang. Toward living radical polymerization. Accounts of Chemical Research, 2008, 41:1133~1142.
    90 L. M. Coote, D. J. Henry. Effect of substituents on radical stability in reversible addition fragmentation chain transfer polymerization: an ab initio study. Macromolecules. 2005, 38:1415~1433.
    91 C. R. Becera, A. M. Grothc, R. Hoogenbooma, et al. Schubert. protocol for automated kinetic investigation/optimization of the RAFT polymerization of various monomers. Qsar & Combinatorial Science. 2008, 27(8):977~983.
    92张肖娟,高静,罗英武等.单体组成对甲基丙烯酸甲酯/丙烯酸丁酯RAFT共聚合转移常数的影响.高分子学报. 2008, 1:83~87.
    93 Y. K. Chong, J. Krstina, T. P. T. Le, et al. Thiocarbonylthio compounds [S=C(Ph)S-R] in free radical polymerization with reversible addition-fragmentation chain transfer (RAFT polymerization): role of the free-radical leaving group(R). Macromolecules. 2003, 36(7):2256~2272.
    94 J. Chiefari, R. T. A. Mayadunne, C. L. Moad, et al. Thiocarbonylthio compounds (S=C(Z)S-R) in free radical polymerization with reversible addition-fragmentation chain transfer (RAFT polymerization): effect of the activating group Z. Macromolecules. 2003, 36(7):2273~2283.
    95 Y. K. Chong, T. P. T. Le, G. Moad, et al. Route to block copolymers and other polymers of complex architecture by living radical polymerization: the RAFT process. Macromolecules. 1999, 32:2071~2074.
    96沈俊,张洪文,朱梦冰等.双硫酯对RAFT自由基交联聚合动力学和交联结构的影响.高分子材料科学与工程. 2010, 26:57~60.
    97 J. Skey, R. K. O Reilly. Facile one pot synthesis of a range of reversible addition-fragmentation chain transfer (RAFT) agents. Chemical Communications. 2008, 35:4183~4185.
    98 J. W. Fu, Z. B. Zhang, Z. P. Cheng, et al. Synthesis and characterizations of triphenylamine end-functionalized polymers via reversible addition-fragmentation chain transfer polymerization. Polymer Bulletin. 2008, 61:287~ 297.
    99 Y. Mitsukami, M. S. Donovan, A. B. Lowe, et al. Water-soluble polymers. Direct synthesis of hydrophilic styrenic-based homopolymers and block copolymers in aqueous solution via RAFT. Macromolecules. 2001, 34:2248~2256.
    100张建华,郭睿威,李彬等. RAFT试剂N-咔唑二硫代甲酸1,4-对二甲基苯双酯的合成及应用.高等学校化学学报. 2009, 30:1668~1673.
    101张普玉,刘洋,彭李超等. RAFT法合成两亲性嵌段共聚物PSt-b-PAA-b-PSt及其在离子液体[BM IM][PF6]中的自组装.高分子学报. 2010, 1:59~64.
    102张鹏,潘毅,郑朝晖等.可逆加成-断裂链转移(RAFT)聚合在星形聚合物合成中的应用.高分子通报. 2009, 4:49~57.
    103 L. Nebhani, S. Sinnwell, A. J. Inglis, et al. Efficient surface modification of divinylbenzene microspheres via a combination of RAFT and hetero diels-alder chemistry. Macromolecular Rapid Communications. 2008, 29:1431~ 1437.
    104 D. Li, Y. W. Luo, B. Li, et al. Effect of rate retardation in RAFT grafting polymerization from silicon wafer surface. Journal of Polymer Science: Part A: Polymer Chemistry. 2008, 46:970~978.
    105王利平. RAFT聚合调控的聚甲基丙烯酸β-羟乙酯/纳米二氧化硅杂化材料的制备及性能.高分子材料科学与工程. 2010, 26:12~14.
    106 P. De, M. Li, S. R. Gondi, et al. Temperature-regulated activity of responsive polymerprotein conjugates prepared by grafting-from via RAFT polymerization. Journal of the American Chemical Society. 2008,
    130:11288~11289.
    107 M. M. Titirici, B. Sellergren. Thin molecularly imprinted polymer films via reversible addition-fragmentation chain transfer polymerization. Chemistry of Materials. 2006, 18:1773~1779.
    108 J. Perelaer, K. Hermans, C. W. M. Bastiaansen, et al. Photo-embossed surface relief structures with an increased aspect ratios by addition of a reversible addition-fragmentation chain transfer agent. Advanced Materials. 2008, 20:3117~3121.
    109 Y. K. Yang, Z. F. Yang, Q. Zhao, et al. Immobilization of RAFT agents on silica nanoparticles utilizing an alternative functional group and subsequent surfaceinitiated RAFT polymerization. Journal of Polymer Science: Part A: Polymer Chemistry. 2009, 47:467~484.
    110 P. Farquet, C. Padeste, H. H. Solak, et al. Extreme UV radiation grafting of glycidyl methacrylate nanostructures onto fluoropolymer foils by RAFT-mediated polymerization. Macromolecules 2008, 41:6309~6316.
    111 K. Nagase, J. Kobayashi, A. Kikuchi, et al. Interfacial property modulation of thermoresponsive polymer brush surfaces and their interaction with biomolecules. Langmuir. 2007, 23:9409~9415.
    112 M. X. Gao, C. H. Deng, Z. Q. Fan, et al. A simple pathway to the synthesis of magnetic nanoparticles with immobilized metal ions for the fast removal of microcystins in water. Small 2007, 10:1714~1717.
    113 M. Ouchi, T. Terashima, M. Sawamoto. Precision control of radical polymerization via transition metal catalysis: from dormant species todesigned catalysts for precision functional polymers. Accounts of Chemical Research. 2008, 41:1120~1132.
    114鲁新环,夏清华.磁性纳米材料在分离及催化中的应用.石油化工. 2008, 37:1225~1235.
    115 Y. W. Jun, J. W. Seo, J. W. Cheon. Nanoscaling laws of magnetic manoparticles and their applicabilities in biomedical sciences. Accounts of Chemical Research. 2008, 41:179~189.
    116 X. Zhao, Y. Cai, T. Wang, et al. Preparation of alkanethiolate-functionalized core/shell Fe3O4@Au nanoparticles and its interaction with several typical target molecules. Analytical Chemistry. 2008, 80:9091~9096.
    117 J. P. Ge, Y. X. Hu, M. Biasini, et al. One-step synthesis of highly water soluble magnetite colloidal nanoachtungtrrnungcrystals. Chemistry A European Journal. 2007, 13:7153~7161.
    118 K. Hayashi, M. Moriya, W. Sakamoto, et al. Chemoselective synthesis of folic acid-functionalized magnetite nanoparticles via click chemistry for magnetic hyperthermia. Chemistry of Materials. 2009, 21:1318~1325.
    119 H. K. He, Y. Zhang, C. Gao, et al.“Clicked”magnetic nanohybrids with a soft polymer interlayerw. Chemical Communications. 2009, 13:1655~1657.
    120 P. Guardia, N. Perez, A. Labarta, et al. Controlled synthesis of iron oxide nanoparticles over a wide size range. Langmuir. 2010, 26:5743~5847.
    121 H. Deng, X. L. Li, Q. Peng, et al. Monodisperse magnetic single-crystal ferrite microspheres. Angewandte Chemie International Edition. 2005, 44:2782~2785.
    122 C. Y. Hong, X. Li, C. Y. Pan. Smart core-shell nanostructure with a mesoporous core and a stimuli-responsive nanoshell synthesized via surface reversible addition-fragm entation chain transfer polymerization. Journal of Physical Chemistry C. 2008, 112:15320~15324.
    123 A. Fornara, P. Johansson, K. Petersson, et al. Tailored magnetic nanoparticles for direct and sensitive detection of biomolecules in biological samples. Nano Letters. 2008, 8:3423~3428.
    124 D. Z. Yuan, Q. Y. Zhang. Preparation of functional polymer magnetic microsphere P(St/MAA)/Fe3O4 by dispersion polymerization. Journal of Materials Science & Engineering. 2008, 26:342~346.
    125 Z. J. Chen, Q. X. Yang, Y. H. Wei et al. Preparation of PS magnetic microspheres via suspension polymerization. Journal of Materials Science and Engineering. 2010, 28:62~65.
    126 Z. H. Sun, L. F. Wang, P. P. Liu, et al. Magnetically motive porous spherecomposite and its excellent properties for the removal of pollutants in water by adsorption and desorption cycles. Advanced Materials. 2006, 18:1968~1971.
    127 A. Z. Chen, Y. Q. Kang, X. M. Pu, et al. Development of Fe3O4-poly(l-lactide) magnetic microparticles in supercritical CO2. Journal of Colloid and Interface Science. 2009, 330:317~322.
    128 S. J. Guo, D. Li, L. X. Zhang, et al. Monodisperse mesoporous superparamagnetic single-crystal magnetite nanoparticles for drug delivery. Biomaterials. 2009, 30:1881~1889.
    129 W. J. Chen, P. J. Tsai, Y. C. Chen. Functional Fe3O4/TiO2 core/shell magnetic nanoparticles as photokilling agents for pathogenic bacteria. Small. 2008, 4:485~491.
    130 K. S. Lee, M. H. Woo, H. S. Kim, et al. Synthesis of hybrid Fe3O4-silica-NiO superstructures and their application as magnetically separable high-performance biocatalystsw. Chemical Communications. 2009, 25:3780~3782.
    131 H. M. Chen, C. H. Deng, X. M. Zhang. Synthesis of Fe3O4@SiO2@PMMA core-shell-shell magnetic microspheres for highly efficient enrichment of peptides and proteins for maldi-TOF MS analysis. Angewandte Chemie International Edition. 2009, 48:1~6.
    132 A. Teleki, M. Suter, P. R. Kidambi, et al. Hermetically coated superparamagnetic Fe2O3 particles with SiO2 nanofilms. Chemistry of Materials. 2009, 21:2094~2100.
    133 R. Y. Hong, J. H. Li, S. Z. Zhang, et al. Preparation and characterization of silica-coated Fe3O4 nanoparticles used as precursor of ferrofluids. Applied Surface Science. 2009, 255:3485~3492.
    134 A. H. Latham, M. E. Williama. Controlling transport and chemical functionality of magnetic nanoparticles. Accounts of Chemical Research. 2008, 41:411~420.
    135 S. Laurent, D. Forge, M. Port, et al. Magnetic iron oxide nanoparticles: synthesis, stabilization, vectorization, physicochemical characterizations, and biological applications. Chemical Reviews. 2008, 108:2064~2110.
    136 X. Q. Xu, C. H. Deng, M. X. Gao, et al. Synthesis of magnetic microspheres with immobilized metal ions for enrichment and direct determination of phosphopeptides by matrix-assisted laser desorption ionization mass spectrometry. Advanced Materials. 2006, 18:3289~3293.
    137 Y. H. Deng, C. H. Deng, D. W. Qi, et al. Synthesis of core/shell colloidal magnetic zeolite microspheres for the immobilization of trypsin. AdvancedMaterials. 2009, 21:1377~1382.
    138 H. Zhang, X. Zhong, J. J. Xu, et al. Fe3O4/Polypyrrole/Au nanocomposites with core/shell/shell structure: synthesis, characterization, and their electrochemical properties. Langmuir. 2008, 24(23):13748~13752.
    139 Y. Zhang, R. J. Liu, Y. L. Hu, et al. Microwave heating in preparation of magnetic molecularly imprinted polymer beads for trace triazines analysis in complicated samples. Analytical Chemistry. 2009, 81:967~976.
    140 Y. T. Kim, J. H. Han, B. H. Hong, et al. Electrochemical synthesis of CdSe quantum-dot arrays on a graphene basal plane using mesoporous silica thin- film templates. Advanced Materials. 2009, 21:1~4.
    141 L. Marcon, C. Spriet, T. D. Meehan, et al. Synthesis and application of FRET nanoparticles in the profiling of a protease. Small. 2009, 18:2053~2056.
    142 S. Huang, Q. Xiao, R. Li, et al. A simple and sensitive method for l-cysteine detection based on the fluorescence intensity increment of quantum dots. Analytica Chimica Acta. 2009, 645:73~78.
    143 C. W. Freudiger, W. Min, B. G. Saar, et al. Label-free biomedical imaging with high sensitivity by stimulated raman scattering microscopy. Science. 2008, 322:1851~1861.
    144 W. M. Zheng, L. He. Label-free, real-time multiplexed DNA detection using fluorescent conjugated polymers. Journal of the American Chemical Society. 2009, 131:3432~3433.
    145 M. De, P. S. Ghosh, V. M. Rotello. Applications of nanoparticles in biology. Advanced Materials. 2008, 20:4225~4241.
    146 R. Kikkeri, B. Lepenies, A. Adibekian, et al. In vitro imaging and in vivo liver targeting with carbohydrate capped quantum dots. Journal of the American Chemical Society. 2009, 131(6):2110~2112.
    147 A. Schroedter, H. Weller. Biofunctionalization of silica-coated CdTe and cold nanocrystals. Nano Letters. 2002, 2:1363~1367.
    148 D. M. Gao, Z. Y. Wang, B. H. Liu, et al. Resonance energy transfer- amplifying fluorescence quenching at the surface of silica nanoparticles toward ultrasensitive detection of TNT. Analytical Chemistry. 2008, 80:8545~8553.
    149 E. Heister, V. Neves, C. Tilmaciu, et al. Triple functionalisation of singlewalled carbon nanotubes with doxorubicin, a monoclonal antibody, and a fluorescent marker for targeted cancer therapy. Carbon. 2009, 47:2152~ 2160.
    150 R. Gill, L. Bahshi, R. Freeman, et al. Optical detection of glucose andacetylcholine esterase Inhibitors by H2O2-sensitive CdSe/ZnS quantum dots. Angewandte Chemie International Edition. 2008, 47:1676~1679.
    151 P. Yang, M. Ando, N. Murase. Encapsulation of emitting CdTe QDs within silica beads to retain initial photoluminescence efficiency. Journal of Colloid and Interface Science. 2007, 316:420~427.
    152 D. M. Cheng, Q. H. Xu. Separation distance dependent fluorescence enhancement of fluorescein isothiocyanate by silver nanoparticles. Chemical Communications. 2007, 248~250.
    153 R. R. Zhang, C. L. Wu, L. L. Tong, et al. Multifunctional core-shell nanoparticles as highly efficient imaging and photosensitizing agents. Langmuir. 2009, 25(17):10153~10158.
    154 N. Insin, J. B. Tracy, H. Lee, et al. Incorporation of iron oxide nanoparticles and quantum dots into silica microspheres. ACS Nano. 2008, 2:197~202.
    155 L. Wang, J. Q. Sun. Poly(allylamine hydrochloride)-dextran microgels functionalized with magnetic and luminescent nanoparticles. Journal of Mate rials Chemistry. 2008, 18:4042~4049.
    156 A. Serena, P. C. Y. Rakovich, Y. K. Gunko. Multifunctional magnetic- fluorescent nanocomposites for biomedical applications. Nanoscale Research Letter. 2008, 3:87~104.
    157 C. F. Tu, Y. H. Yang, M. Y. Gao. Preparations of bifunctional polymeric beads simultaneously incorporated with fluorescent quantum dots and magnetic nanocrystals. Nanotechnology. 2008, 19:105601-1~105601-8.
    158张建华,郭睿威,戚桂村等. RAFT聚合制备结构明确的荧光标识聚甲基丙烯酸甲酯.高分子学报. 2010, 6:691~698.
    159 S. Berger, A. Synytska, L. Ionov, et al. Stimuli-responsive bicomponent polymer janus particles by“grafting from”/“grafting to”approaches. Macromolecules. 2008, 41:9669~9676.
    160 Y. J. Song, C. Zhao, J. S. Ren, et al. Rapid and ultra-sensitive detection of AMP using a fluorescent and magnetic nano-silica sandwich complex. Chemical Communications. 2009, 15:1975~1977.
    161 H. F. Wang, Y. He, T. R. Ji, et al. Surface molecular imprinting on Mn-doped ZnS quantum dots for room-temperature phosphorescence optosensing of pentachlorophenol in water. Analytical Chemistry. 2009, 81:1615~1621.
    162 B. Partoens, F. M. Peeters. From graphene to graphite: electronic structure around the K point. Physical Review B. 2006, 74:075404-1~075404-11.
    163 C. N. R. Rao, K. Biswas, K. S. Subrahmanyam, et al. Graphene, the new nanocarbon. Journal of Materials Chemistry. 2009, 19:2457~2469.
    164 K. S. Novoselov, A. K. Geim, S. V. Morozov, et al. Electric field effect in atomically thin carbon films. Science. 2004, 306:666~669.
    165 S. Park, R. S. Ruoff. Chemical methods for the production of graphenes. Nature Nanotechnology. 2008, 4:217~224.
    166 Staudenmaier. Procedures for the presentation of the graphite acid. Berichte Derdeutschen Chemischen Gesellschaft. 1898, 31(2):1481~1487.
    167 B. C. Brodie. Sur le poids atomique du graphite. Annales des Chimie et des Physique. 1860, 59:466.
    168 W. Hummers, R. Offeman. Preparation of graphitic oxide. Journal of the American Chemical Society. 1958, 80:1339.
    169 H. Kaczmarek, A. Podgorski. Photochem ical and thermal behaviours of poly(vi-nyl alcohol)/graphite oxide composites. Polymer Degradation and Stability. 2007, 92:939~946.
    170 G. Eda, M. Chhowalla. Graphene-based composite thin films for electronics. Nano Letters. 2009, 9:814~818.
    171 X. C. Dong, D. L. Fu, W. J. Fang, et al. Doping singlelayer graphene with aromatic molecules. Small. 2009, 5:1422~1426.
    172 J. D. Fowler, M. J. Allen, V. C. Tung, et al. Practical chemical sensors from chemically derived graphene. ACS Nano. 2009, 3:301~306.
    173 R. Kou, Y. Y. Shao, D. H. Wang, et al. Enhanced activity and stability of Pt catalysts on functionalized graphene sheets for electrocatalytic oxygen reduction. Electochemistry Communications. 2009, 11:954~957.
    174 B. Seger, P. V. Kamat. Electrocatalytically active graphene-platinum nanocomposites. role of 2-D carbon support in pem fuel cells. Journal of Physical Chemistry C. 2009, 7990~7995.
    175 H. P. Cong, J. J. He, Y. Lu, et al. Water-soluble magnetic-functionalized reduced graphene oxide sheets: In situ synthesis and magnetic resonance imaging applications. Small. 2010, 6(2):169~173.
    176 C. H. Lu, H. H. Yang, C. L. Zhu, et al. A Graphene platform for sensing biomolecules. Angewandte Chemie International Edition. 2009, 48:4785~4787.
    177 T. Wei, G. L. Luo, Z. J. Fan, et al. Preparation of graphene nanosheet/polymer composites using in situ reduction-extractive dispersion. Carbon. 2009, 47:2290~2299.
    178徐光宪,黎乐民,王德民.量子化学基本原理和从头算法.科学出版社. 2001:376~535.
    179林梦海.量子化学简明教程.化学工业出版社. 2005:228~258.
    180 B. S. Jursic. Density functional theory studies of the structures of some compounds having 12 valence electrons with a central sulfur atom. Journal of Molecular Structure: Theochem. 1997, 418:165~169.
    181 X. P. Long, J. B. Nicholas, M. F. Guest, et al. A combined density functional theory/molecular mechanics formalism and its application to small water clusters. Journal of Molecular Structure. 1997, 412:121~133.
    182 B. S. Jursic. Density functional theory and quadratic complete basis set ab initio studies of the HNSi to HSiN isomerization and hydrogen insertion reactions with further isomerizations of the Insertion products. Journal of Molecular Structure: Theochem. 2006, 460:11~18.
    183王占生,刘文君.微污染水源饮用水处理.中国建筑工业出版社. 1999:19~21.
    184李若愚,徐斌,高乃云等.我国饮用水中内分泌干扰物的去除研究进展.中国给水排水. 2006, 22:1~4.
    185刘易,夏四清,陈玲等.烷基酚类内分泌干扰物污染现状及去除研究进展.净水技术. 2007, 26:7~9.
    186武睿.化学高级氧化去除水中内分泌干扰物研究进展.水处理技术. 2009, 35:1~4.
    187李绍峰,秦蓁蓁,陈雷.膜生物反应器去除原水中微量阿特拉津的研究.水处理技术. 2009, 35:52~55.
    188胡晓芳,王欣泽,鲁佳铭等.活性污泥中典型内分泌干扰物的分析方法.环境科学与技术. 2010, 33:126~130.
    189 M. Kawaguchi, Y. Hayatsu, H. Nakata, et al. Molecularly imprinted solid phase extraction using stable isotope labeled compounds as template and liquid chromatography-mass spectrometry for trace analysis of bisphenol A in water sample. Analytica Chimica Acta. 2005, 539:83~89.
    190 B. Mickovaa, T. Kovalczuk, P. Rauch, et al. Analytical performances of validated chemiluminescent enzyme immunoassays to detect N-methylcarbamate pesticides. Analytica Chimica Acta. 2005, 528:243~248.
    191 T. Endoa, A. Okuyama, Y. Matsubaraet, et al. Fluorescence-based assay with enzyme amplification on a micro-flow immunosensor chip for monitoring coplanar polychlorinated biphenyls. Analytica Chimica Acta. 2005, 531:7~13.
    192 C. H. Lu, W. H. Zhou, B. Han, et al. Surface-imprinted core-shell nanoparticles for sorbent assays. Analytical Chemistry. 2007, 79:5457~5461.
    193 P. M. Price, J. H. Clark, D. J. Macquarrie. Modified silicas for clean technology. Dalton Transactions. 2000, 2:101~110.
    194 F. Roohi, M. M. Titirici. Thin thermo-responsive polymer films onto the pore system of chromatographic beads via reversible addition-fragmentation chain transfer polymerizationw. New Journal of Chemistry. 2008, 32:1409~1414.
    195 Y. Q. Xia, T. Y. Guo, M. D. Song, et al. Adsorption dynamics and thermodynamics of Hb on the Hb-imprinted polymer beads. Reactive & Functional Polymers. 2008, 68:63~69.
    196 J. Wu, H. Q. Yu. Biosorption of 2,4-dichlorophenol from aqueous solution by Phanerochaete chrysosporium biomass: isotherms kinetics and thermodynamics. Journal of Hazardous Materials B. 2006, 137:498~508.
    197 Q. Yua, S. Denga, G. Yua. Selective removal of perfluorooctane sulfonate from aqueous solution using chitosan-based molecularly imprinted polymer adsorbents. Water Research. 2008, 42:3089~3097.
    198 S. A. Piletsky, T. L. Panasyuk, E. V. Piletskaya, et al. Receptor and transport properties of imprinted polymer membranes-a review. Journal of Membrance Science. 1999, 157:263~278.
    199 J. Lin, G. Feng, H. E. Rong, et al. Preparation and characterization of silica- coated Fe3O4 nanoparticle. Journal of Materials Science & Engineering. 2009, 27:352~355.
    200 H. B. Li, C. P. Han. Sonochemical synthesis of cyclodextrin-coated quantum dots for optical detection of pollutant phenols in water. Chemistry of Materials. 2008, 20:6053~6059.
    201 C. L. Chong, J. S. Bendall, W. Milne. Carbon nanotube array: a new MIP platform. Biosensors and Bioelectronics. 2009, 25:652~656.
    202 M. Hirata, T. Gotou, S. Horiuchi, et al. Thin-film particles of graphite oxide 1: high-yield synthesis and flexibility of the particles. Carbon. 2004, 42:2929 ~2937.
    203 C. Y. Hong, Y. Z. You, C. Y. Pan. Synthesis of water-soluble multiwalled carbon nanotubes with grafted temperature-responsive shells by surface RAFT polymerization. Chemistry of Materials. 2005, 17:2247~2254.
    204 L. Wang, C. G. Tian, B. L. Wang, et al. Controllable synthesis of graphitic carbon nanostructures from ion-exchange resin-iron complex via solid-state pyrolysis process. Chemical Communications. 2008, 42:5411~5413.
    205 H. C. Schniepp, J. L. Li, M. J. McAllister, et al. Functionalized single graphene sheets derived from splitting graphite oxide. Journal of Physical Chemistry B. 2006, 110:8535~8539.
    206 R. H. Wang, C. G. Tian, L. Wang, et al. In situ simultaneous synthesis of WC/graphitic carbon nanocomposite as a highly efficient catalyst support forDMFC. Chemical Communications. 2009, 21:3104~3106.
    207 Q. Su, S. P. Pang, V. Alijani, et al. Composites of graphene with large aromatic molecules. Advanced Materials. 2009, 21:1~5.
    208 J. Li, S. J. Guoa, Y. M. Zhai, et al. High-sensitivity determination of lead and cadmium based on the Nafion-graphene composite film. Analytica Chimica Acta. 2009, 649:196~201.
    209 L. J. Vickery, A. J. Patil, S. Mann. Fabrication of grapheme-polymer nanocomposites with higher-order three-dimensional architectures. Advanced Materials. 2009, 21:2180~2184.
    210 Y. S. Liu, J. Y. Zhou, X. L. Zhang, et al. Synthesis, characterization and optical limiting property of covalently oligothiophene-functionalized graphene material. Carbon. 2009, 47:3113~3121.
    211 W. S. Choi, S. H. Choi, B. Hong, et al. Effect of hydrogen plasma pretreatment on growth of carbon nanotubes by mpecvd. Materials Science and Engineering C. 2006, 26:1211~1214.
    212 K. N. Kudin, B. Ozbas, H. C. Schniepp, et al. Raman spectra of graphite oxide and functionalized graphene sheets. Nano Letters. 2008, 8:36~41.
    213 C. Thomsen, S. Reich. Doable resonant raman scattering in graphite. Physical Review Letters. 2000, 85:5214~5217.
    214 A. K. Manna, S. K. Pati. Tuning the electronic structure of graphene by molecular charge transfer: a computa tional study. Chemistry-An Asian Journal. 2009, 4:855~860.
    215 H. A. Becerril, J. Mao, Z. F. Liu, et al. Evaluation of solution-processed reduced graphene oxide films as transparent conductors. ACS Nano 2008, 2:463~470.
    216 M. Fang, K. G. Wang, H. B. Lu, et al. Covalent polymer functionalization of graphene nanosheets and mechanical properties of composites. Journal of Materials Chemistry. 2009, 19:7098~7105.
    217 X. Y. Zhang, Y. Huang, Y. Wang, et al. Synthesis and characterization of a grapheme-C60 hybrid material. Carbon. 2008, 47:334~347.
    218 I. A. Nicholls, K. Adbo, H. S. Andersson, et al. Can we rationally design molecularly imprinted polymers. Analytica Chimica Acta. 2001, 435:9~18.
    219 J. O. Mahony, S. Wei, A. Molinelli, et al. Imprinted polymeric materials. Insight into the nature of prepolymerization complexes of quercetin imprinted polymers. Analytical Chemistry. 2006, 78:6187~6190.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700