用户名: 密码: 验证码:
输气管道内检测器设计及理论研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
管道内检测器是一种对长输管道进行在线无损检测的有效设备,随着西气东输、川气东送等工程相继投入使用,我国长输天然气管道的安全成为影响国计民生的重要因素,因此,开展在线输气管道内检测器研究意义重大。由于天然气的可压缩性和干燥性,内检测器的平稳运移系统的研究和检测磁路的设计,成为实现输气管道检测和达到输气管道检测精度要求的关键。本文从上述两个关键问题为切入点,对输气管道内检测器的驱动运移、检测系统等主要部分进行了理论分析和实验研究。建立了不同驱动皮碗结构在不同管路状态下运移的动力学方程,设计制作了运移装置模拟实验台,对输气管道内检测器检测系统进行了设计和优化,建立了现场模拟试验系统,对现场实验样机进行了检测实验,通过研究认为:
     使用漏磁检测技术对输气管道缺陷进行内检测是可行的,通过分析输气管道缺陷形成的机理和缺陷信号的特征,对干燥高压气体环境下的检测系统进行研究和设计,解决了管壁内、外缺陷的识别问题,优选并验证了磁化器和传感器的提离值,对周向励磁检测技术进行了理论探讨和数值模拟并提出了非均匀磁场内缺陷信号的判读和修正办法;经现场试验验证,该技术对漏磁信号的采集和对缺陷的识别能够满足输气管道的要求,可以检出直径大于2mm、深度大于1.5mm或直径大于3mm,深度大于1mm的以上的管道缺陷;提出并验证了输气管道内检测最佳的检测速度区间,管道缺陷的检出率随着检测器移动速度的增加而降低,当检测器移动速度大于4m/s时,其检出率急剧下降,由此可得出对输气管道进行内检测,速度控制是完成有效检测的关键。
     建立了不同结构驱动器的运动动力学分析模型,深入研究了常规驱动皮碗、弹性底板驱动皮碗、伞型驱动皮碗等皮碗结构、压差与驱动器运移状态的关系,得到:常规和弹性底部皮碗驱动器在水平管路内运移时,皮碗的唇部结构、材料选择和管路障碍是影响检测器稳定运行的显著因素;在起伏管路内,皮碗唇部悬臂梁长度L对稳定运行的影响最显著;在底部刚度、推动压差、唇部悬臂梁长度L在一定范围内取值时,内检测器可以在水平管道内平稳运移,但难以实现在起伏管路内稳定运移;通过合理的改进驱动器唇部结构和底部刚度,可以实现在给定的压差和有限起伏高度内,内检测器在给定的速度范围内稳定运动的要求;采用新型伞状变刚度驱动皮碗,可以在更大起伏高度内实现内检测器稳定运行的目的。
     设计制造了可供现场模拟检测实验用的试验台和Ф1016输气管道内检测器原型机,进行了工业输气条件下的现场模拟试验。现场试验表明:检测器的运移速度控制是输气管道内检测的关键,通过合理设计驱动皮碗的结构可以实现检测器在起伏20度以内的输气管道的平稳运行;通过对所采集的模拟缺陷信号的统计分析,验证了缺陷与漏磁信号之间的定量关系,内外伤识别的可行性,检出率与速度的关系以及磁路设计的合理性,为输气管道内检测器的设计提供理论依据和设计模板。
Inner Inspection PIG is a kind of effective equipment which was used to test the gas and oil pipeline. As the West-East natural gas pipeline and the Sichuan-East gas pipeline are put into service, the safety of our gas pipelines has become a significant issue which impact national economy and people’s livelihood, so it is very important to study the Inner Inspection PIG. Because of the compressibility and aridity of the gas, the steady motion and optional magnetic circuit are the keys to meet the need of inspection precision. The dissertation begins with the two critical items mentioned above, and studies the main parts of Inner Inspection PIG such as drive system and inspection system on theory and experiment. The dynamic equations of different drive cups in various pipeline have been establish , the model test bed of move device has been created , the system of smart PIG has been designed and optimized .The site simulant experiment system has been built, and the prototype of Inner Inspection PIG has been tested .The following has been got through the research:
     It is feasible to inspect the defect of gas pipeline by the technology of magnetic flux leakage. Through analyzing formation mechanism and signals character of defects, detecting system in dry and high pressure gas environment has been studied and designed, the internal and external defects identification has been solved. The lift-off of magnetizer and sensor has been chosen and verified.It studies on the theoretical discussion and numerical simulation on circumferential MFL technology and puts forward the identification and modification method of defects signals in non-uniform magnetic field. The technology can detect the defects which diameter is more than 2mm and depth is more than 1.5mm or diameter more than 3mm and depth more than 1mm and it can fit the need of the gas pipeline inspection. It proposes and verifies the optimal detection in terval of velocity.The relevance ratio drops with the speed of Inner Inspection PIG raising, and when the speed is more than 4m/s the relevance rate will drop dramatically. Controlling the speed is a key to get an effective detection when we inspect the gas pipelines.
     The motion and dynamics analysis model of driver cups with different structure has been created ,the relationship of the cups structure ,which including common drive cup, elastic bottom cup and umbrellashaped dirve cup, difference in pressure and the moving state of driver has been researched. The conclusions are: when common cup and elastic bottom cup move in level pipeline, the lip structure of cup, material and obstruct in pipeline are the major factors which affect the steady motion of Inner Inspection PIG. In undulant pipeline, the length of cantilever beam of cup lip affect the steady motion of Inner Inspection PIG significantly. If the stiffness, driving pressure and the length of cantilever beam of cup lip are unchanged, Inner Inspection PIG can move steadily in level pipelines , but it is hardly to complete the steadily movement in undulant pipeline . By improving the structure of the driver lip and the stiffness of the bottom, Inner Inspection PIG can moves steadily in limited undulant pipeline and certain different pressure .If the new umbrellashaped cup, which can change its stiffness is used, Inner Inspection PIG can move steadily in more undulant pipeline. The test bed, which could be used in simulatiom experiments has been designed and built.
     The gas pipeline prototype,namedФ1016 inner inspection PIG has been manufactured and several site simulation experiments have been done. The site experiments results show that velocity control is the key in gas pipeline inspection.The speed can be controlled in 20 degree fluctuation pipeline by changing the structure of driver cup. And BIG can move steadily in 20 degree fluctuation pipeline. A certain quantitative relation between defects and MFL signails has been verified.The simulation experiments also show that it is feasible to identify the internal and externail defects, and there is relationship between velocity and relevance ratio, the reasonableness in magnetic circuit design. Theoretical basis and designing template have been given on designing inner inspection in gas pipeline.
引文
[1]李莺莺.油气管道在线内检测技术若干关键问题研究[D].天津:天津大学, 2006: 1-30.
    [2]卢秀泉.石油管道检测机器人流场数值模拟及PIV实验研究[D].天津:天津大学,2008:1-10.
    [3]何宏,李琳,江秀汉.管道内腐蚀检测技术进展[J].西安石油学院学报(自然科学版),2001,16(03):43-46.
    [4]刘强,王树立,赵书华等.油气储运行业管道机器人发展现状与展望[J].管道技术与设备,2006,6:24-26.
    [5]姚安林,刘艳华,李又绿灯.国内外油气管道完整性管理技术比对研究.研究与探讨.
    [6]张云伟.煤气管道检测机器人系统及其运动控制技术研究[D].上海:上海交通大学,2007:1-20.
    [7]陈登丰.管道猪技术在管道检测中的应用[J].中国锅炉压力容器安全, 1993, 9 (5): 3-9.
    [8]蒲明.中国油气管道发展现状及展望[J].国际石油经济, 2009, 3: 40-47.
    [9]杨理践,邢燕好,高松巍.高精度管道漏磁在线检测系统的研究[J].无损探伤, 2005, 29 (1): 20-22.
    [10] M.D.Pandey.“Probabilistic Models of Condition Assessment of Oil and Gas Pipelines,”NDT&E International, Vol.31, No.5, 1998, pp.349-358
    [11]范向红,王少华,那晶.我国漏磁管道检测技术及其成就[J].石油科技论坛, 2007, 4: 55-57.
    [12] SY 6186-1996.石油天然气管道安全规程[S].北京:中华石油天然气总公司, 1996.
    [13]杨浩.泄流状态下输气管道内检测器的流场计算研究[D].沈阳:沈阳工业大学, 2009.
    [14] Seiji AOYAGI, Syoji NAKAI, Kazuyoshi MAEDA.A Basic Study on a Mobile Robot for Maintaining Pipes[J].Int.J.Japan Soc.Prec.Eng.1991,25(3):233-234.
    [15]张学文.管道机器人三轴差动式驱动单元设计与可靠性研究[D].吉林:吉林大学,2008:1-20.
    [16]李著信,苏毅,吕宏庆等.管道在线检测技术及检测机器人研究[J].后勤工程学院学报,2006,04:41-45.
    [17] Allen.A.Pennington.Techniques Developed to Solve Problems of Unpiggable Lines[J].Pipe line Industry,1992(11):71-73.
    [18] Norsk Elektro Optikk A/S﹒www. neo. no /research/pipeline.
    [19]孟浩龙,李著信,王芬菊等.管道内差压驱动机器人相关流场数值模拟研究[J].应用力学学报,2007,24(01):102-106.
    [20] S.T.Tolmasquim, A.O.Nieckele.Design and control of pig perations through pipelines[J].Journal of Petroleum Science and Engineering,2008(62):102-110.
    [21] Jun Okamoto Jr, Julio C.Adamowski, Marcos S.G.Tsuzuki.Autonomous system for oil pipelines inspection.Mechatronics,1999(9):731-743.
    [22] F.Esmaeilzadeh, D.Mowla, M.Asemani.Modeling of Pig Operations in Natural Gas and Liquid Pipeline.Society of Petroleum Engineers,2006.
    [23] P.Loilier, C.Omgba-Essama, C.Thompson.Numerical experiments of two-phase flow in pipelines with a two-fluid compressible model.Multiphase Production Technology,2005(12):25-27.
    [24] Haun R.Analysis and Modeling of Pipeline Dewatering and Startup[J].Pipe Line Industry,1986,64(3) .
    [25] S.M.Hosseinalipour, A.Zarif Khalili, A.Salimi.Numerical Simulation of Pig Motion through Gas Pipelines[J].Iran Univercity of Scicence and Technology,2007,11.
    [26]邓宗全,毕德学.管道机器人[J].机器人技术与应用,1996(6):12~14.
    [27]姜生元,邓宗全,李斌等.内置动力源管内X射线探伤机器人的研制[J].机器人,2001,3(23):211-216.
    [28]邓宗全,王永福,张晓华等.小口径管内补口作业机器人的研究[J].机器人,1997,4(19).
    [29]徐小云,颜国正,丁国清等.管道机器人适应不同管径的三种调节机构的比较[J].光学精密工程,2004,12(1):60-65.
    [30]陆麟,章亚男,沈林勇等.适应管径变化的管道机器人[J].机械设计,2007,1(24):16-18.
    [31]钱晋武,章亚男,沈林勇等.微小管道检测机器人系统[J].高技术通讯,2001,2:92-94.
    [32]杨金娥.管道内防腐智能补口机及防腐质量检测仪[J].油气田地面工程,2001,3(20):41-42.
    [33]刘鸿升.钢制管道内涂层补口及检测补涂机[J].石油工程建设,1993,1:55-56.
    [34]邓宗全,陈军,姜生元等.六独立轮驱动式管内机器人的研制[J].高技术通讯,2004,9:54-58.
    [35]王忠巍,曹其新,栾楠等.海底管道机器人智能控制器的研制[J].高技术通讯,2008,2(18):142-146.
    [36]白世武.中国石油天然气管道行业的无损检测技术发展及其与国外的交流与合作[J].无损检测,2007,29(12):685-689.
    [37]刘晨东,王琳平等.高精度管道漏磁线检查技术的应用[J].石油和化工设备,2008,02:44-45.
    [38]吕平,吴明,栗佳等.清管器在输油管道中的运动规律研究[J].管道技术与设备,2006,5:42-44.
    [39]缪娟,吴明,郑平等.清管作业对低输量原油管道稳定性的影响[J].油气储运,2008,27(9):55-58.
    [40]王亚新,栗佳,包瑞新.输油管道清管器受力分析研究[J].辽宁石油化工大学学报,2007,27(2):39-41.
    [41]黄松岭,赵伟.天然气管道缺陷检测器泻流装置[J].清华大学学报(自然科学版)2008, 48(1): 13-15.
    [42]刘楠,李著信,胡文君等.管道检测机器人动力学及流场分析研究[J].流体传动与控制,2006,3:19-21.
    [43]孟浩龙,李著信,王菊芬等.管内检测机器人周围流场的三维数值计算[J].石油学报,2006,27(6):128-132.
    [44]孟浩龙,李著信,王菊芬等.管道内压差驱动机器人相关流场数值模拟研究[J].应用力学学报,2007,24(1):102-106.
    [45]史培玉,岳明,李玉星等.水平管路清管过程流动参数变化规律模拟研究[J].中国海上油气(工程)2003,15(6):2-32.
    [46]吕英民.天然气长输管道调度手册.石油大学出版社,1994,12:157-167.
    [47]王君明.自锚式悬索桥锚固部位的模型试验研究[D].成都:西南交通大学硕士学位论文. 2008.
    [48]袁文忠.相似理论与力学模型试验[M].成都:西南交通大学出版社, 1998: 84.
    [49]机械工程手册编委会.机械工程手册:基础理论卷[M].北京:机械工业出版社, 1996: 80, 84-86.
    [50]周美立.相似工程学[M].北京:机械工业出版社, 1998: 163-167, 178-182.
    [51]李晓英.高速铁路动荷载作用下隧底结构动力特性的试验研究[D].长沙:中南大学硕士学位论文. 2009.
    [52]机械设计手册编委会.机械设计手册(新版)第二卷[M].北京:机械工业出版社, 2004,11:50~88.
    [53]白港生,黄凯,季峰,等.漏磁腐蚀检测器在输气管道中的运行速度分析[J].管件与设备, 2003, 5 (20): 13-14.
    [54]洪险峰,严舒.管道通径检测技术及其在新线上的应用.石油科技论坛, 2008, 1: 52-55.
    [55]华正汉,朱敬德.管道检测机器人试验台的设计[J].江苏机械制造与自动化: 2001, 4: 100-101.
    [56]杨桂通.弹塑性力学引论[M].北京:清华大学出版社, 2004: 119-124.
    [57]戴斌,陶志钧.皮碗式清管器的磨损和长度特性研究[J].上海煤气,2008,2:6-9.
    [58] SY/T 5922-2003,天然气管道运行规范[S] .北京:国家经济贸易委员会. 2003.
    [59]严大凡.输油管设计与管理[M].北京:石油工业出版杜, 1986.
    [60]吴望一.流体力学[M].北京:北京大学出版社, 1982: 40-41.
    [61] 137任吉林,林俊明,高春法.电磁检测,北京:机械工业出版社,2000.
    [62]陈可.缺陷漏磁场的研究及其无损检测探伤的应用:(硕士学位论文).西安:西北工业大学,2004.
    [63]徐章遂,徐英,王建斌等.裂纹漏磁定量检测原理与应用,北京:国防工业出版社,2005.
    [64]马建明.数据采集与处理技术[M].第二版.西安:西安交大出版社, 2005: 199-210, 284-308.
    [65]宋小春,黄松岭,等.高清晰度储罐底板漏磁检测器的研制[J].化工自动化及仪表, 2007, 34 (1) : 77 - 80.
    [66] Gwan Soo Park, Sang Ho Park. Analysis of the velocity-induced eddy current in MFL Type NDT[J]. IEEE transactions on magnetics, 2004, 40(2): 663–666
    [67]宋志哲.磁粉检测,北京:中国劳动社会保障出版社,2007.
    [68] S. Mukhopadhyay, G. P. Srivastava. Characterisation of metal loss defects from magnetic flux leakage signals with disctete wavelet transform. NDT&E, 2000-33:57-65.
    [69] D.L Atherton. Magnetic inspection is key to ensuring safe pipelines. Oil and Gas Journal, 1989, 8-87.
    [70]康宜华.磁性无损检测技术中的信号处理技术[J].无损检测,2000,6.
    [71]马凤铭,杨理践,高速漏磁检测中的速度效应及信号补偿[J],无损探伤,2005,29(3): 12-15.
    [72] Gwan Soo Park, Sang Ho Park. Analysis of the velocity-induced eddy current in MFL Type NDT[J]. IEEE transactions on magnetics, 2004, 40(2): 663–666.
    [73]杜志叶,阮江军,余世峰,刘兵,油管漏磁检测的有限元建模技术研究[J],中国电机工程学报,2007,27(27):108–113.
    [74] Yang S, Sun Y, Udpa L, Udpa SS, Lord W. 3D simulation of velocity induced fields for non-destructive evaluation application[C],IEEE Trans Magn, 1999, 35(3): 1754-1762.
    [75] Dr. Florien Rah. Optimizing the active speed control unit for in-line inspection tools in gas[R].Canada: ROSEN Technology &Research Center, 2006.
    [76] F. Esmaeilzadeh, D. Mowla, and M. Asemani.Modeling of Pig Operations in Natural Gas and Liquid Pipeline. Texas[J] , U.S.A Society of Petroleum Engineers, 2006.
    [77]杨理践,陈晓春,魏兢.油气管道漏磁检测的信号处理技术.沈阳工业大学学报,1999,21(6):516-518.
    [78]杨理践,葛岷,高松巍.漏磁法管道在线检测计算机系统.沈阳工业大学学报,1999,21(3):227-229.
    [79]王太勇,蒋奇.钢管漏磁在线检测技术的研究.计量学报,2002,4.
    [80]王太勇,蒋奇.管道缺陷定量识别技术的研究.天津大学学报,2003,1.
    [81]金建华,康宜华,杨叔子.油管缺陷在线检测仪的研究.仪表技术与传感器2000-11:18-24.
    [82]金建华,康宜华,武新军.用集成霍尔元件定量检测缺陷漏磁场的特点.无损检测,1998-2:34-38.
    [83]金涛,阙沛文.一种管道漏磁无损检测传感器的设计与实现.工业仪表与自动化装置,2004,4.
    [85]郭硕鸿.电动力学(第二版).北京:高等教育出版社,2003,4(12).
    [86]司家屯,曲民兴.电磁无损检测与数值计算,第二讲,漏磁检测中的有限元分析.南京航空航天大学.无损检测,1994,516(5).
    [87]刘保余,綦耀光.管道周向励磁漏磁检测ANSYS仿真分析[J].沈阳工业大学学报,2010,32(2):187-189
    [88] William H. Hayt, Jr. and John A. Buck . Engineering Electromagnetics Sixth Edition.北京:电子工业出版社,2004::219-226
    [89]张玉民,戚伯云.电磁学.北京:科学出版社,2000:294-311.
    [90]周美立.相似工程学.北京:机械工业出版,1998:155-188.
    [91]许冯平,邓宗全.管道机器人在弯道处通过性的研究[J].机器人,2004,26(2):155-160.
    [92]邹继斌,刘宝廷,崔淑梅,郑萍.磁路与磁场,哈尔滨:哈尔滨工业大学出版社,1998:183-190

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700