用户名: 密码: 验证码:
聚电解质络合物的可加工性及其功能材料的构建基础
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
聚电解质络合物(Polyelectrolyte complexes, PEC)是一类重要的多组分高分子材料。低浓度的PEC分散液在基因和DNA传输、药物控释、微胶囊、絮凝以及造纸增强等领域已有广泛应用。然而,固态PEC一般不溶不熔,难于加工,这一缺点严重限制了其多功能性优势的发挥。因此,迄今为止,对PEC本体材料的结构-性质及应用研究十分缺乏。本文提出“酸保护-去保护”法制备可加工PEC本体材料(在水介质中可分散),获得了其高性能渗透汽化(Pervaporation, PV)膜和高强度纳米杂化膜。研究了基于荷电PEC的层层自组装多层膜的制备及应用,首次发现PEC的分形自组装现象。
     选用聚二烯丙基二甲基氯化铵(PDDA)、聚甲基丙烯酰氧乙基三甲基氯化铵(PDMC)和壳聚糖(CS)为阳离子聚电解质,羧甲基纤维素钠(CMCNa)为阴离子聚电解质,提出“酸保护-去保护”法制备了PDDA-CMCNa、CS-CMCNa和PDMC-CMCNa三种可加工、离子络合度可控的PEC固态材料。盐酸浓度临界值为0.001~0.03M。采用红外、元素分析、差示量热扫描仪、热失重和广角X衍射研究了PEC固体性质,发现PEC非晶、无玻璃化转变。采用粘度、Zeta电势、光散射、扫描电子显微镜、透射电镜和原子力显微镜研究了PEC分散液性质,发现其基本结构单元为内部交联、荷负电的针/棒状的PECA聚集体纳米粒子。进一步研究了PEC分散液的自组装,发现可形成树枝状分形图案(分形树)。研究了分形树的结构、形成和初步调控。发现,分形树图案由PECA粒子自组装形成,厚度约为400-600nnm,维数在1.75-1.81之间。PEC分散液的自组装过程符合扩散限制聚集模型,荷负电PEC纳米粒子间的屏蔽效应是“分形树”形成的关键。升高PEC分散液浓度、溶剂挥发温度,降低分散液pH值,向分散液中添加有机溶剂和改变PEC化学结构均破坏“分形树”图案的形成。
     采用溶液铸膜法,以聚砜为底膜,制备了PDDA-CMCNa、CS-CMCNa和PDMC-CMCNa三种均质PEC膜,研究了其渗透汽化异丙醇脱水性能。发现PEC膜对水-异丙醇体系脱水都呈高选择性(透过液中水含量>99.1 wt%)和超渗透性。例如,PDMC-CMCNa HPECM0.46在70℃下对10 wt%水-异丙醇体系脱水的通量高达4.2 kg/m2h,分别为原料CMCNa膜和商品化聚乙烯醇膜的4倍和5倍。提出“水通道”结构模型解释了PEC膜的超高渗透汽化性能。由络合度为0.28的PDDA-CMCNa PEC0.28与聚乙烯醇制得的共混膜(质量比1:1)70℃下用于10 wt%水-异丙醇体系脱水,通量达1.35 kg/m2h,较商用聚乙烯醇膜提高约1倍。
     提出原位离子络合法,制备了含有二氧化硅和多壁碳纳米管的PEC纳米杂化膜。发现,在5 wt%和7 wt%临界含量以下,二氧化硅和碳纳米管在PEC基体内分散性良好。在最佳碳纳米管含量(7 wt%)时,PDDA-CMCNa PEC/MWCNT纳米杂化膜的拉伸强度、模量和断裂伸长率分别为65Mpa,2.8 Gpa和3.4%,为纯PEC膜的2.7,2.3和1.8倍。渗透汽化实验表明,分散有二氧化硅和碳纳米管的PDDA-CMCNa PEC纳米杂化膜保持了PEC基体优良的渗透性和选择性。
     以荷电PDDA-CMCNa PEC纳米粒子作为新型层层自组装基元,在石英片、聚丙烯腈多孔底膜和光纤上成功构筑了多层膜。发现,以PECA粒子作为组装单元可加速组装进程。例如,(PDDA-CMCNa PECA-/PDDA-PSS PECA+)10多层膜在石英片上的增长速度高达每双层200 nm。多层膜的增长速度随PEC纳米粒子络合度增大,组装液pH降低和外加盐浓度升高而增加。组装在聚丙烯腈多孔底膜上的多层膜50℃下用于10 wt%水-异丙醇脱水,有较高渗透通量(1.39 kg/m2h)。组装在光纤上的多层膜pH传感器具有灵敏度更高(0.5nm/pH)和响应时间更短(48s)的优点。
Polyelectrolyte complexes (PEC) is an important type of multicomponent polymeric material. Dilute PEC dispersions have found applications in various fields such as gene/DNA delivery, drug release, microencapsulation, flocculation, paper strengthing and so on. However, PEC solids are generally insoluble, infusible and not processable, and this blocks the realization of their multi-functionalities. In this work, a novel strategy of "acid protection-deprotection" was proposed to prepare solution processable PEC. On the basis of this strategy, high performance PEC pervaporation (PV) membranes, PEC nanocomposite membranes, functional PEC multilayer films and PEC fractal pattern formation were explored and studied in details.
     Poly (diallyldimethylammonium chloride) (PDDA), poly (2-methacryloyloxy ethyl trimethylammonium chloride) (PDMC) and chitosan (CS) were utilized as cationic polyelectrolytes, and sodium carboxymethyl cellulose (CMCNa) was utilized as anionic polyelectrolyte for preparing PEC. Solution processable PEC (PDDA-CMCNa, PDMC-CMCNa and CS-CMCNa) with tunable ionic complexation degree (ICD) and compositions were prepared in the "acid protection-deprotection" method. FT-IR, element analysis, DSC, TGA and WAXD were utilized to characterize PEC solids, which were found to be non-crystalline and having no glass transition. Viscosity, zeta potential, DLS, FESEM, TEM and AFM were utilized to characterize PEC dispersions. It was found that PEC dispersions were composed of ionic crosslinked, negtively charged and needle/rod shaped PEC aggregate (PECA) nanoparticles. Furthermore, the self assembly behavior of PEC dispersion was studied, showing that tree-shaped fractal pattern ("fractal trees") formed during the evaporation of PEC dispersions. These PEC "fractal trees" are formed via the self assembly of PECA nanoparticles, and have a thickneess of 400-600nm and a fractal dimension of 1.75~1.81. The self assembly of PECA particles follows the diffusion limited aggregation model, and the shielding effect between PECA branches is a key issue for the pattern formation of "fractal trees". As a result, increasing of PEC concentration, solvent evaporation temperature, decreasing of PEC dispersion's pH, adding organics into PEC dispersion, and modifying the chemical structures of PEC all block the fractal self assembly process and the formation of "fractal trees".
     Three PEC membranes (HPECM) including PDDA-CMCNa, CS-CMCNa and PDMC-CMCNa were made by casting their dispersions (2 wt%) on polysulfone supporting membranes. These three HPECM were utilized in pervaproation dehydration of aqueous isopropanol, and they all show very high selectivity (water in permeate> 99.1 wt%) and ultra-high permeation flux. For example, the flux of PDMC-CMCNa HPECM0.46 (ICD=0.46) is as high as 4.2 kg/m2h in dehydrating 10 wt%water-isopropanol at 70℃. This flux is 4 and 5 times higher than that of CMCNa and commerical polyvinyl alochol (PVA) membranes, respectively. "Water channel" structures were proposed to explain HPECM's ultra high PV performance. Moreover, PDDA-CMCNa PEC0.27/PVA blend membrane were preparaed, and it (PEC:PVA=1:1) shows a flux of 1.35 kg/m2h in dehydrating 10 wt%water-isopropanol at 70℃, which is about one time higher than that of commerical PVA membranes.
     Two PEC nanocomposites, PDDA-CMCNa PEC/SiO2 and PDDA-CMCNa PEC/MWCNT, were prepared in in-situ ionic complexation method. FESEM, TEM and AFM show that SiO2 and MWCNT were finely dispersed in PEC matrix under a limit content of 5 wt%and 7 wt%, respectively. The mechanical strength, modulus, and elongation at break for PDDA-CMCNa PEC/MWCNT containing 7 wt%MWCNTs are 65 Mpa,2.8 Gpa,3.4%, which are 2.7,2.3 and 1.8 times of the pristine PEC respectively. The permeation fluxes of PDDA-CMCNa PEC/SiO2 and PDDA-CMCNa PEC/MWCNT membranes are 2.1 kg/m2h and 2.3 kg/m2h in dehydrating 10 wt%water-isopropanol at 70℃.
     PECA nanoparticles were utilized as novel building blocks for LbL self-assembly on different substrates such as quartz slids, polyacrylonitrile supporting membranes, and optical fibers. It was found that the film thickness growth speed of PEC multilayers is fast. For example, thickness growth of (PDDA-CMCNa PECA-/ PDDA-PSS PECA+)10 multilayer films is 200 nm/bilayer. The thickness growth rate of PEC multilayer films increases with increasing ionic complexation degree of PEC, increasing of salt concentration in dipping solution, and decreasing of dipping soloution's pH. The LbL assembly of PECA nanoparticles has found applications in fast prepration of free-standing LbL films (sacrifice layer free), pervaporation, and sensitive pH sensors (0.5 nm/pH).
引文
[1]赵修建,蔡克峰,新材料与现代文明,武汉:湖北教育出版社,2000。
    [2]何曼君,高分子物理,上海:复旦大学出版社,2005。
    [3]黄丽,聚合物复合材料,北京:中国轻工业出版社,2001。
    [4]Thunemann, A.F.; Muller, M.; Dautzenberg, H.; Joanny, J. F.; Lowen, H. Polyelectrolyte complexes, Adv. Polym. Sci.2004,166,113-171.
    [5]Tsuchida, E.; Abe, K. Interactions between macromolecules in solution and intermacromolecular complexes, Adv. Polym. Sci.1982,45,1-129.
    [6]Kabanov, A.V.; Kabanov, V.A. DNA complexes with polycations for the delivery of genetic material into cells, Bioconjugate Chem.1995,6,7-20.
    [7]Cooper, C.L.; Dubin, P.L.; Kayitmazer, A.B.; Turksen, S. Polyelectrolyte-protein complexes, Curr. Opin. Colloid. Interface. Sci.2005,10,52-78.
    [8]Lee, Y.; Kataoka, K. Biosignal-sensitive polyion complex micelles for the delivery of biopharmaceuticals, Soft Matter,2009,5,3810-3817.
    [9]Hartig, S.M.; Greene, R.R.; Dikov, M.M.; Prokop, A.; Davidson, J.M. Multifunctional nanoparticulate polyelectrolyte complexes, Pharm. Res.2007,24,2353-2369.
    [10]Kozlovskaya,V.; Kharlarmpieva, E.; Erel, I.; Sukhishvili, S.A. Multilayer-derived, ultrathin, stimuli-responsive hydrogels, Soft Matter 2009,5,4077-4087.
    [11]Tong, W.J.; Gao, C.Y.; Mohwald, H. Stable weak polyelectrolyte microcapsules with ph-responsive permeability, Macromolecules 2006,39,335-340.
    [12]Dragan, E.S.; Mihai, M.; Complex nanoparticles based on chitosan and ionic/nonionic strong polyanions:formation, stability, and application, ACS Appl. Mater. Interfaces 2009, 1,1231-1240.
    [13]Feng, X.H.; Pouw, K.; Leung, V.; Pelton, R. Adhesion of colloidal polyelectrolyte complexes to wet cellulose, Biomacromolecules 2007,8,2161-2166.
    [14]Sui, Z.J.; Jaber, J.A.; Schlenoff, J.B. Polyelectrolyte complexes with pH-tunable solubility, Macromolecules,2006,39,8145-8152.
    [15]Ming, J.; Li, M.; Xiang, M.L.; Zhou, H. Interpolymer complexation and miscibility enhancement by hydrogen bonding, Adv. Polym. Sci.1999,146,126-196.
    [16]Gregor, H.P.; Luttinger, L.B; Loebl, E.M. metal-polyelectrolyte complexes.1. the polyacrylic acid-copper complex, J. Phys. Chem.1955,59,34-39.
    [17]Thunemann, A.F. Polyelectrolyte-surfactant complexes, Prog. Polym. Sci.2002,27, 1473-1572.
    [18]Lowe, A.B.; McCormick, C.L. Synthesis and solution properties of zwitterionic polymers, Chem. Rev.2002,102,4177-4189.
    [19]Dobrynina, A.V.; Rubinstein, M. Theory of polyelectrolytes in solutions and at surfaces, Prog. Polym. Sci.2005,30,1049-1118.
    [20]Dobrynina, A.V. Effect of Counterion Condensation on Rigidity of Semiflexible Polyelectrolytes, Macromolecules 2006,39,9519-9527.
    [21]Kabanov, V.A.; Zezin, A.B.; Rogacheva, V.B.; Gulyaeva, Z.G.; Zansochova, M.F.; Joosten, J.G.H.; Brackman, J. Polyelectrolyte behavior of astramol poly(propyleneimine) dendrimers, Macromolecules 1998,31,5142-5144.
    [22]王松云,聚电解质在废物处理中的应用及合成,北京:科学出版社1983.
    [23]刘玉章,聚合物驱提高采收率技术,北京,石油工业出版社2006.
    [24]Klitzing, R.V.; Tieke, B. Polyelectrolyte membranes, Adv. Polym. Sci.2004,165,177-210.
    [25]周剑平,上官勇刚,吴强,郑强,聚电解质材料——(Ⅱ)工程应用研究进展,高分子材料科学与工程,2008,09,10-13.
    [26]Yu, S.H.; Colfen, F. Bio-inspired crystal morphogenesis by hydrophilic polymers, J. Mater. Chem.2004,14,2124-2147.
    [27]Yu, S.H.; Colfen, H.; Xu, A.W.; Dong, W.F. Complex Spherical BaCO3 superstructures self-assembled by a facile mineralization process under control of simple polyelectrolytes, Cryst. Growth Des.2004,4,33-37.
    [28]Forster, S.; Abetz, V.; Muller, A.H.E. Polyelectrolyte block copolymer micelles, Adv. Polym. Sci.2004,166,173-210.
    [29]Yu, S.H.; Antonietti, M.; Colfen, H.; Hartmann, J. Growth and self-assembly of BaCrO4 and BaSO4 nanofibers toward hierarchical and repetitive superstructures by polymer-controlled mineralization reactions, Nano Lett.2003,3,379-382.
    [30]Chelushkin, P.S.; Lysenko, E.A.; Bronich, T.K.; Eisenberg, A.; Kabanov, V.A.; Kabanov, A.V. Polyion complex nanomaterials from block polyelectrolyte micelles and linear polyelectrolytes of opposite charge:1. solution behavior, J. Phys. Chem. B.2007,111, 8419-8425.
    [31]Decher, G. Fuzzy nanoassemblies:toward layered polymeric multicomposites. Science 1997,227,1232-1237.
    [32]Michaels, A.S.; Miekka, R.G. Polycation-polyanion complexes:preparation and properties of poly-(vinylbenzyltrimethylammonium) poly-(styrenesulfonate), J. Phys. Chem.1961,65, 1765-1772.
    [33]Michaels, A.S. Polyelectrolyte complexes, Ind. Eng. Chem.1965,57,32-40.
    [34]Her, R.L. Multimayers of colloidal particles, J. Colloid Interface Sci.1966,21,569-594.
    [35]Sukhishvili, S.A.; Kharlampieva, E.; Izumrudov, V. Where polyelectrolyte multilayers and polyelectrolyte complexes meet, Macromolecules 2006,39,8873-8881.
    [36]Lysenko, E.A.; Bronich, T.K.; Slonkina, E.V.; Eisenberg, A.; Kabanov, V.A. Block ionomer complexes with polystyrene core-forming block in selective solvents of various polarities.2. Solution behavior and self-assembly in nonpolar solvents, Macromolecules 2002,35, 6344-6350.
    [37]Zintchenko, A.; Dautzenberg, H.; Tauer, K.; Khrenov, V. Polyelectrolyte complex formation with double hydrophilic block polyelectrolytes:effects of the amount and length of the neutral block, Langmuir 2002,18,1386-1393
    [38]Kabanov, V.A. Physicochemical basis and the prospects of using soluble interpolyelectrolyte complexes (review), Polym. Sci.1994,36,143-156.
    [39]Dautzenberg, H. Polyelectrolyte complex formation in highly aggregating systems.1. effect of salt:polyelectrolyte complex formation in the presence of NaCl, Macromolecules 1997, 30,7810-7815.
    [40]Thunemann, A.F; Ruppelt, D. Layered nanoarchitecture of a fluorescent polyelectrolyte complex, Langmuir,2000,16,3221-3226.
    [41]Kotz, J.; Kosmella, S.; Betiz, T. Self-assembled polyelectrolyte systems, Prog. Polym. Sci. 2001,26,1199-1232.
    [42]Yaroslavov, A.A. Rakhnyanskaya, A.A. Yaroslavova, E.G. Efimova, A.A.; Menger, F.M. Polyelectrolyte-coated liposomes:Stabilization of the interfacial complexes, Adv. Colloid Interface Sci.2008,142,43-52.
    [43]Gummel, J.; Cousin, F.; Boue, F. Counterions release from electrostatic complexes of polyelectrolytes and proteins of opposite charge:a direct measurement, J. Am. Chem. Soc. 2007,129,5806-5807.
    [44]Kokufuta, E.; Ogawa, K.; Doi, R.; Kikuchi, R.; Farinato, R.S. Geometrical characteristics of polyelectrolyte nanogel particles and their polyelectrolyte complexes studied by dynamic and static light scattering, J. Phys. Chem. B.2007,111,8634-8640.
    [45]Schlenoff, J.B.; Rmaile, A.H.; Bucur, C.B. Hydration contributions to association in polyelectrolyte multilayers and complexes:visualizing hydrophobicity, J. Am. Chem. Soc. 2008,130,13589-13597
    [46]Bohme, U.; Scheler, U. Hydrodynamic size and charge of polyelectrolyte complexes, J. Phys. Chem. B.2007,111,8348-8350.
    [47]Jeon, J.; Dobrynin, A.V. Molecular dynamics simulations of polyelectrolyte-polyampholyte complexes. Effect of solvent quality and salt concentration, J. Phys. Chem. B.2006,110, 24652-24665.
    [48]Miiller, M.; Kessler, B.S. Richter, S. Preparation of monomodal polyelectrolyte complex nanoparticles of pdadmac/poly(maleic acid-alt-r-methylstyrene) by consecutive centrifugation, Langmuir 2005,21,7044-7051.
    [49]Miiller, M.; Reihs, T.; Ouyang, W. Needlelike and spherical polyelectrolyte complex nanoparticles of poly(1-lysine) and copolymers of maleic acid, Langmuir 2005,21,465-469.
    [50]Schatz, C.; Domard, A.; Viton, C.; Pichot. C.; Delair, T. Versatile and efficient formation of colloids of biopolymer-based polyelectrolyte complexes, Biomacromolecules 2004,5, 1882-1892.
    [51]Ren, B.; Cheng, Z.; Tong, Z.; Liu, X.; Wang, C.T.; Zeng, F. Significant structure change in nonequimolar complexes of poly(ethylenimine) and octadecanoic acid induced by polymer backbone branching, Macromolecules 2006,39,6552-6557.
    [52]Kabanov, A.V.; Bronich, T. K.; Kabanov, V.A.; Yu, K.; Eisenberg, A. Soluble stoichiometric complexes from poly(n-ethyl-4-vinylpyridinium) cations and poly(ethyleneoxide)-block-polymethacrylate anions, Macromolecules 1996,29,6797-6802.
    [53]Zintchenko, A.; Dautzenberg, H.; Tauer K.; Khrenov, V. Polyelectrolyte complex formation with double hydrophilic block polyelectrolytes:effects of the amount and length of the neutral block, Langmuir 2002,18,1386-1393.
    [54]Thunemann, A.F. Poly(ethylene oxide)-b-poly(l-lysine) complexes with retinoic acid, Macromolecules 2000,33,5906-5911.
    [55]Thunemann, A.F. Beyermann, J. Polyethylenimine complexes with retinoic acid:structure, release profiles, and nanoparticles, Macromolecules 2001,34,6978-6885.
    [56]Shu, S.; Wang, X.; Zhang, X.; Zhang, X.J.; Wang, Z.; Li C. Disulfide cross-linked biodegradable polyelectrolyte nanoparticles for the oral delivery of protein drugs, New J. Chem.2009,33,1882-1887.
    [57]Silva, C.L.; Pereira, J.C.; Ramalho, A.; Pais, A.A.C.C.; Sous, J.J.S. Films based on chitosan polyelectrolyte complexes for skin drug delivery:Development and characterization, J. Membr. Sci.2008,320,268-279.
    [59]Harada, A.; Kataoka, K. Formation of Polyion complex micelles in an aqueous milieu from a pair of oppositely-charged block copolymers with poly(ethylene glycol) segments, Macromolecules 1996,28,5294-5299.
    [60]Gu, Z.; Yuan, Y.; He, J.; Zhang, M.; Ni, P. Facile approach for DNA encapsulation in functional polyion complex for triggered intracellular gene delivery:design, synthesis, and mechanism, Langmuir 2009,25,5199-5208.
    [61]Oishi, M.; Nagasaki,Y.; Itaka, K.; Nishiyama, N.; Kataoka, K. Lactosylated poly(ethylene glycol)-sirna conjugate through acid-labile a-thiopropionate linkage to construct pH-sensitive polyion complex micelles achieving enhanced gene silencing in hepatoma cells, J. Am. Chem. Soc.2005,127,1624-1625.
    [62]Oishi, M.; Kataoka, K.; Nagasaki, Y. pH-Responsive three-layered pegylated polyplex micelle based on a lactosylated abc triblock copolymer as a targetable and endosome-disruptive nonviral gene vector, Bioconjugate Chem.2006,17,677-688.
    [63]Kim, S.H.; Jeong, J.H.; Lee, S.H.; Kim, S.W.; Park, T.G LHRH receptor-mediated delivery of siRNA using polyelectrolyte complex micelles self-assembled from siRNA-PEG-LHRH conjugate and PEI, Bioconjugate Chem.2008,19,2156-2162.
    [64]Kim, S.H.; Jeong, J.H.; Lee, S.H.; Kim, S.W.; Park, T.G. Local and systemic delivery of VEGF siRNA using polyelectrolyte complex micelles for effective treatment of cancer, J. Control. Release 2008,129,107-116.
    [65]Al-Abd, A.M.; Lee, S.H.; Lee, S.H.; Cha, J.H.; Park, T.G.; Lee, S.J.; Kuh, H.J. Penetration and efficacy of VEGF siRNA using polyelectrolyte complex micelles in a human solid tumor model in-vitro, J. Control. Release 2009,137,130-135.
    [66]Kishimura, A.; Koide, A.; Osada, K.; Yamasaki, Y.; Kataoka, K. Encapsulation of myoglobin in pegylated polyion complex vesicles made from a pair of oppositely charged block ionomers:a physiologically available oxygen carrier, Angew. Chem. Int. Ed.2007,46, 6085-6088.
    [67]Lindhoud, S.; Vries, R.; Schweins, R.; Stuarta, M.A.C.; Norde, W. Salt-induced release of lipase from polyelectrolyte complex micelles, Soft Matter 2009,5,242-250.
    [68]Kim, S.H.; Jeong, J.H.; Mok, H.; Lee, S.H.; Kim,S.W.; Park, T.G. Folate receptor targeted delivery of polyelectrolyte complex micelles prepared from odn-peg-folate conjugate and cationic lipids, Biotechnol. Prog.2007,23,232-237
    [69]Yuan, X.F.; Harada, A.; Yamasaki, Y.; Kataoka, K. Stabilization of lysozyme-incorporated polyion complex micelles by the 6-end derivatization of poly(ethylene glycol)-poly(r,a-aspartic acid) block copolymers with hydrophobic groups, Langmuir 2005, 21,2668-2674.
    [70]Luo,Y.; Wang, A.; Yuan, J.F. Gao, Q. Preparation, characterization and drug release behavior of polyion complex micelles, Pharmaceutical Nanotechnology 2009,374,139-144.
    [71]Miyazaki, Y.; Tanaka, Y.; Yakou, S.; Takayam, K. In vivo drug release from hydrophilic dextran tablets capable of forming polyion complex, J. Control. Release 2006,114,47-52.
    [72]Lindhoud, S.; Norde, W.; Stuart, MA.C. Reversibility and relaxation behavior of polyelectrolyte complex micelle formation, J. Phys. Chem.2009,113,5431-5439.
    [73]Kataoka, K.; Togawa, H.; Harada, A.; Yasugi, K.; Matsumoto, T.; Katayose, S. Spontaneous formation of polyion complex micelles with narrow distribution from antisense oligonucleotide and cationic block copolymer in physiological saline, Macromolecules 1996, 29,8556-8557.
    [74]Harada, A.; Kataoka, K. Novel Polyion Complex micelles entrapping enzyme molecules in the core:preparation of narrowly-distributed micelles from lysozyme and poly(ethylene glycol)-poly(aspartic acid) block copolymer in aqueous medium, Macromolecules 1998,31, 288-294.
    [75]Kakizawa, Y.; Harada, A.; Kataoka, K. Environment-sensitive stabilization of core-shell structured polyion complex micelle by reversible cross-linking of the core through disulfide bond, J. Am. Chem. Soc.1999,121,11247-11248.
    [76]Oana, H.; Kishimura, A.; Yonehara, K.; Yamasaki,Y.; Washizu, M.; Kataoka, K.; Spontaneous formation of giant unilamellar vesicles from microdroplets of a polyion complex by thermally induced phase separation, Angew. Chem. Int. Ed.2009,48, 4613-4616.
    [77]Kishimura, A.; Liamsuwan, S.; Matsuda, H.; Dong, W.F.; Osada, K.; Yamasakia, Y.; Kataoka, K. pH-dependent permeability change and reversible structural transition of PEGylated polyion complex vesicles (PICsomes) in aqueous media, Soft Matter 2009,5, 529-532.
    [78]Oishi, M.; Nagatsugi, F.; Sasaki, S.; Nagasaki, Y.; Kataoka, K. Smart polyion complex micelles for targeted intracellular delivery of pegylated antisense oligonucleotides containing acid-labile linkages, ChemBioChem 2005,6,718-725.
    [79]Mihai, M.; Dragan, E.S. Chitosan based nonstoichiometric polyelectrolyte complexes as specialized flocculants, Colloids and Surfaces A:Physicochem. Eng. Aspects 2009,346, 39-46.
    [80]Nystrom, R.S.; Rosenholm, J.B.; Nurmi, K. Flocculation of semidilute calcite dispersions induced by anionic sodium polyacrylate-cationic starch complexes, Langmuir 2003,19, 3981-3986.
    [81]Mende, M.; Schwarz, S.; Petzold, G.; Jaeger, W. Destabilization of model silica dispersions by polyelectrolyte complex particles with different charge excess, hydrophobicity, and particle size, J. Appl. Polym. Sci.2007,103,3776-3784.
    [82]Gernandt, R.; Wagberg, L.; Gardlund, L.; Dautzenberg, H. Polyelectrolyte complexes for surface modification of wood Fibres I. Preparation and characterisation of complexes for dry and wet strength improvement of paper, Colloids and Surfaces A:Physicochem. Eng. Aspects 2003,213,15-25.
    [83]Gardlund, L.; Wagberg, L.; Gernandt, R. Polyelectrolyte complexes for surface modification of wood Fibres Ⅱ. Influence of complexes on wet and dry strength of paper, Colloids and Surfaces A:Physicochem. Eng. Aspects 2003,218,137-149.
    [84]Hubbe, M.A.; Moore, S.M.; Lee, S.Y. Effects of charge ratios and cationic polymer nature on polyelectrolyte complex deposition onto cellulose, Ind. Eng. Chem. Res.2005,44, 3068-3074.
    [85]Petzold, G.; Schwarz, S.; Buchhammer, HM.; Lunkwitz, K. A very effective method for the cationic modification of cellulose, Angew. Makromol Chem,1997,253,1-15.
    [86]Senger, B.; Voegel, J.C.; Schaaf, P. Irreversible adsorption of colloidal particles on solid substrates, Coll. Surf. A.2000,165,255-285.
    [87]Hsieh, C.Y.; Tsai, S.P.; Wang, D.M.; Chang, Y.N.; Hsyue-Jen, H. Preparation of g-PGA/chitosan composite tissue engineering matrices, Biomaterials 2005,26,5617-5623.
    [88]Hong, H.J.; Jin, S.E.; Park, J.S.; Ahn, W.S.; Kim, C.K.; Accelerated wound healing by smad3 antisense oligonucleotides-impregnated chitosan/alginate polyelectrolyte complex, Biomaterials 2008,29,4831-4837.
    [89]Toh, Y.C.; Ho, S.T.; Zhou, Y.; Hutmacher, D.W.; Yu, H. Application of a polyelectrolyte complex coacervation method to improve seeding efficiency of bone marrow stromal cells in a 3D culture system, Biomaterials 2005,26,4149-4160.
    [90]Miura, S.; Teramura, Y.; Iwata, H. Encapsulation of islets with ultra-thin polyion complex membrane through poly(ethylene glycol)-phospholipids anchored to cell membrane, Biomaterials 2006,27,5828-5835.
    [91]Wan, A.C.A.; Tai, B.C.U.; Schumacher, K.M.; Schumacher, A.; Chin, S.Y.; Ying, J.Y. Polyelectrolyte complex membranes for specific cell adhesion, Langmuir 2008,24, 2611-2617.
    [92]Janorkar, A.; Rajagopalan, P.; Yarmush, M.L.; Megeed, Z. The use of elastin-like polypeptide-polyelectrolyte complexes to control hepatocyte morphology and function in vitro, Biomaterials 2008,29,625-632.
    [93]Mazumder, M.A.J.; Shen, F.; Burke, N.A.D.; Potter, M.A.; Stover, H.D.H. Self-cross-linking polyelectrolyte complexes for therapeutic cell encapsulation, Biomacromolecules 2008,9,2292-2300.
    [94]Mao, J.S.; Cui, Y.L.; Wang, X. H.; Sun, Y.; Yin, Y. J.; Zhao, H.M.; Yao, K.D.; A preliminary study on chitosan and gelatin polyelectrolyte complex cytocompatibility by cell cycle and apoptosis analysis, Biomaterials 2004,25,3973-3981.
    [95]Nam, S.Y.; Lee, Y.M. Pervaporation and properties of chitosan-poly(acrylic acid) complex membranes, J. Membr. Sci.1997,135,161-171.
    [96]Shieh, J.J.; Huang, R.Y.H. Pervaporation with chitosan membranes, Ⅱ. Blend membranes of chitosan and polyacrylic acid and comparison of homogeneous and composite membrane based on polyelectrolyte complexs of chitosan and polyacrylic acid for the separation of ethanol-water mixtures, J. Membr. Sci.1997,127,185-202.
    [97]Moon, G.Y.; Pal, R.; Huang, R.Y.M. Novel two-ply composite membranes of chitosan and sodium alginate for the pervaporation dehydration of isopropanol and ethanol, J. Membr. Sci.,1999,156,17-27.
    [98]Richau, K.; Schwarz, H.H.; Apostel, R.; Paul, D. Dehydration of organics by pervaporation with polyelectrolyte complex membranes:some considerations concerning the separation mechanism, J. Membr. Sci.1996,113,31-41.
    [99]Schwarz, H.H.; Lukas, J.; Richau, K. Surface and permeability properties of membranes from polyelectrolyte complexes and polyelectrolyte surfactant complexes, J. Membr. Sci. 2003,218,1-9.
    [100]Lukas, J.; Richau, K.; Schwarz, H.H.; Paul, D. Surface characterization of polyelectrolyte complex membranes based on sodium cellulose sulfate and poly (dimethyldiallylammonium chloride) J. Membr. Sci.1995,106,281-288.
    [101]Rachipudi, P.S.; Kittur, A.A.; Choudhari, S.K.; Varghese, J.G.; Kariduraganavar, M.Y. Development of polyelectrolyte complexes of chitosan and phosphotungstic acid as pervaporation membranes for dehydration of isopropanol, Eur. Polym. J.2009,45, 3116-3126.
    [102]Assis, O.B.G.; Britto, D. Formed-in-place polyelectrolyte complex membranes for atrazine recovery from aqueous media, J. Polym. Environ.2008,16,192-197.
    [103]Devi, D.A.; Smitha, B.; Sridhar, S.; Jawalkar, S.; Aminabhavi, T.M. Novel sodium alginate/polyethyleneimine polyion complex membranes for pervaporation dehydration at the azeotropic composition of various alcohols, J. Chem. Technol. Biotechnol.2007,82, 993-1003.
    [104]Yoshizawa, T.; Shin-ya, Y.; Hong, K.J.; Kajiuchi, T. pH- and temperature-sensitive permeation through polyelectrolyte complex films composed of chitosan and polyalkyleneoxide-maleic acid copolymer, J. Membr. Sci.2004,241,347-354.
    [105]Li, M.M.; Yao, S.J. Preparation of polyelectrolyte complex membranes based on sodium cellulose sulfate and poly(dimethyldiallylammonium chloride) and its permeability properties J. Appl. Polym. Sci.2009,112,402-409.
    [106]Li, X.F.; Feyter, S.D.; Chen, D.; Aldea, S.; Vandezande, P.; Prez, F.D.; Vankelecom, I.F.J. Solvent-resistant nanofiltration membranes based on multilayered polyelectrolyte complexes, Chem. Mater.2008,20,3876-3883.
    [107]尹芳华,钟璟,现代分离技术,北京:化学工业出版社,2009。
    [108]Mulder, M. Basic Principles of Membrane Technology, Kluwer Academic Publishers, Dordrecht,1998.
    [109]时均,袁权,高从阶,膜技术手册,北京:化学工业出版社,2001。
    [110]徐又一,徐志康,高分子膜材料,北京:化学工业出版社,2005。
    [111]陈观文,徐平,分离膜的应用与工程案例,北京:国防工业出版社,2007。
    [112]Kober, P.A. Pervaporation, perstillation and percrystallisation. J. Am. Chem. Soc.1917,39: 944-948.
    [113]Wijmans, J.G.; Baker, R.W. The solution-diffusion model:a review, J. Membr. Sci.1995, 107,1-21.
    [114]Wijmans, J.G. Process performance=membrane properties+operating conditions, J. Membr. Sci.2003,220,1-3.
    [115]Qian, J.W.; Miao, Y.M.; Zhang, L.; Chen, H.L. Influence of viscosity slope coefficient of CA and its blends in dilute solutions on permeation flux of their films MeOH/MTBE mixtures, J. Membr. Sci.2002,203,167-173.
    [116]Bai, Y.X.; Qian, J.W.; Sun, H.B.; An, Q.F. Dilute solution behavior of partly hydrolyzed poly (vinyl acetate) in selective solvent mixtures and the pervaporation performance of their membranes in benzene/cyclohexane separation, J. Membr. Sci.2006,279,418-423.
    [117]Peng, F.B.; Hu, C.L.; Jiang, Z.Y. Novel ploy(vinyl alcohol)/carbon nanotube hybrid membranes for pervaporation separation of benzene/cyclohexane mixtures, J. Membr. Sci. 2007,297,236-242.
    [118]An, Q.F.; Qian, J.W.; Zhao, Q.; Gao, C.J. Polyacrylonitrile-block-poly(methyl acrylate) membranes Ⅱ:Swelling behavior and pervaporation performance for separating benzene/cyclohexane, J. Membr. Sci.,2008,313,60-67
    [119]Bai, Y.X.; Qian, J.W.; Zhao, Q.; Xu, Y.; Ye, S.R. Compatibility of ptet-60/ca blends and separation performance of their membranes for benzene/cyclohexane mixture by pervaporation, J. Appl. Polym. Sci.2006,102,2832-2838.
    [120]Yuan, W.H.; Lin, Y.S.; Yang, W.S. Molecular sieving mfi-type zeolite membranes for pervaporation separation of xylene isomers, J. Am. Chem. Soc.2004,126,4776-4777.
    [121]Qi, R.; Wang, Y.; Chen, J.; Li, J.D.; Zhu, S. Removing thiophenes from n-octane using PDMS-AgY zeolite mixed matrix membranes, J. Membr. Sci.2007,295,114-120.
    [122]Qi, R.; Wang, Y.; Li, J.D.; Zhao, C.; Zhu, S. Pervaporation separation of alkane/thiophene mixtures with PDMS membrane, J. Membr. Sci.2006,280,545-552.
    [123]孔瑛,卢福伟,吕宏凌,杨金荣,新型有机分离体系渗透汽化膜材料,现代化工2009,29,87-91.
    [124]Lin, L.; Zhang, Y.Z.; Kong, Y. Recent advances in sulfur removal from gasoline by pervaporation, Fuel 2009,88,1799-1809.
    [125]Pereira, C.C.; Ribeiro, C.P.; Nobrega, R.; Borges, C.P. Pervaporative recovery of volatile aroma compounds from fruit juices, J. Membr. Sci.2006,274,1-23.
    [126]Bai, Y.X.; Qian, J.W.; Zhao, Q.; Zhu, Z.H.; Zhang, P. Effect of formation conditions of poly(ethylene-co-vinyl acetate) membrane on the membrane physical structure and pervaporation properties in the recovery of ethyl acetate from aqueous solution, J. Membr. Sci.2007,299,45-53.
    [127]Bai, Y.X.; Qian, J.W.; An, Q.F.; Zhu, Z.H.; Zhang, P. Pervaporation characteristics of ethylene-vinyl acetate copolymer membranes with different composition for recovery of ethyl acetate from aqueous solution, J. Membr. Sci.2007,305,152-159.
    [128]Bai, Y.X.; Qian, J.W.; Zhao, Q.; Zhu, Z.H.; Yang, Y. HTPB-based polyurethane ureaurea membrane for recovery of aroma compounds from aqueous solution by pervaporation, J. Appl. Polym. Sci.2007,104,552-559.
    [129]由涛,陈龙祥,张庆文,张继民,洪厚胜,脱除废水中挥发性有机化合物的渗透汽化复合膜研究进展,化工进展,2009,28,1653-1656。
    [130]徐玲芳,相里粉娟,陈祎玮,金万勤,徐南平,渗透汽化在生物燃料乙醇制备中的研究进展,化工进展,2007,6,788-796。
    [131]Vane, L.M. A review of pervaporation for product recovery from biomass fermentation processes, J. Chem. Technol. Biotechnol,2005,80,603-629.
    [132]Shao, P.; Huang, R.Y.M. Polymeric membrane pervaporation, J. Membr. Sci.2007,287, 162-179.
    [133]Chapman, P.D.; Oliveira,T.; Livingston, A.G.; Li, K. Membranes for the dehydration of solvents by pervaporation, J. Membr. Sci.2008,318,5-37.
    [134]张庆武,曹蕊,陈翠仙,李继定,渗透汽化膜技术及其在有机溶剂脱水领域的应用,过滤与分离,2008,18,31-33。
    [135]Abetz, V.; Brinkmann, T.; Dijkstra, M.; Ebert, K.; Fritsch, D.; Ohlrogge, K. Developments in membrane research:from material via process design to industrial application, Adv. Eng. Mater.2006,8,328-358.
    [136]Zhang, W.; Li, G.; Fang, Y.; Wang, X.P. Maleic anhydride surface-modification of crosslinked chitosan membrane and its pervaporation performance, J. Membr. Sci.2007, 295,130-138.
    [137]Zhang, Q.G.; Liu, Q.L.; Zhu, A.M.; Xiong, Y.; Ren, L. Pervaporation performance of quaternized poly(vinyl alcohol) and its crosslinked membranes for the dehydration of ethanol, J. Membr. Sci.2009,343,53-61.
    [138]Guo, R.L.; Hu, C.L.; Pan, F.S.; Wu, H.; Jiang, Z.Y. PVA-GPTMS/TEOS hybrid pervaporation membrane for dehydration of ethylene glycol aqueous solution, J. Membr. Sci. 2006,281,454-462.
    [139]Liu, Y.L.; Hsu, C.Y.; Su, Y.H.; Lai, J.Y. Chitosan-silica complex membranes from sulfonic acid functionalized silica nanoparticles for pervaporation dehydration of ethanol-water solutions, Biomacromolecules 2005,6,368-373.
    [140]Wang, Z.B.; Ge, Q.Q.; Shao, J.; Yan, Y.S. High performance zeolite LTA pervaporation membranes on ceramic hollow fibers by dipcoating-wiping seed deposition, J. Am. Chem. Soc.2009,131,6910-6911.
    [141]Zhang, Q.G.; Liu, Q.L.; Jiang, Z.Y.; Chen, Y.; Anti-trade-off in dehydration of ethanol by novel PVA/APTEOS hybrid membranes, J. Membr. Sci.2007,287,237-245.
    [142]Rao, K.; Subha, S.; Sairam, M.; Mallikarjuna, N.N.; Aminabhavi, T.M. Blend membranes of chitosan and poly(vinyl alcohol) in pervaporation dehydration of isopropanol and tetrahydrofuran, J. Appl. Polym. Sci.,2007,103,1918-1926.
    [143]Svang-Ariyaskul, A.; Huang, R.Y.M.; Douglas, P.L.; Pal, R.; Feng, X.; Chen, P.; Liu, L. Blended chitosan and polyvinyl alcohol membranes for the pervaporation dehydration of isopropanol, J. Membr. Sci.2006,280,815-823.
    [144]Bowen, T.C.; Noble, R.D.; Falconer, J.L. Fundamentals and applications of pervaporation through zeolite membranes, J. Membr. Sci.2004,245,1-33.
    [145]Chen, Y.W.; Xiangli, F.J.; Jin, W.Q.; Xu, N.P. Organic-inorganic composite pervaporation membranes prepared by self-assembly of polyelectrolyte multilayers on macroporous ceramic supports, J. Membr. Sci.2007,302,78-86.
    [146]Smitha, B.; Sridhar, S.; Khan, A.A. Polyelectrolyte complexes of chitosan and poly(acrylic acid) as proton exchange membranes for fuel cells, Macromolecules,2004,37, 2233-2239.
    [147]Jin, H.T.; An, Q.F.; Zhao, Q.; Qian, J.W.; Zhu, M.H. Pervaporation dehydration of ethanol by using polyelectrolyte complex membranes based on poly-(N-ethyl-4-vinylpyridinium bromide) and sodium carboxymethyl cellulose, J. Membr. Sci.2010,347,183-192.
    [148]Whitesides, G.M.; Boncheva, M. Beyond molecules:Self-assembly of mesoscopic and macroscopic components, Proc. Natl. Acad. Sci.2002,99,4769-4774.
    [149]Whitesides, G.M.; Grzybowski, B. Self-assembly at all scales, Science 2002,295, 2418-2421.
    [150]沈家骢,超分子层状结构-组装与功能,北京:科学出版社,2004。
    [151]江明,大分子自组装,北京:科学出版社,2006。
    [152]Service, R.F. How far can we push chemical self-assembly, Science 2005,309,95-95.
    [153]Decher,G., Hong, J.D. Buildup of ultrathin multilayer films by a self-assembly process. Ⅱ. Consecutive adsorpt ion of anionic and cationic bipolar amphiphiles and polyelectrolytes on charged surfaces. Ber. Bunsen Ges. Phys. Chem.1991,95,1430-1433.
    [154]Decher, G.; Schlenoff, J.B. Multilayer thin films:Sequential assembly of nanocomposite materials, Wiley-VCH:Weinheim, Germany,2003.
    [155]Shiratori, S.S.; Rubner, M.F. pH-dependent thickness behavior of sequentially adsorbed layers of weak polyelectrolytes, Macromolecules 2000,33,4213-4219.
    [156]Boudou, T.; Crouzier, T.; Ren, K.; Blin, G.; Picart, C. Multiple functionalities of polyelectrolyte multilayer films:new biomedical applications, Adv. Mater.2010,22, 441-467.
    [157]Hiller, J.; Rubner, M.F. Reversible molecular memory and pH-switchable swelling transitions in polyelectrolyte multilayers, Macromolecules 2003,36,4078-4083.
    [158]Jomaa, H.W.; Schlenoff, J.B. Salt-induced polyelectrolyte interdiffusion in multilayered films:a neutron reflectivity study, Macromolecules 2005,38,8473-8480.
    [159]Schlenoff, J.B.; Dubas, S.T. Mechanism of polyelectrolyte multilayer growth:charge overcompensation and distribution, Macromolecules 2001,34,592-598.
    [160]Dubas, S.T.; Schlenoff, J.B. Factors controlling the growth of polyelectrolyte multilayers, Macromolecules 1999,32,8153-8160.
    [161]Izumrudov, V.; Kharlampieva, E.; Sukhishvili, S.A. Salt-induced multilayer growth: correlation with phase separation in solution, Macromolecules 2004,37,8400-8406.
    [162]Schoeler, B.; Poptoshev, E.; Caruso, F. Growth of Multilayer Films of fixed and variable charge density polyelectrolytes:effect of mutual charge and secondary interactions, Macromolecules 2003,36,5258-5264.
    [163]Picart, C.; Mutterer, J.; Richert, L.; Luo, Y.; Prestwich, G.D.; Schaaf, P; Voegel J. C.; Lavalle, P. Molecular basis for the explanation of the exponential growth of polyelectrolyte multilayers, Proc. Natl. Acad. Sci. U. S. A.,2002,99,12531.
    [164]Lavalle P.; Gergely C.; Cuisinier F.J.G.; Decher, G, Schaaf, P., Voegel, J.C., Picart, C.; Comparison of the structure of polyelectrolyte multilayer films exhibiting a linear and an exponential growth regime:An in situ atomic force microscopy study. Macromolecules, 2002,35,4458-4465.
    [165]Quinn, J.F.; Johnston, A.P.R.; Such, G.K.; Zelinkin, A.N.; Caruso, F. Next generation, sequentially assembled ultrathin films:beyond electrostatics, Chem. Soc. Rev.2007,36, 707-718.
    [166]Zhang, X.; Chen, H.; Zhang, H.Y. Layer-by-layer assembly:from conventional to unconventional methods, Chem. Commun.2007,1395-1405.
    [167]Hammond, P.T. Form and function in multilayer assembly:new applications at the nanoscale, Adv. Mater.2004,16,1271-1293.
    [168]Jaber, J.A. Schlenoff, J.B. Recent developments in the properties and applications of polyelectrolyte multilayers, Curr. Opin. Colloid. Interface. Sci.2006,11,324-329.
    [169]Srivastava, S.; Kotov, N.A. Composite layer-by-layer (LbL) assembly with inorganic nanoparticles and nanowires, Acc. Chem. Res.,2008,41,1831-1841.
    [170]Wang, Y.; Angelatos, A.S.; Caruso, F. Template synthesis of nanostructured materials via Layer-by-Layer assembly, Chem. Mater.2008,20,848-858.
    [171]Sukhishvili, S.A. Responsive polymer films and capsules via layer-by-layer assembly, Curr. Opin. Colloid. Interface. Sci.2005,10,37-44.
    [172]Kharlampieva, E.; Kozlovskaya, V.; Sukhishvili, S.A. Layer-by-Layer hydrogen-bonded polymer films:from fundamentals to applications, Adv. Mater.2009,21,3053-3065.
    [173]Peyratout, C.S.; Dahne, L. Tailor-made polyelectrolyte microcapsules:from multilayers to smart containers, Angew. Chem. Int. Ed.2004,43,3762-3783.
    [174]Zimnitsky, D.; Shevchenko, V.V.; Tsukruk, V.V. Perforated, freely suspended layer-by-layer nanoscale membranes, Langmuir 2008,24,5996-6006.
    [175]Jiang, C.Y.; Tsukruk, V.V. Freestanding nanostructures via Layer-by-Layer assembly, Adv. Mater.2006,1.8,829-840.
    [176]Tang, Z.Y.; Wang, Y.; Podsiadlo, P.; Kotov, N.A. Biomedical applications of Layer-by-Layer assembly:from biomimetics to tissue engineering, Adv. Mater.2006,18, 3203-3224.
    [177]Angelatos, A.S.; Katagiri, K.; Caruso, F. Bioinspired colloidal systems via layer-bylayer assembly, Soft Matter 2006,2,18-23.
    [178]Wang, L.Y.; Wang, Z.Q.; Zhang. X.; Shen, J.C.; Chi. L.F.; Fuchs, H. A new approach for the fabrication of an alternating multilayer film of poly(4-vinylpyridine) and poly(acrylic acid) based on hydrogen bonding. Macromol. Rapid Commun.1997,18,509-514.
    [179]Stockton, W.B.; Rubner, M.F. Molecular-level processing of conjugated polymers.4. layer-by-layer manipulation of polyaniline via hydrogen-bonding interactions, Macromolecules 1997,30,2717-2725.
    [180]Zeng, G.; Gao, J.; Chen, S.; Chen, H.; Wang, Z.Q.; Zhang, X. Combining hydrogen-bonding complexation in solution and hydrogen-bonding-directed layer-by-layer assembly for the controlled loading of a small organic molecule into multilayer films, Langmuir 2007,23,11631-11636.
    [181]Lutkenhaus, J.L.; Hammond, P.T. Electrochemically enabled polyelectrolyte multilayer devices:from fuel cells to sensors, Soft Matter 2007,3,804-816.
    [182]Sievers, T.K.; Vergin, A.; Mohwald, H.; Kurth, D.G. Thin films of cross-linked metallo-supramolecular coordination polyelectrolytes, Langmuir 2007,23,12179-12184.
    [183]Shimazaki, Y.; Mitsuishi, M.; Ito, S.; Yamamoto, M. Preparation of the layer-by-layer deposited ultrathin film based on the charge-transfer interaction, Langmuir 1997,13, 1385-1387.
    [184]Decher, G.; Lehr, B.; Lowack, K.; Lvov, Y.; Schmitt, New nanocomposite films for biosensors-layer-by-layer adsorbed films of polyelectrolytes, proteins or DNA, J. Biosens. Bioelectron.1994,9,677-684.
    [185]Such, G.K.; Quinn, J.F.; Quinn, A.; Tjipto, E.; Caruso, F. Assembly of ultrathin polymer multilayer films by click chemistry, J. Am. Chem. Soc.2006,128,9318-9319.
    [186]Kohli, P.; Taylor, K.K.; Harris, J.J.; Blanchard, G.J. Assembly of covalently-coupled disulfide multilayers on gold, J. Am. Chem. Soc.,1998,120,11962-11968.
    [187]Kong, W.; Wang, L. P.; Gao, M.L.; Zhou, H.; Zhang, X., Li, W.; Shen, J.C.; Immobilized bilayer glucose isomerase in porous trimethylamine polystyrene based on molecular deposition, Chem. Commun.1994,1297-1300.
    [188]Caruso, F.; Caruso, R.A.; Mohwald, H. Nanoengineering of inorganic and hybrid hollow spheres by colloidal templating, Science 1998,282,1111-1114.
    [189]Caruso, F.; Mohwald, H. Protein multilayer formation on colloids through a stepwise self-assembly technique, J. Am. Chem. Soc.1999,121,6039-6046.
    [190]Caruso, F.; Lichtenfeld, H.; Giersig, M.; Mohwald, H. Electrostatic self-assembly of silica nanoparticle-polyelectrolyte multilayers on polystyrene latex particles, J. Am. Chem. Soc. 1998,120,8523-8524.
    [191]Hu, L.; Mao, Z.W.; Gao, C.Y. Colloidal particles for cellular uptake and delivery, J. Mater. Chem.2009,19,3108-3115.
    [192]Shi, X.Y.; Shen, M.W.; Mohwald, H. Polyelectrolyte multilayer nanoreactors toward the synthesis of diverse nanostructured materials, Prog. Polym. Sci.2004,29,987-1019.
    [193]Alem, H.; Blondeau, F.; Glinel, K.; Champagne, S.; Jonas, A.M. Layer-by-Layer assembly of polyelectrolytes in nanopores, Macromolecules 2007,40,3366-3372.
    [194]Gao, Q.; Yang, X.R. Layer-by-layer electrodeposition of redox polymers and enzymes on screen-printed carbon electrodes for the preparation of reagentless biosensors, Chem. Commun.2004,30-31.
    [195]Wang, Q.; Hauser, P.J. New characterization of layer-by-layer self-assembly deposition of polyelectrolytes on cotton fabric, Cellulose,2009,16,1123-1131.
    [196]Wang, X.; Zhou, S.; Lai, Y.; Sun. J.; Shen, J.C. Layer-by-layer deposition of magnetic microgel films on plastic surfaces for the preparation of magnetic resonance visibility enhancing coatings, J. Mater. Chem.2010,20,555-560
    [197]Zhang, J.; Ma, Z.; Jiao, J.; Yin, H.; Yan, W.; Hagaman, E.W.; Yu, J.; Dai, S. Layer-by-Layer grafting of titanium phosphate onto mesoporous silica sba-15 surfaces: synthesis, characterization, and applications, Langmuir 2009,25,12541-12549.
    [198]Hoffmann, K.; Tieke, B. Layer-by-layer assembled membranes containing hexacyclen-hexaacetic acid and polyethyleneimine N-acetic acid and their ion selective permeation behaviour, J. Membr. Sci.2009,341,261-267.
    [199]Gui, Z.L.; Qian, J.W.; Du, B.Y.; Yin, M.J.; An, Q.F. Fabrication of free-standing polyelectrolyte multilayer films:A method using polysulfobetaine containing films as sacrificial layers, J. Colloid Interface Sci.2009,340,35-41.
    [200]Gui, Z.L.; Qian, J.W.; An, Q.F.; Zhao, Q. Jin, H.T.; Du, B.Y. Layer-by-layer self-assembly, controllable disintegration of polycarboxybetaine multilayers and preparation of free-standing films at physiological conditions, J. Mater. Chem.2010,20,1467-1474.
    [201]Ma, N.; Wang, Y.; Wang, B.; Wang, Z.Q.; Zhang, X. Interaction between block copolymer micelles and azobenzene-containing surfactants:from coassembly in water to layer-by-layer assembly at the interface, Langmuir 2007,23,2874-2878.
    [202]Qi, B.; Tong, X.; Zhao Y Layer-by-Layer assembly of two different polymer micelles with polycation and polyanion coronas, Macromolecules 2006,39,5714-5719.
    [203]Zhao, Y.; Bertrand, J.; Tong, X.; Zhao, Y. Photo-cross-linkable polymer micelles in hydrogen-bonding-built layer-by-layer films, Langmuir,2009,25,13151-13157.
    [204]Qi, B.; Tong, X.; Zhao, Y.; Zhao, Y. A micellar route to layer-by-layer assembly of hydrophobic functional polymers, Macromolecules 2008,41,3562-3570.
    [205]Liu, X.K.; Zhou, L.; Geng, W.; Sun, J.Q. Layer-by-layer-assembled multilayer films of polyelectrolyte-stabilized surfactant micelles for the incorporation of noncharged organic dyes, Langmuir,2008,24,12986-12989.
    [206]Nguyen, P.M.; Zacharia, N.S.; Verploegen, E.; Hammond, P.T. Extended release antibacterial layer-by-layer films incorporating linear-dendritic block copolymer micelles, Chem. Mater.2007,19,5524-5530.
    [207]Kim, B.S.; Park, S.W.; Hammond, P.T. Hydrogen-bonding layer-by-layer assembled biodegradable micelles as drug delivery vehicles from surfaces, ACS Nano 2008,2, 386-392.
    [208]Wei, H.; Ma, N.; Shi, F.; Wang, Z.Q.; Zhang, X. Artificial nacre by alternating preparation of layer-by-layer polymer films and CaCO3 strata, Chem. Mater.2007,19,1974-1978.
    [209]Shim, B.S.; Tang, Z.Y.; Morabito, M.P. Agarwal, A. Hong, H.P.; Kotov, N.A. Integration of conductivity, transparency, and mechanical strength into highly homogeneous layer-by-layer composites of single-walled carbon nanotubes for optoelectronics, Chem. Mater.2007,19,5467-5474.
    [210]Lee, B.; Kim, Y.; Lee, S.; Kim, Y.S.; Wang, D.; Cho, J. Layer-by-Layer growth of polymer/quantum dot composite multilayers by nucleophilic substitution in organic media, Angew. Chem. Int. Ed.2010,49,359-363
    [211]Caruso, F.; Niikura, K.; Furlong, D.N.; Okahata, Y. Assembly of alternating polyelectrolyte and protein multilayer films for immunosensing 2, Langmuir 1997,13, 3427-3433.
    [212]Beissenhirtz, M.K.; Scheller, F.W.; Stocklein, W.F.M.; Kurth, D.G.; Moehwald, H.; Lisdat, F. Electroactive cytochrome c multilayers within a polyelectrolyte assembly, Angew. Chem. Int. Ed.2004,43,4357-4360.
    [213]Ma, H.Y; Hu, N.F; Rusling, J.F. Electroactive myoglobin films grown layer-by-layer with poly(styrenesulfonate) on pyrolytic graphite electrodes, Langmuir 2000,16,4969-4975.
    [214]Liu, H.Y.; Hu, N.F. Comparative bioelectrochemical study of core-shell nanocluster films with ordinary layer-by-layer films containing heme proteins and CaCO3 nanoparticles, J. Phys. Chem. B.2005,109,10464-10473.
    [215]Zhou, X.C.; Huang, L.Q.; Li, S. Microgravimetric DNA sensor based on quartz crystal microbalance:comparison of oligonucleotide immobilization methods and the application in genetic diagnosis, Biosens. Bioelectron.2001,16,85-95.
    [216]Mugweru, A.; Wang, B.; Rusling, J.F. Voltammetric sensor for oxidized DNA using ultrathin films of osmium and ruthenium metallopolymers, Anal. Chem.2004,76, 5557-5563.
    [217]Krasemann, L.; Tieke, B. Ultrathin self-assembled polyelectrolyte membranes for pervaporation, J. Membr. Sci.1998,150,23-30.
    [218]Krasemann, L.; Toutianoush, A.; Tieke, B. Self-assembled polyelectrolyte multilayer membranes with highly improved pervaporation separation of ethanol/water mixtures, J. Membr. Sci.2001,181,221-228.
    [219]Sullivan, D.M.; Bruening, M.L. Ultrathin, cross-linked polyimide pervaporation membranes prepared from polyelectrolyte multilayers,2005, J. Membr. Sci.248,161-170.
    [220]Lin, D.; Chang, C.; Shaw, H.; Jeng, Y.; Cheng, L. Formation of multilayer poly(acrylicacid)/poly(vinylidene fluoride) composite membranes for pervaporation, J. Appl. Polym. Sci.2004,93,2266-2274.
    [221]Zhu, Z.; Feng, X.; Penlidis, A. Self-assembled nano-structured polyelectrolyte composite membranes for pervaporation, Mater. Sci. Eng. C.2006,26,1-8.
    [222]Zhu, Z.; Feng, X.; Penlidis, A. Layer-by-layer self-assembled polyelectrolyte membranes for solvent dehydration by pervaporation, Mater. Sci. Eng. C.2007,27,612-619.
    [223]Zhang G.J., Gu, W.L.; Ji, S.L.; Liu, Z.Z.; Peng, Y.L.; Wang, Z. Preparation of polyelectrolyte multilayer membranes by dynamic layer-by-layer process for pervaporation separation of alcohol/water mixtures, J. Membr. Sci.2006,280,727-733.
    [224]Zhang G.J., Gao, X.; Ji, S.L.; Liu, Z.Z. Electric field-enhanced assembly of polyelectrolyte composite membranes, J. Membr. Sci.2008,307,151-155.
    [225]Zhang G.J., Yan, H.L.; Ji, S.L.; Liu, Z.Z. Self-assembly of polyelectrolyte multilayer pervaporation membranes by a dynamic layer-by-layer technique on a hydrolyzed polyacrylonitrile ultrafiltration membrane, J. Membr. Sci.2007,292,1-8.
    [226]Zhang G.J., Song, X.; Ji, S.L.; Wang, N.X.; Liu, Z.Z. Self-assembly of inner skin hollow fiber polyelectrolyte multilayer membranes by a dynamic negative pressure layer-by-layer technique, J. Membr. Sci.2008,325,109-116.
    [227]Zhang G.J., Wang, N.X.; Song, X.; Ji, S.L.; Liu, Z.Z. Preparation of pilot-scale inner skin hollow fiber pervaporation membrane module:Effects of dynamic assembly conditions, J. Membr. Sci.2009,338,43-50.
    [228]Zhang, P.; Qian, J.W.; Yang, Y.; An, Q.F.; Liu, X.Q.; Gui, Z.L. Polyelectrolyte layer-by-layer self-assembly enhanced by electric field and their multilayer membranes for separating isopropanol-water mixtures, J. Membr. Sci.2008,320,73-77.
    [229]Zhang, P.; Qian, J.W.; An, Q.F.; Liu, X.Q.; Zhao, Q.; Jin, H.T. Surface morphology and pervaporation performance of electric field enhanced multilayer membranes, J. Membr. Sci. 2009,328,141-147.
    [230]Mamedov, A.A.; Kotov, N.A. Free-standing layer-by-layer assembled films of magnetite nanoparticles, Langmuir 2000,16,5530-5533.
    [231]Mamedov, A.A.; Kotov, N.A.; Prato, M.; Guldi, D.M.; Wicksted, J.P.; Andreas, H. Molecular design of strong single-wall carbon nanotube/polyelectrolyte multilayer composites, Nature Materials 2002,1,190-194.
    [232]Tang, Z.Y.; Kotov, N.A.; Magonov, S.; Ozturk, B. Nanostructured artificial nacre, Nature Materials 2003,2,413-418.
    [233]Shim, B.S.; Zhu, J.; Jan, E.; Critchley, K.; Ho, S.; Podsiadlo, P.; Sun, K.; Kotov, N.A. Multiparameter structural optimization of single-walled carbon nanotube composites: toward record strength, stiffness, and toughness, ACS Nano,2009,3,1711-1722
    [234]Podsiadlo, P.; Arruda, E.M.; Kheng, E.; Waas, A.M.; Lee, J.; Kotov, N.A. LBL assembled laminates with hierarchical organization from nano-to microscale:high-toughness nanomaterials and deformation imaging, ACS Nano.2009,3,1564-1572.
    [235]Seo, J.; Lutkenhaus, J.L.; Kim, J.; Hammond, P.T.; Char, K. Development of surface morphology in multilayered films prepared by layer-by-layer deposition using poly(acrylic acid) and hydrophobically modified poly(ethylene oxide), Macromolecules 2007,40, 4028-4036.
    [236]Seo, J.; Lutkenhaus, J.L.; Kim, J.; Hammond, P.T.; Char, K. Effect of the layer-by-layer (lbl) deposition method on the surface morphology and wetting behavior of hydrophobically modified peo and paa lbl films, Langmuir 2008,24,7995-8000.
    [237]Zimnitsky, D.; Shevchenko, V.V.; Tsukruk, V.V. Perforated, Freely suspended layer-by-layer nanoscale membranes, Langmuir 2008,24,5996-6006.
    [238]Jiang, C.Y.; Markutsya, S.; Shulha, H.; Tsukruk, V.V. Freely suspended gold nanoparticle arrays, Adv. Matter.2005,17,1669-1673.
    [239]Jiang, C.Y.; Tsukruk, V.V. Freestanding nanostructures via layer-by-layer assembly, Adv. Mater.2006,18,829-840.
    [240]Ono, S.S.; Decher, G. Preparation of ultrathin self-standing polyelectrolyte multilayer membranes at physiological conditions using ph-responsive film segments as sacrificial layers, Nano Lett.2006,6,592-598.
    [241]Dubas, S.T.; Farhat, T.R.; Schlenoff, J.B. Multiple membranes from "true" polyelectrolyte multilayers, J. Am. Chem. Soc.2001,123,5368-5369.
    [242]Ma, Y.; Sun, J.Q.; Shen, J.C. Ion-triggered exfoliation of layer-by-layer assembled poly(acrylic acid)/poly(allylamine hydrochloride) films from substrates:A facile way to prepare free-standing multilayer films, Chem. Mater.2007,19,5058-5062.
    [243]Lutkenhaus, J.L.; Hrabak, K.D.; McEnnis, K.; Hammond, P.T. Elastomeric flexible free-standing hydrogen-bonded nanoscale assemblies, J. Am. Chem. Soc.2005,127, 17228-17234.
    [244]Ball, P. (1999) The Self-Made Tapestry:Pattern Formation in Nature (Oxford Univ. Press, Oxford, U.K.).
    [245]Grzybowski, B.A.; Stone, H. A.; Whitesides, G.M. Dynamic self-assembly of magnetized,millimetre-siz ed objects rotating at a liquid-air interface, Nature 2000,405, 1033-1036.
    [246]尼科利斯,普里高津,非平衡系统的自组织,北京:科学出版社,1986。
    [247]Mandelbrot, B.B. The fractal geometry of nature, New York, Freeman,1982.
    [248]Mandelbrot, B.B. Fractals:Form, chance and dimension, Sanfrancisco, Freeman,1977.
    [249]孙霞,吴自勤,黄畯,分形原理及其应用,合肥:中国科学技术大学出版社,2003。
    [250]分形,张自忠,北京:清华大学出版社,2001。
    [251]Blumen, A.; Schnorer, H. Fractals and related hierarchical models in polymer science, Angew. Chem. Int. Ed.1990,29,113-125.
    [252]Zhai, X.M.; Wang, W.; Ma, Z.P.; Wen, X.J.; Yuan, F.; Tang, X.F.; He, B.L. Spontaneous and inductive thickenings of lamellar crystal monolayers of low molecular weight peo fractions on surface of solid substrates, Macromolecules 2005,38,1717-1722.
    [253]Ma, Z.P.; Zhang, G.L.; Zhai, X.M.; Jin, L.X.; Tang, X.F.; Yang, M.; Zheng, P.; Wang, W. Fractal crystal growth of poly(ethylene oxide) crystals from its amorphous monolayers, Polymer 2008,49,1629-1634.
    [254]Granasy, L.; Pusztai, T.; Borzsonyi, T.; Warren, J. A.; Douglas, J. F. A general mechanism of polycrystalline growth, Nature Mater.2004,3,645-650.
    [255]Wang, M.T.; Braun, H.G.; Meyer, E. Transition of crystal growth as a result of changing polymer states in ultrathin poly(ethylene oxide)/poly(methyl methacrylate) blend films with thickness of<3 nm, Macromolecules 2004,37,437-445.
    [256]Murr, M.M.; Morse, D.E.; Fractal intermediates in the self-assembly of silicatein filaments, Proc. Natl. Acad. Sci.2005,102,11657-15755.
    [257]Veerapur, R.S.; Gudasi, K.B.; Aminabhavi, T.M. Pervaporation dehydration of isopropanol using blend membranes of chitosan and hydroxypropyl cellulose, J. Membr. Sci.2007,304, 102-111.
    [258]Huglin, M.B.; Webster, L. Complex formation between poly(4-vinylpyridinium chloride) and poly[sodium(2-acrylamido-2-methyl propane sulfonate)] in dilute aqueous solution, Polymer 1996,37,1211-1215.
    [259]Zhang, G.Z.; Jiang, M.; Zhu, L.; Wu, C. Intermacromolecular complexation because of specific interactions 11. Ionic interaction complexation and its comparison with hydrogen-bonding complexation, Polymer 2001,42,151-159.
    [260]Brandrup, J., Immergut, E. H., Grulke, E. A., Polymer Handbook (Fourth Edition) 1999.
    [261]Maciel, J.S.; Silva, D.A.; Paula, H.C.B.; De Paula, R.C.M. Chitosan carboxymethyl cashew gum polyelectrolyte complex:synthesis and thermal stability, Eur.Polym. J.2005, 41,2726-2733.
    [262]蔡佳利,薄淑琴,程镕时,聚电解质溶液浓度区域的划分,高分子学报,2004,5,625-627。
    [263]Gui, Z.L.; Qian, J.W.; Li, X.K.; Zheng, B.Q.; An, Q.F. Study on chain deformation of polyacrylamides in solutions and its flocculation performance during the flocculation process, J. Appl. Polym. Sci.2010,117,2915-2922.
    [264]Witten, T.A.; Sander, L.M. Diffusion-limited aggregation, a kinetic critical phenomenon, Phys. Rev. Lett.1981,47,1400-1403.
    [265]Witten, T.A.; Sander, L.M. Diffusion-limited aggregation, Phys. Rev. B:Condens.1983, 27,5686-5697.
    [266]Liu, Y.L.; Yu, C.H.; Lee, K.R.; Lai, J.Y. Chitosan/poly(tetrafluoroethylene) composite membranes using in pervaporation dehydration processes, J. Membr. Sci.2007,287, 230-236.
    [267]Tu, C.Y.; Liu, Y.L.; Lee, K.R.; Lai, J.Y. Hydrophilic surface-grafted poly(tetrafluoroethylene) membranes using in pervaporation dehydration processes, J. Membr. Sci.2006,274,47-55.
    [268]Huang, S.H.; Hung, W.S.; Liaw, D.J.; Li, C.L.; Kao, S.T.; Wang, D.M.; Guzman, M.D.; Hu, C.C.; Jean. Y.C.; Lee, K.R.; Lai, J.Y. Investigation of Multilayer pervaporation membrane by positron annihilation spectroscopy, Macromolecules 2008,41,6438-6443.
    [269]Qiao, X.Y.; Chung, T.S.; Guo, W.F.; Matsurra, T.; Teoh, M.M. Dehydration of isopropanol and its comparison with dehydration of butanol isomers from thermodynamic and molecular aspects, J. Membr. Sci.2005,252,37-49.
    [270]Xiao, S.; Huang, R.Y.M.; Feng, X.S. Preparation and properties of trimesoyl chloride crosslinked poly(vinyl alcohol) membranes for pervaporation dehydration of isopropanol J. Membr. Sci.2006,286,245-254.
    [271]Verkerk, A.W.P.; Van Male, M.A.G.; Vorstman, J.T.F. Properties of high flux ceramic pervaporation membranes for dehydration of alcohol/water mixtures, Sep. Purif. Technol. 2001,22-23,689.
    [272]Hyder, M.N.; Huang, R.Y.M.; Chen, P. Effect of selective layer thickness on pervaporation of composite poly(vinyl alcohol)-poly(sulfone) membranes, J. Membr. Sci.2008,318, 387-396.
    [273]Adoor, S.G.; Sairam, M.; Manjeshwar, L.S.; Raju, K.V.S.N.; Aminabhavi, T.M. Sodium montmorillonite clay loaded novel mixed matrix membranes of poly(vinyl alcohol) for pervaporation dehydration of aqueous mixtures of isopropanol and 1,4-dioxane, J. Membr. Sci.2006,285,182-195.
    [274]Zhang, Q.G.; Liu, Q.L.; Chen, Y.; Chen, J.H. Dehydration of isopropanol by novel poly(vinyl alcohol)-silicone hybrid membranes, Ind. Eng. Chem. Res.2007,46,913-920.
    [275]Adoor, S.G.; Prathab, B.; Manjeshwar, L.S.; Aminabhavi, T.M. Mixed matrix membranes of sodium alginate and poly(vinyl alcohol) for pervaporation dehydration of isopropanol at different temperatures, Polymer 2007,48,5417-5430.
    [276]Kurkuri, M.D.; Toti, U.S.; Aminabhavi, T.M. Synthesis and characterization of blend membranes of sodium alginate and poly(vinyl alcohol) for the pervaporation separation of water-isopropanol mixtures, J. Appl. Polym. Sci.2002,86,3642-3651.
    [277]Naidu, B.; Sairam, M.; Raju, K.; Aminabhavi, T.M. Pervaporation separation of water+ isopropanol mixtures using novel nanocomposite membranes of poly(vinyl alcohol) and polyaniline, J. Membr. Sci.2005,260,142-155.
    [278]Schaefer, D.W.; Justice, R.S. How nano are nanocomposites? Macromolecules,2007,40, 8501-8517.
    [279]Moniruzzaman, M.; Winey, K.I. Polymer nanocomposites containing carbon nanotubes, Macromolecules 2006,39,5194-5205.
    [280]Mark, J.E. Some novel polymeric nanocomposites, Ace. Chem. Res.,2006,39,881-888.
    [281]Bokobza, L. Multiwall carbon nanotube elastomeric composites:A review, Polymer 2007, 48,4907-4920.
    [282]Zou, H.; Wu, S.S.; Shen, J. Polymer/silica nanocomposites:preparation, characterization, properties, and applications, Chem. Rev.2008,108,3893-3957
    [283]Kong, H.; Gao, C.; Yan, D.Y. Controlled functionalization of multiwalled carbon nanotubes by in situ atom transfer radical polymerization, J. Am. Chem. Soc.2004,126, 412-413.
    [284]Kong, H.; Gao, C.; Yan, D.Y. Functionalization of multiwalled carbon nanotubes by atom transfer radical polymerization and defunctionalization of the products, Macromolecules, 2004,37,4022-4030.
    [285]Chen, J.P.; Zhang, X.B.; Ge, Y.F.; Ye,Y.; Xia, M.S. Preparation and magnetic properties of iron oxide and carbide nanoparticles in carbon nanotube matrix, J. Alloys compd.2008,455, 5-9.
    [286]Jeong, W.; Kessler, M.R. Toughness Enhancement in ROMP Functionalized Carbon Nanotube/Polydicyclopentadiene Composites, Chem. Mater.2008,20,7060-7068.
    [287]Kariduraganavar, M.Y.; Kittur, A.A.; Kulkarni, S.S.; Ramesh, Development of novel pervaporation membranes for the separation of water-isopropanol mixtures using sodium alginate and NaY zeolite, J. Membr. Sci.2004,238,165-175.
    [288]Kittur, A.A.; Kulkarni, S.S.; Aralaguppi, M.I.; Kariduraganavar, M.Y. Preparation and characterization of novel pervaporation membranes for the separation of water-isopropanol mixtures using chitosan and NaY zeolite, J. Membr. Sci.2005,247,75-86.
    [289]Schuetz, P.; Caruso, F. Multilayer thin films based on polyelectrolyte-complex nanoparticles, Colloids Surf. A.2002 207,33-40.
    [290]Zhang, L.; Sun, J.Q. Layer-by-Layer codeposition of polyelectrolyte complexes and free polyelectrolytes for the fabrication of polymeric coatings, Macromolecules 2010,43, 2413-2420.
    [291]Zhang, L.; Sun, J.Q. Layer-by-layer deposition of polyelectrolyte complexes for the fabrication of foam coatings with high loading capacity, Chem. Commun.2009,26, 3901-3903.
    [292]Zhang, P.; Qian, J.W.; An, Q.F.; Du, B.Y.; Liu, X.Q.; Zhao, Q. Influences of solution property and charge density on the self-assembly behavior of water-insoluble polyelectrolyte sulfonated poly(sulphone) sodium salts, Langmuir 2008,24,2110-2117.
    [293]Cao, Z.; Du, B.Y. Fabrication and properties of thermosensitive organic/inorganic hybrid hydrogel thin films, Langmuir,2008,24,5543-5551.
    [294]Picart, C.; Mutterer, J.; Richert, L.; Luo, Y.; Prestwich, G. D.; Schaaf, P.; Voegel, J.C. Lavalle, P. Molecular basis for the explanation of the exponential growth of polyelectrolyte multilayers, Proc. Natl. Acad. Sci.2002,99,12535.
    [295]Zhang, P.; Qian, J.W.; Xuan, L.J.; Bai, Y.X.; An, Q.F.; Choi, P. Studies on relation between intrinsic viscosity of polyelectrolytes in solutions used for layer-by-layer self-assembly and their corresponding adsorption amounts in the resultant multilayer membranes, Chinese J. Polym. Sci.2009,27,297-306.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700