用户名: 密码: 验证码:
快速热循环注塑模具及工艺关键技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
注塑成型是塑料加工中重要的成型方法之一,在家用电器、汽车、电子、航空航天、日用品等国民经济的各个领域都有广泛的应用。但由于注塑成型过程的复杂性,成型产品表面易产生熔接痕、流痕、浮纤等各种缺陷,既影响产品的外观质量,又减弱了产品的力学性能,给产品的正常使用带来隐患。为提高成型产品表面质量,目前生产中主要通过塑料喷涂技术使其表面质量得到提高,但喷涂是对塑料产品的二次加工,既浪费生产原料和能源,增加塑料制品的生产成本,又造成了严重的环境污染,并危害操作人员的身体健康。如何减少注塑产品的成型缺陷,全面提高产品质量,取消或减少产品表面喷涂量,是注塑成型加工及模具设计与制造领域的重要研究课题。近年来,为满足人们对塑料产品的外观、性能、成本以及环保等方面的要求,快速热循环注塑成型(Rapid Heat Cycle Molding, RHCM)技术应运而生。利用该技术能获得表面无熔接痕、无纤维暴露等表面缺陷的高光泽度塑料产品,显著提升产品的质量。使用该技术既可以取消污染严重且成本昂贵的喷涂工艺,直接降低塑料产品的生产成本,又满足了社会的环保要求,使注塑成型实现真正的绿色化生产。因此,该技术市场竞争力强大,应用前景十分广阔。
     本文根据快速热循环注塑成型工艺原理,研究了该新型注塑工艺的系统组成,探讨了在实际生产中建立稳定生产线的原则和要求。通过与常规注塑工艺进行对比,研究了RHCM产品及其模具结构与常规注塑产品及其模具结构的异同,建立了RHCM产品和模具设计及模具加工的原则与方法。结合生产实际,讨论了模具温度对RHCM成型产品质量的影响,研究了注塑周期内RHCM模具的温度变化过程。为提高RHCM模具的使用寿命,研究了模具工作过程中的应力应变状态,提出了能有效提高模具使用寿命的方法。针对RHCM模具加热管道优化设计理论缺乏,产品质量不稳定的现状,建立了模具加热管道的优化设计模型,实现了模具结构的优化,提高了产品质量并保证了生产效率。从RHCM注塑成型工艺特点出发,开发了电热式模具温度控制系统,建立了快速热循环注塑工艺实验线,利用该实验线研究了纤维增强聚合物在RHCM注塑工艺下的性能特点,为该工艺的推广应用提供了技术指导。
     RHCM注塑工艺过程与常规注塑工艺过程不同,生产中增加了模具的快速加热与快速冷却两个阶段。在模具加热阶段,需将模具型腔成型面温度升高到塑料的热变形温度以上,以保证塑料熔体具有良好的充模状态;而在冷却阶段,需要使熔体温度迅速降低到塑料的顶出温度以下,减少注塑成型周期。根据该技术特点,通过与常规注塑技术进行比较,分析了RHCM注塑工艺对其产品和模具结构设计的独特要求,提出了RHCM产品和模具关键部位的设计准则,为生产中产品和模具设计提供了重要的依据。从模具材料、磨具磨料和抛光方法等方面对模具的抛光技术进行研究,实现了RHCM模具型腔表面的精密抛光。针对RHCM产品产生翘曲变形和表面缩痕的现象,分析了其产生变形和表面缩痕的机理,研究获得了注塑工艺参数对上述两种缺陷的影响程度,保证了注塑生产的顺利进行。根据以上研究,分析了利用蒸汽加热和电加热两种不同模具加热方式下的快速热循环注塑工艺的系统组成,详细研究了两种方式对蒸汽源或加热棒、冷却水源、模温控制系统、工艺监控系统和模具结构的要求,并探讨了两种方式在实际生产实施中的关键技术。
     模具温度对成型塑料产品的质量具有至关重要的作用。结合实际RHCM注塑工艺的生产流程,详细研究了模具温度对RHCM成型产品质量的影响。根据传热学的基本理论,研究了RHCM注塑周期内模具与加热系统、塑件、冷却系统和周围环境的热量传递过程,建立了RHCM模具加热和冷却阶段的温度场分析模型,研究获得了模具型腔板在注塑过程中温度瞬时变化规律,并讨论了加热管道间距、管道直径和数目、管道到型腔壁面距离等因素对蒸汽加热RHCM模具型腔板的加热效率和其温度分布的影响规律和程度。利用生死单元技术,模拟了电加热RHCM注塑周期内模具型腔板温度变化的全过程,对有效控制模具温度,提高模具设计精度和工艺调整的准确性提供重要依据。
     生产过程中,由于模具温度的升高及模板之间的相互约束,模具内部不可避免地会产生热变形和热应力,同时,工作过程中,模具还要承受合模压力、注射压力等各种机械应力的影响,当模具内部产生的应力较大时,模具将会产生过量变形,从而影响产品的精度、生产成本及其表面质量。随着生产的连续进行,模具的变形将会发生周期性的变化,易造成模具表面产生疲劳裂纹,使模具失效。针对RHCM模具使用寿命较低的问题,根据型腔板在实际模具中的约束状态,建立了模具型腔板的应力分析模型,研究了工作过程中模具型腔板的应力分布及其变形趋势,并讨论了RHCM模具的热变形和热疲劳机理及其影响因素,提出了一种带有“部分冷间隙”的快速热循环注塑模具新结构,有效控制了热应力。通过对不同“冷间隙”下模具型腔板的使用寿命进行评估,给出了实际模具设计及其装配的合理化建议。
     RHCM技术实施的关键是在注塑周期中,能够使模具型腔快速加热和冷却到预定的温度,若加热后,模具型腔表面温度较低或温度分布不均,既会影响制品的表面质量和生产效率,又会导致生产的制品产生翘曲变形现象。为获得高品质的RHCM产品并保证生产效率,特别要求加热时RHCM模具型腔成型面能在尽量短的时间内达到工艺要求的温度,并具有良好的温度分布均匀性。通常情况下,RHCM模具型腔板内部存在较多的加热管道,加热管道的布局对模具型腔板的加热效率和其成型面温度的均匀性具有十分重要的作用,合理的加热管道设计既能保证产品的生产效率又能保证成型产品的质量。针对目前RHCM模具加热管道设计较为盲目的现状,本文提出了将有限元模拟技术和现代智能算法有效集成,以此实现RHCM模具加热管道优化设计的策略。以大型液晶平板电视机面板的蒸汽加热RHCM注塑模具为例,研究了影响其模具型腔成型面温度分布的主要因素。对平面型电视机面板结构,以模具型腔成型面的温度分布均匀性为目标函数,以加热管道之间的间距为设计变量,建立了模具内部加热管道布局的优化设计模型,利用响应面近似模型和遗传算法,优化了平面型电视机面板RHCM模具加热管道的布局。对弧面型电视机结构,以加热管道的中心坐标位置作为设计变量,以模具的加热效率和型腔成型面的温度分布均匀性作为目标函数,建立了其内部加热管道布局的多目标优化设计模型。通过集成CAD模型建立、有限元计算和基于Pareto的遗传算法,实现了弧面型液晶电视机面板的RHCM模具加热管道布局的优化设计。
     纤维增强注塑产品由于比普通注塑产品具有更优良的机械性能和热性能,其使用价值越来越受到人们的重视。快速热循环注塑工艺能够消除纤维增强产品表面的浮纤现象,提高产品的表面质量,因此能扩大纤维增强注塑产品的使用范围。为研究纤维增强注塑产品在RHCM注塑工艺下的性能特点,本文首先利用所建立的多目标优化设计体系对所设计的电加热RHCM模具的加热棒布局进行了优化。然后,根据电加热方式RHCM注塑工艺原理,开发了与之匹配的模温控制系统,建立了快速热循环注塑工艺实验线。以纤维增强ABS为例,通过对注塑得到的标准试样进行力学性能测试,研究了纤维增强聚合物在RHCM注塑工艺下的冲击和拉伸强度随模具温度的变化关系。同时,揭示了纤维增强聚合物熔接痕形成机理及其特点,研究了其表面熔接痕形貌随成型时模具温度变化的规律。通过对纤维增强聚合物表面浮纤现象的分析,研究了注塑制品表面质量及其粗糙度与模具温度的对应关系。
     快速热循环注塑技术是近年来发展起来的一种新型技术,已成为聚合物加工领域的重要成型方法,研究快速热循环注塑工艺的成型机理,推广快速热循环注塑工艺的使用范围是当前该工艺面临的重要的问题。本文针对该工艺及其模具技术所做的系列研究,对提高快速热循环注塑产品质量和生产效率具有较大的工程应用价值,针对该工艺所建立的实验线以及研究获得的纤维增强聚合物在RHCM注塑工艺下的性能特点对于扩大该工艺的使用范围具有重要的指导作用。
Injection molding technology is an important molding method of plastics, now it has been widely used in almost all fields of the national economy, such as household appliances, automobiles, electronics, aerospace, commodities and so on. However, as the complexity of the injection molding process, there are always many problems on the parts produced by conventional injection method, such as weld mark, flow mark, fiber exposure and so on. As a result, the appearance of the parts is seriously affected. The mechanical properties are decreased as well, leading to a hidden danger for the application of the parts. Therefore, spraying and coating have to be employed after injection molding process so as to improve the part's performance or appearance. These subsequent re-processing operations increase the part manufacturing processes, waste raw material and energy. Especially, they also increase the production cost and cause environment pollution inevitably. How to reduce the defects of the injected polymer parts, improving the product quality and canceling the spraying or coating process is one of important research subjects of the injection molding technology. In order to meet the requirements of the customers on the appearance, performance cost and environment of the plastic parts, rapid heat cycle molding (RHCM) technology is developed in recent years. Using this technology, high-quality plastic parts with excellent appearance and no weld marks can be produced and fiber exposure on the part surface can be avoided as well. Especially, the subsequent processing processes, such as spraying and coating which seriously pollute the environment can be eliminated. Thus, the whole production process flowchart is shortened. The energy, material and production cost are decreased. RHCM is a kind of potential green manufacturing technology and has a broad application prospect in plastic injection molding industry.
     Based on the principles of the rapid heat cycle molding technology, firstly, the compositions of this new injection method are researched and the requirements of the production line established in the enterprise are discussed. Compared with the conventional injection molding process, the differences between the RHCM injection process and the conventional one are studied. The design rules of the products and molds for RHCM technology are established and the processing method of the mold is also discussed. Secondly, considering the working conditions of the mold in practical production process, the temperature and stress field during the injection process are studied. The service lifetime of the mold is estimated. Thirdly, in order to improving the production efficiency and the part quality, optimization models for different layouts of heating channels in the mold are proposed, the structures of the mold are then optimized according to the models. According to the characteristics of the RHCM technology, a mold temperature control equipment and a cooling system for the electrical experiment mold are developed. By using them, the mechanical properties and appearance of the glass-fiber reinforced parts which are injected by RHCM injection method are researched.
     Different from the conventional injection molding process, the mold must be rapidly heated and cooled down to designated temperatures in RHCM injection molding cycle. In heating stage, the cavity surface of the mold should be heated up to the heat distortion temperature of polymer for ensuring good filling state of the plastic melt. In cooling stage, the mold and the polymer melt must be cooled down to ejected temperature of the polymer part rapidly in order to reduce the molding cycle. According to this characteristic, the structures of the products and mold for the technology are analyzed, and the principles that are needed to follow in structure design of RHCM products and the mold are presented. By researching on the mold material, machine method and polishing techniques, the precision machining of the mold cavity plate is achieved. Aiming at reducing the warpage and sink marks that are usually appeared on the RHCM injected parts, the mechanisms of the two defects are analyzed. The influence of the injection parameters on the warpage and the sink marks are also studied. Based on the researches above, the Steam-assisted Rapid Heat Cycle Molding (SRHCM) and electrical Rapid Heat Cycle Molding (ERHCM) are discussed respectively. The compositions of the two systems in which the molds are heated in different ways are analyzed. The requirements of both the two systems for the vapor source or heating rods, cooling water, mold temperature control equipments, process monitoring supervisory system and mold structures are proposed, and the key technologies for the application of the two different systems are studied.
     As the temperature distribution of the mold has significant effect on the part quality, the heat transfer process among the mold, heating system, plastic part, cooling system and ambience are all analyzed according to the heat transfer theory. The temperature field models for both the SRHCM mold and the ERHCM mold are established based on the above analysis and the finite element simulation theory. The instantaneous temperature of the cavity plate are obtained through the finite element simulation and the factors that influence the heating efficiency and temperature distribution on the mold cavity, including the spaces between channels, the diameters and numbers of channels and the distances from the cavity surface to the channels are all discussed. By using death-to-birth element technique, the temperature of the ERHCM mold during the whole injection molding cycle are obtained which is of great help to grasp the mold temperature and set the parameters values of the injection process.
     During the practical injection process, as the rising of the mold temperature and the restriction between the mold plates, the thermal distortion and stress are brought inevitably. Meantime, the mold also suffers great clamping pressure, injection pressure and other mechanical stress during the injection cycle. As a result, a much larger deformation of the mold is induced. The precision, cost and the surface quality of the part are affected. With the continuous production, fatigue cracks are much easier to generate on the RHCM mold due to the great stresses, and the mold lifetime becomes shorter. Therefore, the stress and strain analysis model for the mold is established according to the restriction state of the mold plates. The stress and strain distributions of the mold and the factors that affect the mold deformation and the lifetime are discussed. A new fixing mode called "partial cold gap" fixing mode for the RHCM mold is proposed. With this method, the thermal expansion of the mold is compensated effectively which is of much help to decrease the stress and improve lifetime of the mold. At last, the lifetimes of the mold with different "cold gap" are estimated in this section, and the recommendations for the mold assembly are proposed.
     During RHCM process, the production efficiency and the part's quality are seriously affected by the temperature and its distribution uniformity on the mold cavity surface. Warpage and weld mark are easy to be formed if the temperature is low or distributed unevenly on the mold cavity surface after heating and cooling processes. Therefore, there is a strict requirement on the temperature of mold cavity surface after heating process in order to obtain high-quality plastic parts and ensure the production efficiency. Commonly, there are much more heating channels in RHCM mold, the layout of them has a great effect on the heating efficiency and the temperature distribution of the mold. Optimization modes integrated the finite element technique with the artificial intelligence algorithm together are proposed to optimize the channels layout. For the purposes of achieving a uniform temperature distribution on the cavity surface of the mold, the distances between the neighbor heating channels were considered as the main design variables for plane surface LCD TV model. An objective function to optimize the temperature distribution uniformity is proposed. By using a quadric response surface equation genetic algorithm, the layout of the channels is optimized. For arc surface LCD TV model, the center coordinates of the heating channels are considered as the main design variables. Multi-objective functions for optimizing the temperature distribution uniformity and heating efficiency are established. The layout of the heating channels is optimized by integrating the establishment of CAD model, the finite element method and Pareto-based genetic algorithm.
     As the fiber reinforced plastic products have much more excellent mechanical and thermal properties, they have occupied an important position in the injection field. By using the RHCM technology, the fiber exposure on the fiber reinforced products surface can be avoided and the surface appearance can be greatly improved, so the fiber-reinforced products can be used more widely. For studying the performances of the fiber reinforced products injected by RHCM technology, the layout of heating rods for the designed experiment mold is optimized and a mold temperature controlling system for ERHCM mold is developed. A production line for experiment is established in our laboratory. The fiber reinforced ABS is used as an example to study the relationship between the mechanical properties and the mold temperature. At the same time, the formation of the weldline on the fiber reinforced product is described. The relationship between the surface quality and roughness of the part and the mold temperature are also researched.
     Although RHCM technology is a new injection method, it has become a very important molding way of the polymer. Studying the molding mechanism of the RHCM technology, promoting the application of the new injection method is one of important issues for the technology. Researches on the key technologies of the related products and the mold are of great industrial interest for its practical application. The established production line for experiment based on the RHCM theory is of much help to research the mechanism of the technology and also has a very important effect to promote the application of the technology.
引文
[1]温展飞,文生平,江静,金晖.超高速注射机注射控制的系统分析与仿真研究[J].塑料工业,2009,37(9):34-38
    [2]C.C.T sai, S.M. Hsieh, H.E. Kao. Mechatronic design and injection speed control of an ultra high-speed plastic injection molding machine[J]. Mechatronics,2009,19:147-155
    [3]Jack Avey[美],杨为民等译.气体辅助注射成型原理应用[M].北京:化学工业出版社,2003
    [4]张惠敏,焦冬梅.流体辅助注射成型技术[J].上海塑料,2004,3(1):21-24
    [5]S.J. Liu, Y.C. Wu. Dynamic visualization of cavity-filling process in fluid-assisted injection molding-gas versus water[J]. Polymer Testing,2007,26:232-242
    [6]N. P. Suh. Impact of microcellular plastics on industrial practice and academic research[J]. Macromolecular Symposia,2003,201:187-201
    [7]A. Kramschuster, R.Cavitt, D.Ermer, Z.B. Chen, L.S. Turng. Quantitative study of shrinkage and warpage behavior for microcellular and conventional injection molding[J]. Polymer Engineering Science,2005,45:1408-1418
    [8]S. LEICHER, J. WILL, H. HAUGEN, E. WINTERMANTEL. MuCell_technology for injection molding: A processing method for polyether-urethane scaffolds[J]. Journal of Materials Science, 2005,40(17):4613-4618
    [9]高军,李熹平,高田玉,褚兴荣.注射成型工艺分析及模具设计指导[M].北京:化学工业出版社.2009
    [10]李德群.现代塑料注射成型的原理、方法与应用[M].上海:上海交通大学出版社,2005
    [11]李建军,李德群.模具设计基础及模具CAD.北京:机械工业出版社,2005.
    [12]李海梅,申长雨.注塑成型及模具设计使用技术.北京:化学工业出版社,2002.
    [13]石峰.基于软计算的注塑模智能设计系统关键技术研究[D].上海:上海交通大学博士学位论文,2003
    [14]杨化林.基于知识的注塑模具设计若干技术研究[D].杭州:浙江大学博士学位论文,2006
    [15]J. Vivancos, C.J. Luis, L. Costa, J.A. Ort'iz. Optimal machining parameters selection in high speed milling of hardened steels for injection moulds[J]. Journal of Materials Processing Technology,2004,155-156:1505-1512
    [16]C.H. Chu, J.T. Chen. Tool path planning for five-axis flank milling with developable surface approximation[J]. International Journal of Advanced Manufacturing Technology,2006,29: 707-713
    [17]P.H. Wu, Y.W. Li, C.H. Chu. Tool Path Planning for 5-Axis Flank Milling Based on Dynamic Programming Techniques[J]. Lecture Notes in Computer Science,2008,4975:570-577
    [18]Y. Tang. Optimization strategy in end milling process for high speed machining of hardened die/mold steel[J]. Journal of University of Science and Technology Beijing,2006,13(3):240-243
    [19]R.T. Coelho, A.F. Souza, A.R. Roger, A. M. Y. Rigatti, A.A.L. Ribeiro. Mechanistic approach to predict real machining time for milling free-form geometries applying high feed rate[J]. International Journal of Advanced Manufacturing Technology,2010,46:1103-1111
    [20]F.J. Shiou, C.H. Cheng. Ultra-precision surface finish of NAK80 mould tool steel using sequential ball burnishing and ball polishing processes[J]. Journal of materials processing technology,2008,201:554-559
    [21]X. Pessoles, C.Tournier. Automatic polishing process of plastic injection molds on a 5-axis milling center[J]. Journal of Materials Processing Technology,2009,209(7):3665-3673
    [22]http://www.e-mold.com.cn/
    [23]http://www4.zzu.edu.cn:8080/nerc/show.aspx?id=47&cid=17
    [24]蔡自兴,徐光祐.人工智能及其应用[M].北京:清华大学出版社,2004
    [25]王立新.模糊系统与模糊控制[M].北京:清华大学出版社,2003
    [26]王士同.神经模糊系统及其应用[M].北京:北京航空航天大学出版社,1998
    [27]哈根[美]等著,戴葵等译.神经网络设计[M],北京:机械工业出版社,2002
    [28]席裕庚,柴天佑,恽为民.遗传算法综述、控制理论与应用[J], 1996,13(6):697-708
    [29]J.Cheng, Y.X. Feng, J. Tan, W. Wei. Optimization of injection mold based on fuzzy moldability evaluation[J]. Journal of Materials Processing Technology,2008,208(1-3):222-228
    [30]J. C. Lin. Optimum Gate Design of Free Form Injection Mould using the Abductive Network [J]. International Journal of Advanced Manufacturing Technology,2001,17:297-304
    [31]Y.C. Lam, G.A. Britton, D.S. Liu. Optimization of gate location with design constraints[J]. International Journal of Advanced Manufacturing Technology,2004,24:560-566
    [32]M. Zhai, Y. Xie. A study of gate location optimization of plastic injectionmolding using sequential linear programming[J]. International Journal of Advanced Manufacturing Technology, 2010,49:97-103
    [33]J. Lee, J.Kim. Micro Genetic Algorithm Based Optimal Gate Positioning in Injection Molding Design[J]. Journal of Mechanical Science and Technology,2007,21:789-798
    [34]C.Yen, J.C. Lin, Wujeng Li, M.F. Huang. An abductive neural network approach to the design of runner dimensions for the minimization of warpage in injection mouldings[J] Journal of Materials Processing Technology,2006,174:22-28
    [35]K.Alam, M.R. Kamal. A robust optimization of injection molding runner balancing [J].Computers and Chemical Engineering[J],2005,29:1934-1944
    [36]M. Zhai, Y. C. Lam, C. K. Au. Runner sizing in multiple cavity injection mould by non-dominated sorting genetic algorithm [J]. Engineering with Computers,2009,25:237-245
    [37]石峰,娄臻亮,陆金桂,张永清,方礼祥.基于模糊粗糙集模型的注塑模浇注系统方案智能化设计研究[J].机械工程学报,2003,39(9):123-127
    [38]余晓容,申长雨,陈静波.注塑模浇注系统位置的自动设计[J].机械工程学报,2004,40(6):174-177
    [39]L. Q. Tang, C. Chassapis, S. Manoochehri. Optimal cooling system design for multi-cavity injection molding[J]. Finite Elements in Analysis and Design,1997,26:229-251
    [40]J.C. Lin. Optimum cooling system design of a free-form injection mold using an abductive network[J]. Journal of Materials Processing Technology,2002,120:226-236
    [41]C.L. Li, C.G. Li, A.C.K. Mok. Automatic layout design of plastic injection mould cooling system[J]. Computer-Aided Design,2005,37:645-662
    [42]刘春太.基于数值模拟的注塑成型工艺优化和制品性能研究[D].郑州:郑州大学博士学位论文,2003
    [43]H. Oktem, T. Erzurumlu, I. Uzman. Application of Taguchi optimization technique in determining plastic injection molding process parameters for a thin-shell part[J]. Materials and Design,2007,28:1271-1278
    [44]Ch.P. Chen, M.T. Chuang, Y.H. Hsiao, Y.K. Yang, Ch.H. Tsai. Simulation and experimental study in determining injection molding process parameters for thin-shell plastic parts via design of experiments analysis[J]. Expert Systems with Applications,2009,36:10752-10759
    [45]陆宝山.注塑缺陷原因分析及改善对策.机械制造研究[J],2009,38(4):84-87
    [46]R.Y. Chang, B.D Tsaur. Experimental and theoretical studies of shrinkage, warpage and sink marks of crystalline polymer injection molded parts[J]. Polymer Enginnering and Science 1995, 35(15):1222-1230
    [47]Ch.Ch. An, R.H. Chen. The experimental study on the defects occurrence of SL mold in injection molding[J]. Journal of Materials Processing Technology,2008,201:706-709.
    [48]H.Hamada, H. Tsunasawa. Correlation between flow mark and internal structure of thin PC/ABS blend injection moldings[J]. Journal of Applied Polymer Science,1996,60:353-362
    [49]N.Ch. Tham. Flow analysis of the weld line formation during injection mold filling of thermoplastics[J]. Rheologica Acta,2004,43:240-245
    [50]S. Fathi, A. H. Behravesh. Visualization of the Flow History Contours at the Cross-Section of a Weld-Line in an Injected Molded Part[J]. Journal of Applied Polymer Science,2008,109: 412-417
    [51]M. Zhai, Y.C. Lam, C.K. Au. Runner sizing and weld line positioning for plastics injection moulding with multiple gates[J]. Engineering with Computers,2006,21:218-224
    [52]M.Y. Chen, Y.Ch. Chen, Sh.Ch. Chen. Fuzzy Control on Manufacturing Welding Systems:To Apply Fuzzy Theory in the Control of Weld Line of Plastic Injection-Molding[M]. Advanced Fuzzy Logic Technologies in Industrial Applications, DOI:10.1007/978-1-84628-469-4-21
    [53]E. Debondue, J.-E. Fournier, M.-F. Lacrampe, P. Krawczak. Weld-Line Sensitivity of Injected Amorphous Polymers[J]. Journal of Applied Polymer Science,2004,93:644-650
    [54]Sh.Y. Guo, A.K. A. A Study on Weld Line Morphology and Mechanical Strength of Injection Molded Polystyrene/Poly(methyl methacrylate) Blends[J]. Journal of Applied Polymer Science, 2002,84:1856-1865
    [55]肖长江,刘春太,申长雨.注塑制件熔接痕的形成、性能和预测.机械工程学报,2005(8):17-20
    [56]冯良为,岑运福,杨军,徐智.塑件熔接缝形成的理论研究.模具工业,2001,239(1):34-36
    [57]刘斌,谢毅.材料流变性能对注塑制品熔接痕的影响.工程塑料应用,2008,36(6):30-34
    [58]周华民.李德群.基于节点特征模型的熔接痕位置确定.中国机械工程,2004(21):1962-1968
    [59]B. Ozcelik, T. Erzurumlu. Comparison of the warpage optimization in the plastic injection molding using ANOVA, neural network model and genetic algorithm. Journal of Materials Processing Technology,2006,171:437-445
    [60]Y. Gao, X. Wang. Surrogate-based process optimization for reducing warpage in injection molding[J]. Journal of materials processing technology,2009,209:1302-1309
    [61]B. Ozcelik, I. Sonat. Warpage and structural analysis of thin shell plastic in the plastic injection molding[J]. Materials and Design,2009,30:367-375
    [62]T. Erzurumlu, B. Ozcelik. Minimization of warpage and sink index in injection-molded thermoplastic parts using Taguchi optimization method[J]. Materials and Design,2006,27: 853-861
    [63]D. Mathivanan, N. S. Parthasarathy. Sink-mark minimization in injection molding through response surface regression modeling and genetic algorithm[J]. International Journal of Advanced Manufacturing Technology,2009,45:867-874
    [64]K.M. Tsai, Ch.Y. Hsieh, W.Ch. Lo. A study of the effects of process parameters for injection molding on surface quality of optical lenses[J]. Journal of materials processing technology,2009, 209:3469-3477
    [65]Sh.Y. Fu, B. Lauke. Effects of Fiber Length and Fiber Orientation Distributions On the Tensile Strength of Short-Fiber-Reinforced Polymers[J]. Composites Science and Technology,1996, 56(10):1179-1190
    [66]D. A. Norman, R. E. Robertson. The Effect of Fiber Orientation on the Toughening of Short Fiber-Reinforced Polymers[J]. Journal of Applied Polymer Science,2003,90:2740-2751
    [67]P. J. HINE, R. A. DUCKETT. Fiber Orientation Structures and Mechanical Properties of Injection Molded Short Glass Fiber Reinforced Ribbed Plates[J]. Polymer Composites, 2004,25(3):237-254
    [68]D.G. Yao, B. Kim. Injection Molding High Aspect Ratio Microfeatures[J]. Journal of Injection Molding Technology,2002,6(1):11-17
    [69]M. S. Despa, K. W. Kelly, J. R. Collier. Injection Molding of polymeric LIGA HARMS. Microsystem Technologies,1999,6:60-66
    [70]隙宗平.微射出成型模温控制系统及微结构转为能力探封.台湾:国立台湾大学,硕士论文,2001
    [71]D.H. Kim, M.H. Kang, Y. H. Chun. Development of a New Injection Molding Technology: Momentary Mold Surface Heating Process[J]. Journal of Injection Molding Technology,2001, 5(4):229-232
    [72]D.G. Yao, M. Chen, B. Kim. Development of Rapid Heating and Cooling Mold Inserts Comprising A Heating Layer An Insulation and Substrate[C]. SPE ANTEC Tech,2001:704-708
    [73]S.C.Chen, H.S.Peng, J.A. Chang, W.R.Jong. Simulations and Verifications of Induction Heating on a Mold Plate[J]. International Communications in Heat and Mass Transfer,2004,31(7): 971-980
    [74]P.Chang, S. Hwang. Simulation of infrared rapid surface heating for injection molding[J]. International Journal of Heat and Mass Transfer,2006,49:3846-3854
    [75]H.Eberle. Micro-Injection Moulding-Mould Technology [J]. Kunstsoffe platic Europe,1998, 88(9):1344-1346
    [76]W. Schinkoethe, T. Walther. Mold Temperature Control[J]. Kunststoffe Plast Europe,2000,90: 62-68
    [77]S. Wolfgang, W. Thomas. Reducing Cycle Time[J]. Kunstoffe Plastic Europe,2000,90:17-19
    [78]D.G. Yao, B. Kim. Development of Rapid Heating and Cooling System for Injection Molding Applications[J]. Polymer Engineering and Science,2002,42(12):2471-2481
    [79]V. Piotter, W. Bauer, T. Benzler, A. Emde. Injection Molding of Components for Microsystems[J]. Microsystem Technologies,2001,7:99-102
    [80]V. Piotter, K. Mueller, K. Plewa, R. Ruprecht, J. Hausselt. Performance and Situlation of Thermoplastic Micro Injection Molding[J]. Microsystem Technologies,2002,8:387-390
    [81]M. Heckele, W. K. Schomburg. Review on Micro Molding of Thermoplastic Polymers[J]. Journal of Micromechical and Microengineering,2004,14:1-14
    [82]G.Q. Zhao, G.L. Wang, H.P. Li, Y.J. Guan. Research and application of the rapid heat cycle molding with electric heating and coolant cooling to improve the surface quality of large LCD TV panels[J].Polymer for Advanced Technologies, DOI.10.1002/pat.1536,2009
    [83]赵国群,王桂龙,李辉平,管延锦.快速热循环注塑技术的研究与应用[J].塑性工程学报,2009,20(4):190-195
    [84]G.L. Wang, G.Q. Zhao, H.P. Li, Y.J. Guan. Research on a new variotherm injection molding technology and its application on the molding of a large LCD panel[J]. Polymer-Plastics Technology and Engineering,2009,48(7):671-681
    [85]G.L. Wang, G.Q. Zhao, H.P. Li, Y.J. Guan. Development and evaluation of a dynamic mold temperature control system with electric heating for variotherm injection molding[J].Polymer and Polymer Composites,2009,17(7):397-409
    [86]王桂龙,赵国群,李辉平,管延锦.蒸气辅助快速热循环注塑技术及其模温响应模拟的研究[J].高分子材料科学与工程,2009,8(25):171-174
    [87]李海梅,申长雨.注塑成型及模具设计实用技术[M].北京:化学工业出版社,2002
    [88]李德群,唐志玉.中国模具设计大典,第二卷[M].南昌:江西科学技术出版社,2003
    [89]邵健.基于KBE的注塑模具型腔设计系统研究[D].杭州:浙江大学博士学位论文,2006
    [90]C.A. Griffiths, S.S. Dimov, E.B. Brousseau, R.T. Hoyle. The effects of tool surface quality in micro-injection moulding[J]. Journal of Materials Processing Technology,2007,189:418-427
    [91]J.D. Yoon, S.K. Hong, J.H. Kim, S.W. Cha. A mold surface treatment for improving surface finish of injection molded microcellular parts[J]. Cellular polymers,2004,23:39-47
    [92]H.L.Chen, R.D. Chien, S.C. Chen. Using thermally insulated polymer film for mold temperature control to improve surface quality of microcellular injection molded parts[J]. International Communications in Heat and Mass Transfer,2008,35:991-994
    [93]X.J.Wu, Y. Kita, K.Ikoku. New polishing technology of free form surface by GC[J]. Journal of Materials Processing Technology,2007,187-188:81-84
    [94]M. J. Tsai. J. F. Huang. Efficient automatic polishing process with a new compliant abrasive tool[J]. International Journal of Advanced Manufacturing Technology,2006,30:817-827
    [95]方景礼.金属材料抛光技术[M].北京:国防工业出版社,2005
    [96]李坤宏.精密模具镜面加工的手工抛光[J].金属加工,2009(6):53-54
    [97]H. Kurtaran, T. Erzurumlu. Efficient warpage optimization of thin shell plastic parts using response surface methodology and genetic algorithm[J]. International Journal of Advanced Manufacturing Technology,2006,27:468-472.
    [98]S.H. Tang, Y.M. Kong, S.M. Sapuan, R. Samin, S. Sulaiman. Design and thermal analysis of plastic injection mould[J]. Journal of Materials Processing Technology,2006,171:259-267
    [99]Y.W. Lin, H.M. Li, S.C. Chen, C.Y. Shen.3D numerical simulation of transient temperature field for lens mold embedded with heaters[J]. International Communications in Heat and Mass Transfer,2005,32:1221-1230
    [100]H. Qiao. Transient mold cooling analysis using BEM with the time-dependent fundamental solution[J]. International Communications in Heat and Mass Transfer,2005,32:315-322
    [101]S.J. Liu, P.C. Su. Novel three-dimensional in-cavity transient temperature measurements in injection molding and fluid-assisted injection molding[J]. Polymer Testing,2009,28(1):66-74
    [102]孔祥谦.有限单元法在传热学中的应用[M].北京:科学出版社,1998
    [103]F.P.Incropera[美]等,葛新石,叶宏译.传热和传质基本原理[M].北京:化学工业出版社,2007
    [104]M. Janik, H. Dyja. Modeling of three-dimensional temperature field inside the mould during continuous casting of steel[J]. Journal of Materials Processing Technology,2004,157-158: 177-182
    [105]E. Correa, A. Blazquez, A. Estefani, F. Paris, J. Canas. Effects of the stress state generated during the manufacturing process of copper anodes on the moulds:Warping and cracking[J]. Engineering Failure Analysis,2009,16(1):309-320
    [106]L.A.M. Mendes, L. M.S.S. Castro. Hybrid-mixed stress finite element models in elastoplastic analysis[J]. Finite Elements in Analysis and Design,2009,45:863-875
    [107]席源山,陈火红MSC.Marc温度场及其耦合场分析培训教程[M]. MSC.Software,中国,2005
    [108]石宪章.注塑冷却数值分析方法的研究与应用[D].郑州:郑州大学博士学位论文,2005
    [109]S.C. Chen, Y.Chang, Y.P. Chang, Y.C.Chen, C.Y. Tseng. Effect of cavity surface coating on mold temperature variation and the quality of injection molded parts[J]. International Communications in Heat and Mass Transfer,2009,36(10):1030-1035
    [110]陈火红,尹伟奇,薛小香MSC.Marc二次开发指南[M].北京:科学出版社,2004
    [111]F.F.Z. Ihab, Younan, M.Y.A, W. S. Abdalla.3-D Finite element modeling of the welding process using element birth and element movement techniques[J]. Journal of Pressure Vessel Technology, 2003,125:144-50.
    [1]2]赵均海.汪梦甫.弹性力学及有限元[M].武汉:武汉理工大学出版社,2008
    [113]王洪纲.热弹性力学概论[M].北京:清华大学出版社,1989
    [114]胡鹏浩.非均匀温度场中机械零部件热变形的理论及应用研究[D].合肥:合肥工业大学博士学位论文,2001
    [115]陈火红Marc有限元实例分析教程[M].北京:机械工业出版社,2002
    [116]陈火红,尹伟奇,薛小香MSC.Marc二次开发指南[M].北京:科学出版社,2004
    [117]H.瑞斯(加)著,朱元吉等译.模具工程[M].北京:化学工业出版社,2005
    [118]王国军Msc. Fatigue疲劳分析实例指导教程[M].北京:机械:工业出版社,2009
    [119]徐濒.疲劳强度设计[M].北京:机械工业出版社,1981
    [120]R.J. Wang, D.G. Shang. Low-cycle fatigue life prediction of spot welds based on hardness distribution and finite element analysis[J]. International Journal of Fatigue,2009,31:508-514
    [121]Haykin, S. Simon. Neural networks and learning machines[C]. 北京:China Machine Press, 2009
    [122]玄光男,程润伟.遗传算法与工程优化[M].北京:清华大学出版社,2004
    [123]莫宏伟.人工免疫系统原理与应用[M].哈尔滨:哈尔滨工业大学出版社,2003
    [124]季廷炜.板料成形工艺智能设计关键技术研究[D].济南:山东大学博士学位论文,2008
    [125]袁志发,负海燕.试验设计与分析[M].北京:中国农业出版社,2002
    [126]Z.Z. Lo, J. Zhao. Advanced response surface method for mechanical reliability analysis[J]. Applied Mathematics and Mechanics(English Edition)2007,28(1):19-26
    [127]O. Ekren, B.Y. Ekren. Size optimization of a PV/wind hybrid energy conversion system with battery storage using response surface methodology[J]. Applied Energy,2008,85:1086-1101
    [128]G. G.Wang, M.B. Winnipeg. Adaptive Response Surface Method Using Inherited Latin Hypercube Design Points[J]. Journal of Mechanical Design,2003,125(6):210-220.
    [129]王凌.智能优化算法及其应用[M].北京:清华大学出版社,2001
    [130]雷德明,严新平.多目标智能优化算法及其应用[M].北京-科学出版社,2009
    [131]卢险峰.最优化方法应用基础[M].上海:同济大学出版社,2003
    [132]X.S. Guan,Y.Q. Wang, L.Y. Tao. Machining scheme selection of digital manufacturing based on genetic algorithm and AHP[J]. Journal of Intelligent Manufacturing,2009,20(6):661-669
    [133]C.H. Su, T.H. Hou, Using multi-population intelligent genetic algorithm to find the pareto-optimal parameters for a nano-particle milling process[J]. Expert Systems with Applications,2008,34(4):2502-2510
    [134]W.Liu, Y.Y. Yang. Multi-objective optimization of sheet metal forming process using Pareto-based genetic algorithm[J]. Journal of Materials Processing Technology,2008,208(1-3): 499-506
    [135]O. Altuzarra, A. Hernandez. Multi-objective Optimum Design of a Symmetric Parallel Schonflies-Motion Generator[J].Journal of Mechanical Design,2009,131(3):031002
    [136]M. Li,G. Li, S. Azarm. A Kriging Metamodel Assisted Multi-Objective Genetic Algorithm for Design Optimization[J]. Journal of Mechanical Design,2008,130(3):031401
    [137]S.Verma, C. Balaji. Multi-parameter estimation in combined conduction-radiation from a plane parallel participating medium using genetic algorithms[J]. International Journal of Heat and Mass Transfer,2007,50:1706-1714
    [138]D. Copiello, G. Fabbri. Multi-objective genetic optimization of the heat transfer from longitudinal wavy fins[J]. International Journal of Heat and Mass Transfer,2009,52:1167-1176
    [139]杨扬,董斌斌,刘春太.成型温度对纤维增强注塑熔接线拉伸性能的影响[J].郑州大学学报(工学版),2004,25(1):102-104
    [140]刘春太,申长雨.利用TAGUCHI方法优化纤维增强PA66注塑熔接线拉伸性能[J].复合材料学报,2004,21(5):68-73
    [141]苏彬,董斌斌,李倩,申长雨.增强纤维PA66熔接线形成方式对制件整体强度的影响[J].高分子材料科学与工程,2007,23(3):39-42
    [142]S. Hashemi. Influence of temperature on weldline strength of injectionmoulded short glass fibre styrenemaleic anhydride polymer composites[J]. Plastics, Rubber and Composites 2002,31, 7318-324
    [143]S. Hashemi, Y. Lepessova. Temperature and weldline effects on tensile properties of injection moulded short glass fibre PC/ABS polymer composite[J]. Journal of Materials Science,2008,43: 4811-4819
    [144]S.H. Chang, J.R. Hwang, J.L. Doong. Optimization of the injection molding process of short glass fiber reinforced polycarbonate composites using grey relational analysis. Journal of Materials Processing Technology,2000,97:186-193
    [145]C.A. Silva, J. C. Viana, F.W.J. van Hattum, A. M. Cunha. Fiber Orientation in Injection Molding With Rotating Flow[J]. Polymer Engineering and Science,2008,48:395-404
    [146]A. Bernasconi, P. Davoli, A. Basile, A. Filippi. Effect of fibre orientation on the fatigue behaviour of a short glass fibre reinforced polyamide-6. International Journal of Fatigue,2007: 199-208
    [147]J. Bing, C. Liu, Ch. Zhang. The efect of nonsymmetric distribution of fibre orientation and aspect ration on elastic properties of composites[J]. Composites Part B:Engineering,2007,38:24-34
    [148]K.H. Han, Y.T. IM. Numerical Simulation of Three-Dimensional Fiber Orientation in Injection Molding Including Fountain Flow Effect[J]. Polymer composites,2002,23(2):222-238
    [149]W. Lutz, J. Herrmann, M. Kockelmann, H.S. Hosseini, A. Jackel, S. Schmauder, S. Predak, G. Busse. Damage development in short-fiber reinforced injection molded composites[J]. Computational Materials Science,2009,45:698-708
    [150]邱斌,陈锋.注射成型中的纤维取向[J].现代塑料加工应用,2005,17(2):50-52
    [151]http://www.autodesk.com.cn/

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700