用户名: 密码: 验证码:
氢在合金熔体中的溶解度与定向凝固多孔铜锰合金的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
金属-气体共晶定向凝固是一种利用气体(主要是氢气)在金属固、液两相中的溶解度差制备规则多孔金属的新工艺,所制得的气孔定向排列在金属中,具有不同于传统多孔金属的性能特点,具有重要的潜在应用价值。从应用角度看,合金比纯金属的适用领域更广,然而以往的大量研究却发现,采用该工艺能够制备得到定向凝固多孔纯金属,却难以得到类似结构的合金。与纯金属相比,制备定向凝固多孔合金主要有两方面的难点,一方面是氢在合金中的溶解度实验数据比较缺乏,也没有可靠的计算模型,难以预测该工艺是否适用于选定合金,另一方面是缺少对合金凝固方式对气孔定向生长影响的研究。本论文针对上述两个方面展开研究。
     基于文献数据,总结了氢在不同金属熔体中溶解度的变化规律,提出氢与液态金属原子之间的电子相互作用是决定氢溶解度的主要因素。基于近自由电子理论,建立了计算氢在金属熔体中溶解度的模型。
     建立了氢在合金熔体中溶解度的热力学计算模型,改进了模型中多元合金熔体活度系数的计算方法,可以很好地计算氢在多种合金熔体中的溶解度。
     采用普通定向凝固工艺,成功制备了定向凝固多孔铜锰合金。实验发现,随着合金试样凝固高度的增加,合金中定向生长气孔的定向性逐渐变差以至最后中断,这种变化由合金的凝固方式决定。进一步发现,当胞晶臂和柱状枝晶一次臂间距远小于定向生长气孔孔径时,以胞状和柱状枝晶方式凝固也可以得到定向生长气孔,而如果变为等轴枝晶方式凝固,则无法得到定向生长气孔。
     通过数值模拟,发现随凝固进行,铜锰合金的凝固速度和固-液界面前沿温度梯度都迅速减小,但温度梯度与凝固速度的比值基本保持不变。进一步研究发现,铜锰合金凝固初期为快速胞状凝固。随凝固的进行,合金凝固方式从高速胞状凝固转变为柱状枝晶凝固以及等轴枝晶凝固。通过提高铸型温度和熔体初始温度,可以缩小等轴枝晶凝固的范围,扩大定向生长气孔的区域。实验结果与数值模拟结果相吻合。
Directional solidification of metal-gas eutectic, which is based on the gap of gas (mainly hydrogen) solubility between liquid and solid metals, is a novel process for fabricating regular porous metals with pores aligned in solidification direction. Because of its special property characteristics to that of conventional porous metals, this kind of porous metal has important potential applications. It’s well known that alloys have more application potentials than pure metals. Howerver, it was found in many researches that pure metals with oriented pore structure could be produced successfully by this process, but alloys with similar pore structure could not be made. Comparing with pure metals, two critical difficulties exist in fabrication of directional solidification of porous alloys. One is that there exist neither abundantly documented results nor reliable calculation models for hydrogen solubility of alloys. Therefore, it is difficult to estimate whether an alloy is suitable for this process. The other is that the influence of solidification mode of alloys on growth of oriented pores has not been researched extensively. This thesis will be concentrated on these two aspects.
     Variation of hydrogen solubility in different molten metals was summarized based on documented results. It was found that the electron interaction between hydrogen and the molten metal is the most major factor in determining hydrogen solubility in molten metals. According to the nearly-free-electron theory, a model was proposed for calculating hydrogen solubility in molten metals.
     Based on an improved method for estimating activity coefficient of multi-component molten alloys, a thermodynamic model was proposed for calculating hydrogen solubility in molten alloys. Calculated results show good agreements with documented experimental results.
     Directionally solidified porous Cu-Mn alloy was fabricated successfully by common directional solidification method. It was found that with the increasing of solidification height, oriented pores gradually become irregularly aligned and finally interrupted, which was determined by the solidification mode of the Cu-Mn alloy. Furthermore, it was found that under cellular and columnar dendritic solidification mode, oriented pore structure could also be formed if the cellular and primary dendritic arm spacings are much smaller than the pore diameter. In contrast, when the solidification mode transforms to equiaxed dendritic, no oriented pore structure could be formed.
     By numerical simulation, it was found that along with the increasing of solidification height, both solidification velocity and temperature gradient at the solid-liquid interface decrease quickly but their ratio changes little. Furthermore, it was noted that it is a rapid cellular solidification at the beginning of solidification stage, and along with the solidification, the solidification mode transforms from rapid cellular solidification to columnar dendritic solidification and finally equiaxed dendritic solidification. Through increasing the mold preheating temperature and melt pouring temperature, the range of equiaxed dendrite could be decreased and the region of oriented pore structure could be extended, which coincides with experimental results.
引文
[1]切尔涅茄.黄良余,严名山,译.有色金属及其合金中的气体.北京:冶金工业出版社, 1989: 54-82,112-194.
    [2]李言祥,吴爱萍.材料加工原理.北京:清华大学出版社, 2005: 186-193.
    [3]颂华.氢脆及防治方法.国外导弹技术, 1981, (1): 48-70.
    [4]斯克柳耶夫.陈洵,曾祖良,张同和,译.大型锻件中的氢和白点.北京:机械工业出版社, 1966.
    [5] Paton N.郑月秋,译.钛合金的低温氢脆.稀有金属材料与工程, 1986, (4): 71-74.
    [6]杨志康.钢的氢脆.化工炼油机械, 1984, 13(5): 5-14.
    [7]林肇琦.铝合金的氢脆问题.国外舰船技术(材料类), 1982, (6): 1-11.
    [8] Lakomskij V I. Variation of Hydrogen Solubility in Metals at Their Melting Points. Metally, 1992, (2): 187-190.(in Russian)
    [9]王肇经.铸造铝合金中的气体和非金属夹杂物.北京:兵器工业出版社, 1989.
    [10] Wiswall R. Hydrogen Storage in Metals. // Alefeld G, Volkl J, eds. Hydrogen in Metals II. New York: Springer-Verlag, 1978: 201-242.
    [11] Lim K L, Kazemian H, Yaakob Z, et al. Solid-State Materials and Methods for Hydrogen Storage: A Critical Review. Chemical Engineering and Technology, 2010, 33(2): 213-226.
    [12] Sakintuna B, Lamari-Darkrim F, Hirscher M. Metal Hydride Materials for Solid Hydrogen Storage: A Review. International Journal of Hydrogen Energy, 2007, 32(9): 1121-1140.
    [13]韩明臣.钛合金的热氢处理.宇航材料工艺, 1999, (1): 23- 27.
    [14]侯红亮,李志强,王亚军,等.钛合金热氢处理技术及其应用前景.中国有色金属学报, 2003, 13(3): 533- 549.
    [15] Froes F H, Senkov O N, Qazi J I. Hydrogen as a Temporary Alloying Element in Titanium Alloys: Thermohydrogen Processing. International Materials Reviews, 2004, 49(3-4): 227-245.
    [16] Shapovalov V I, Karpov V Y. Phenomenon of Anomalous Plastic Self-Deformation during Thermal Cycling of Fe-H alloys. Doklady Akademii Nauk Ukrainskij SSR, 1981, (7): 90-94.(in Russian)
    [17] Shapovalov V I. Hydrogen as an Alloying Element. Metal Science and Heat Treatment, 1985, 27(7-8): 572-577.
    [18] San-Martin A, Manchester F. The Fe-H (Iron-Hydrogen) System. Journal of Phase Equilibria, 1990, 11(2): 173-184.
    [19] Shapovalov V I. About Quasi-Liquid Spontaneous Spontaneous Deformation in Iron-Hydrogen System. // Baranowski B, Zaginaichenko S Y, Schur D V, Skorokhod V V, Veziroglu A, eds. Carbon Nanomaterials in Clean Energy Hydrogen Systems. Dordrecht: Springer, 2009: 369-373.
    [20] Shapovalov V I. Method and Apparatus for Manufacturing Porous Articles: WO, WO92/19400. 1992-12-11.
    [21] Shapovalov V I. Method for Manufacturing Porous Articles: US. 5181549. 1993-01-26.
    [22] Shapovalov V I. Structure Formation Behaviour of Alloys during Gas-Eutectic Transformation and Prospects of the Use of Hydrogen in Alloying.//Lavernia E J, Gungor M N, eds. Microstructure Design by Solidification Processing. Warrendale: Minerals, Metals and Materials Society (TMS), 1992: 207-219.
    [23] Shapovalov V I. Porous Metals. MRS Bulletin, 1994, 19(4): 24-29.
    [24] Shapovalov V I. Cast Porous Alloys: Their Production, Structure, Properties and Applications. Metal and Casting of Ukraine, 1995, 95(2): 2-9.
    [25] Shapovalov V I. Prospects of the Application of Hydrogen as an Alloying Element. Materials Science, 1995, 30(4): 419-423.
    [26] Shapovalov V I. Prospects of Employing Hydrogen as an Alloying Element. Fiziko-Khimicheskaya Mekhanika Materialov, 1994, 30(4): 24-30. (in Russian)
    [27] Shapovalov V I. Formation of Ordered Gas-Solid Structures via Solidification in Metal-Hydrogen Systems// Daniel S S, Donald S S, Anthony G E, Haydn N G W, eds. Materials Research Society Symposium Proceedings. Warrendale: MRS, 1998: 281-290.
    [28] Nakajima H, Hyun S K, Ohashi K, et al. Fabrication of Porous Copper by Unidirectional Solidification under Hydrogen and Its Properties. Colloids and Surfaces A, 2001, 179(2-3): 209-214.
    [29] Banhart J. Manufacture, Characterisation and Application of Cellular Metals and Metal Foams. Progress in Materials Science, 2001, 46(6): 559-632.
    [30] Nakajima H. Fabrication, Properties and Application of Porous Metals with Directional Pores. Progress in Materials Science, 2007, 52(7): 1091-1173.
    [31] Boiko L V. Use of Hydrogen for the Production of Materials with Regulated Porosity. Materials Science, 2000, 36(4): 506-512.
    [32] Shapovalov V I. Syntheses, Structure, Properties and Prospective Application of Gas-Eutectic Porous Materials. 2005. // Association for Iron and Steel Technology, eds. Proceedings from the Materials Science & Technology 2005 Conference. Pittsburgh: Association for Iron and Steel Technology, 2005: 3-11.
    [33] Li Y, Zhang H, Liu Y. Directional Solidification of Metal-Gas Eutectics for Fabrication of Aligned Porous Metals.// Lefebvre L P, Banhart J, Dunand D C, eds. Proceedings of MetForm2007. Montreal: DEStech Publications, 2008: 209-212.
    [34] Shapovalov V I, Boyko L. Gasar - A New Class of Porous Materials. Advanced Engineering Materials, 2004, 6(6): 407- 410.
    [35]李言祥,刘源,张华伟. GASAR和Gasarite研究进展.特种铸造及有色合金, 2004, (1): 9-11.
    [36] Drenchev L, Sobczak J, Malinov S, et al. Gasars: A Class of Metallic Materials with Ordered Porosity. Materials Science and Technology, 2006, 22(10): 1135-1147.
    [37]李言祥,周荣.定向凝固金属-气体共晶的研究进展.特种铸造及有色合金, 2008, (S1): 13- 17.
    [38]玄丞均,池田輝之,中嶋英雄.高性能燃料電池?電極のための先進多孔質金属の開発[EB/OL]. 2002. http://www.mat.eng.osaka-u.ac.jp/coe21/edu/pdf/29.pdf.
    [39]王立.不锈钢-铜热沉是新的发展方向.航天器环境工程, 2007, 24(5): 331-335.
    [40] Li Y X, Liu Y, Zhang H W. On the Solidification of Metal-Gas Eutectics. //Jones H, eds. Proceedings of the 5th Decennial International Conference on Solidification Processing. Sheffield: The Department of Engineering Materials, the University of Sheffield, 2007: 576-581.
    [41] Kashihara M, Yonetani H, Kobi T, et al. Fabrication of Lotus-type Porous Carbon Steel by Unidirectional Solidificaion in Nitrogen Atmosphere. //Nakajima H, Kanetake N, eds. Proceedings of MetFoam2005. Sendai: The Japan Institute of Metals, 2006: 215-218.
    [42] Kashihara M, Hyun S K, Yonetani H, et al. Fabrication of Lotus-Type Porous Carbon Steel by Unidirectional Solidification in Nitrogen Atmosphere. Scripta Materialia, 2006, 54(4): 509-512.
    [43]樫原一,米谷周,小尾孝宏,等.窒素ガスを用いた一方向凝固によるロータス型ポーラス炭素鋼の作製と機械的性質.鉄と鋼, 2008, 94(1): 30-34.
    [44] Kashihara M, Yonetani H, Suzuki S, et al. Fabrication of Lotus-Type Porous Carbon-Steel by Continuous Casting Technique in Nitrogen Atmosphere. //Lefebvre L P, Banhart J, Dunand D C, eds. Proceedings of MetForm2007. Montreal: DEStech Publications, 2008: 201-204.
    [45] Kujime T, Hyun S-K, Nakajima H. Fabrication of Lotus-Type Porous Carbon Steel by the Continuous Zone Melting Method and Its Mechanical Properties. Metallurgical and Materials Transactions A, 2006, 37(2): 393-398.
    [46] Kashihara M, Yonetani H, Kobi T, et al. Fabrication of Lotus-Type Porous Carbon Steel via Continuous Zone Melting and Its Mechanical Properties. Materials Science and Engineering A, 2009, 524(1-2): 112-118.
    [47] Ikeda T, Tsukamoto M, Nakajima H. Fabrication of Lotus-Type Porous Stainless Steel by Unidirectional Solidification under Hydrogen Atmosphere. Materials Transactions, 2002, 43(11): 2678-2684.
    [48] Ikeda T, Aoki T, Nakajima H. Fabrication of Lotus-Type Porous Stainless Steel by Continuous Zone Melting Technique and Mechanical Property. Metallurgical and Materials Transactions A, 2005, 36 A(1): 77- 86.
    [49] Alvarez K, Sato K, Hyun S K, et al. Fabrication and Properties of Lotus-Type Porous Nickel-free Stainless Steel for Biomedical Applications. Materials Science and Engineering C, 2008, 28(1): 44-50.
    [50] Ide T, Tane M, Hyun S K, et al. Fabrication of Lotus-type Porous Ni3Al by Unidirectional Solidification.//Nakajima H, Kanetake N, eds. Proceedings of MetFoam2005. Sendai: The Japan Institute of Metals, 2006: 229-232.
    [51] Ide T, Tane M, Hyun S K, et al. Fabrication of Lotus-Type Porous Ni3Al with and without Boron. Materials Transactions, 2006, 47(9): 2116-2119.
    [52] Sugiyama M, Hyun S K, Tane M, et al. Fabricaion of Lotus-type Potous NiTi Shape Memory Alloys. //Nakajima H, Kanetake N, eds. Proceedings of MetFoam2005. Sendai: The Japan Institute of Metals, 2006: 233-236.
    [53] Sugiyama M, Hyun S K, Tane M, et al. Fabrication of Lotus-Type Porous NiTi Shape Memory Alloys Using the Continuous Zone Melting Method and Tensile Property. High Temperature Materials and Processes, 2007, 26(4): 297-301.
    [54] Nakano T, Tachibana T, Hagihara K, et al. Fabrication and Plastic Deformation Behavior of Lamellar Ti-Rich TiAl Crystals with Lotus-Type Aligned pores. //Lefebvre L P, Banhart J, Dunand D C, eds. Proceedings of MetForm2007. Montreal: DEStech Publications, 2008: 213-216.
    [55]张华伟,李言祥,刘源.氢在Gasar工艺常用纯金属中的溶解度.金属学报, 2007, 43(2): 113-118.
    [56]张华伟,李言祥,刘源. Al-H系定向凝固制备多孔Al.金属学报, 2007, 43(1): 16-11.
    [57]张华伟.金属-气体共晶定向凝固的研究[博士学位论文].北京:清华大学机械工程系, 2007.
    [58]张华伟,李言祥,刘源. Gasar工艺下难以制得藕状多孔Al的原因分析.//中国材料研究学会,编. 2006年材料科学与工程新进展——“2006北京国际材料周”论文集.北京:中国材料研究学会, 2006: 572-576.
    [59] Liu Y, Li Y X. Theoretical Analysis of Bubble Nucleation in GASAR Materials. Transactions of Nonferrous Metals Society of China, 2003, 13(4): 830-834.
    [60]张华伟,李言祥.金属熔体中气泡形核的理论分析.物理学报, 2007, 56(8): 4864-4871.
    [61]刘源,李言祥,张华伟,等.藕状规则多孔结构形成的压力条件和气孔尺寸的演变规律.金属学报, 2005, 41(8): 886-890.
    [62]张华伟,李言祥,刘源.固/气共晶定向凝固中的工艺判据.金属学报, 2007, 43(6): 589- 594.
    [63] Li Y X, Liu Y, Zhang H W, et al. Effects of Processing Condition on Structure of Regular Porous Metals Fabricated by Directional Solidification// Nakajima H, Kanetake N, eds. Proceedings of MetFoam2005. Sendai: The Japan Institute of Metals, 2006: 237-240.
    [64] Liu Y, Li Y X, Zhang H W, et al. Evolution of Pore Size Distribution and Mean Pore Size in Lotus-Type Porous Magnesium Fabricated with GASAR Process. Journal of Materials Science and Technology, 2006, 22(3): 306-310.
    [65]张华伟,李言祥,刘源. Gasar工艺获得均匀藕状多孔结构的气压选择.金属学报, 2006, 42(11): 1171-1176.
    [66] Wan J, Li Y X, Liu Y. Spatial Distribution of Pores in Lotus-Type Porous Metal. Journal of Materials Science, 2007, 42(15): 6446-6452.
    [67]万疆,李言祥,刘源.气压对定向凝固藕状多孔镁的气孔分布影响.中国有色金属学报, 2007, 17(2): 200-206.
    [68] Liu Y, Li Y X. A Theoretical Study of Gasarite Eutectic Growth. Scripta Materialia, 2003, 49(5): 379-386.
    [69]刘源.金属气体共晶定向凝固制备藕状多孔金属基础研究[博士后研究报告].北京:清华大学, 2004.
    [70] Liu Y, Li Y X, Wan J, et al. Evaluation of Porosity in Lotus-Type Porous Magnesium Fabricated by Metal/Gas Eutectic Unidirectional Solidification. Materials Science and Engineering A, 2005, 402(1-2): 47-54.
    [71] Liu Y, Li Y X, Wan J, et al. Some Theoretical Problems in Metal-Gas Eutectic Unidirectional Growth. //Nakajima H, Kanetake N, eds. Proceedings of MetFoam2005. Sendai: The Japan Institute of Metals, 2006: 241-246.
    [72] Liu Y, Li Y X, Wan J, et al. Metal-Gas Eutectic Growth during Unidirectional Solidification. Metallurgical and Materials Transactions A, 2006, 37(9): 2871-2878
    [73]刘源,李言祥,万疆,等.金属-气体共晶定向生长的理论分析.//中国材料研究学会,编.2006年材料科学与工程新进展——“2006北京国际材料周”论文集.北京:中国材料研究学会, 2006: 588-596.
    [74]王雪.固-气共晶二维定向凝固制备放射状规则多孔金属[博士学位论文].北京:清华大学, 2008.
    [75]王雪,李言祥,刘源.用金属/气体共晶二维定向凝固法制备放射状规则多孔Mg.金属学报, 2006, 42(10): 1075-1080.
    [76]王雪,李言祥,刘源.放射状规则多孔金属的孔分布结构.//中国材料研究学会,编. 2006年材料科学与工程新进展——“2006北京国际材料周”论文集.北京:中国材料研究学会, 2006: 511-516.
    [77] Wang X, Li Y X, Liu Y. Structural Features in Radial-Type Porous Magnesium Fabricated by Radial Solidification. Materials Science and Engineering A, 2007, 444(1-2): 306- 313.
    [78]王雪,李言祥,刘源.金属/气体共晶二维定向凝固放射状多孔Mg的结构特征.金属学报, 2007, 43(1): 6-10.
    [79]王雪,李言祥,刘源.熔体流动对Mg-H共晶二维定向凝固的影响.金属学报, 2008, 44(9): 1057-1062.
    [80] Wang X, Li Y X, Liu Y. Bidirectional Solidification of Radial-Type Porous Magnesium. International Journal of Cast Metals Research, 2009, 22(1-4): 200-203.
    [81] Fukai Y. The Metal-Hydrogen System. 2nd ed. Berlin: Springer, 2005.
    [82] Cotterill P. The Hydrogen Embrittlement of Metals. Progress in Materials Science, 1961, 9(4): 205-250, IN201-IN202, 251-266, IN203-IN204, 267-301.
    [83] Smith D P. Hydrogen in Metals. Chicago: the University of Chicago Press, 1948.
    [84] Sieverts A, Krumbhaar W.über die L?slichkeit von Gasen in Metallen und Legierungen. Berichte der Deutschen Chemischen Gesellschaft, 1910, 43(1): 893-900.(in German)
    [85] Sieverts A. Die L?slichkeit von Wasserstoff in Cu, Fe und Ni Z. Physik. Chemie, 1911, 77: 591-613. (in German)
    [86] Sieverts A. The Absorption of Gases by Metals. Metallurgist. Supplement to Engineer, 1929, 29: 168-172.
    [87] Sieverts A, Moritz H. Manganese and Hydrogen. Zeitschrift fur Physikalische Chemie. Abteilung A . Chemische, 1937, 180: 249- 263. (in German)
    [88]墨尔尼克.刘崇嗣,译.金属中气体元素的测定.北京:冶金工业出版社, 1987.
    [89]张林.铝液含氢量测定方法的现状.理化检验(化学分册), 1995, 31(2): 53-55.
    [90]王蓬,王海舟.金属中氢的分析技术进展.冶金分析, 2007, 27(3): 37-44.
    [91]瓦谢尔曼.张中豪,金钦漧,译.金属中气体的测定.上海:上海科学技术出版社, 1981.
    [92]陈永定,余新昌.金属和合金中的氢.北京:冶金工业出版社, 1988: 1-116.
    [93] Busch T, Dodd R A. Solubility of Hydrogen and Nitrogen in Liquid Alloys of Iron, Nickel, and Cobalt. Transactions of the Metallurgical Society of AIME, 1960, 218(3): 488-490.
    [94]杨维琛.氢在液态铁、镍、铁-铜及铁-铜-镍合金中溶解度.金属学报, 1964, 7(1): 1-11.
    [95] Weinstein M, Elliott J F. Solubility of Hydrogen in liquid iron alloys. Transactions of the Metallurgical Society of AIME, 1963, 227(2): 382-393.
    [96] Bagshaw T, Mitchell A. Solubility of Hydrogen in Some Liquid Alloys of Nickel. Journal of the Iron and Steel Institute, 1966, 204(2): 87-90.
    [97] Jones F G, Pehlke R D. Solubility of Hydrogen in Solid Ni-Co and Ni-Cu Alloys. Metallurgical and Materials Transactions B, 1971, 2(9): 2655-2663.
    [98] Popovic Z D, Piercy G R. Measurement of the Solubility of Hydrogen in Solid Magnesium. Metallurgical and Materials Transactions A, 1975, 6(10): 1915-1917.
    [99] Lee H M. The Solubility of Hydrogen in Transition Metals. Metallurgical and Materials Transactions A, 1976, 7(2): 431-433.
    [100] Fromm E, Hoerz G. Hydrogen, Nitrogen, Oxygen, and Carbon in Metals. International Metals Reviews, 1980, 25(5-6): 269-311.
    [101] Fromm E, Jehn H. Solubility of Hydrogen in the Elements. Bulletin of Alloy Phase Diagrams, 1984, 5(3): 324-326.
    [102] Smithells C J. Smithells Metal Reference Book. 7th ed. Boston: Butterworth-Heinemann, 1992.
    [103] Manchester F D. Phase Diagrams of Binary Hydrogen Alloys. Materials Park: ASM International, 2000.
    [104] Degrève F, Carle J C, Gonzalez N. New Methods for the Determination of Hydrogen Content of Aluminum and Its Alloys: Part I. Improvements in the Vacuum Extraction Method. Metallurgical and Materials Transactions B, 1975, 6(4): 539-544.
    [105] Boorstein W M, Pehlke R D. Measurement of Hydrogen Solubility in Liquid Iron Alloys Employing a Constant Volume Technique. Metallurgical and Materials Transactions B, 1974, 5(2): 399-405.
    [106] Wagner C. Thermodynamics of Alloys. Cambridge: Addison-Wesley Press, 1952.
    [107] Wipf H. Solubility and Diffusion of Hydrogen in Pure Metals and Alloys. Physica Scripta, 2001, 94: 43-51.
    [108] Fowler R H, Smithells C J. A Theoretical Formula for the Solubility of Hydrogen in Metals. Proceedings of the Royal Society of London. Series A, 1937, 160(900): 37-47.
    [109] Veleckis E, Edwards R K. Thermodynamic Properties in the Systems Vanadium-Hydrogen, Niobium-Hydrogen and Tantalum-Hydrogen. The Journal of Physical Chemistry, 1969, 73(3): 683-692.
    [110] Wagner C. Contribution to the Thermodynamic of Interstitial Solid Solutions. Acta Metallurgica, 1971, 19(8): 843-849.
    [111] Chao K A, Ansell G S. Electronic Effect on the Solubility of Interstitials in Transition Metal Alloys. Journal of Applied Physics, 1970, 41(1): 417-421.
    [112] Hume-Rothery W. Factors Affecting the Stability of Metallic Phase.//Rudman P S, Stringer J, Jaffee R I, eds. Phase Stability in Metals and Alloys. New York: McGraw-Hill Book Company, 1967: 3-25.
    [113] Miedema A R. The Electronegativity Parameter for Transition Metals: Heat of Formation and Charge Transfer in Alloys. Journal of the Less Common Metals, 1973, 32(1): 117-136.
    [114] Lee H M. Solubility of Hydrogen and Bulk Modulus in Transition Metals. Journal of Materials Science, 1978, 13(6): 1374-1380.
    [115] Lee H M. Electron Density and Hydrogen Solubility in Transition Metals. Journal of Materials Science, 1979, 14(4): 1002-1006.
    [116] Stott M J, Zaremba E. Quasiatoms: An Approach to Atoms in Nonuniform Electronic Systems. Physical review B, 1980, 22(4): 1564-1583.
    [117] N?rskov J K, Lang N D. Effective-Medium Theory of Chemical Binding: Application to Chemisorption. Physical review B, 1980, 21(6): 2131-2136.
    [118] Puska M J, Nieminen R M, Manninen M. Atoms Embedded in an Electron Gas: Immersion Energies. Physical review B, 1981, 24(6): 3037-3047.
    [119] Sumin V V. Local Modes of Interstitial Atoms in Transition Metals. Materials Science and Engineering A, 1997, A230(1-2): 63-67.
    [120] Griessen R, Driessen A. Heat of Formation and Band Structure of Binary and Ternary Metal Hydrides. Physical review B, 1984, 30(8): 4372-4381.
    [121] Griessen R. Heats of Solution and Lattice-Expansion and Trapping Energies of Hydrogen in Transition Metals. Physical review B, 1988, 38(6): 3690-3698.
    [122] Marchetti J M, Segui S, Gervasoni J L, et al. Volume and Heat of Solution of Hydrogen in Rare Earths from Proton Screening Charges. Journal of Physics and Chemistry of Solids, 2006, 67(8): 1692-1696.
    [123] Herrera M Z, González R J, Gervasoni J L. Electronic behavior of hydrogen in La, Sc and Y. International Journal of Hydrogen Energy, 2008, 33(13): 3451-3454.
    [124] Oates W A, Flanagan T B. Solubility of Hydrogen in Transition Metals and Their Alloys. Progress in Solid State Chemistry, 1981, 13(3): 193-283.
    [125] Vashukov I A. Mechanism of Influence of Elements on Solubility of Hydrogen in Liquid Iron. Steel in the USSR, 1983, 13(8): 346-349.
    [126] Emi T, Pehlke R D. Theoretical Calculation of the Solubility of Hydrogen in Liquid Metals.. Metallurgical and Materials Transactions B, 1970, 1(10): 2733-2737.
    [127] Lebowitz J L. Exact Solution of Generalized Percus-Yevick Equation for a Mixture of Hard Spheres. Physical Review, 1964, 133(4A): 895-899.
    [128] Shalimov V N, Bozhenko B L, Rozenshtejn G E. Calculation of Solubility of Molecular Gases in Liquid Metals. Metally, 1992, (5): 50-55.
    [129] Mott N F, Jones H. The Theory of the Properties of Metals and Alloys. Oxford: Oxford University Press, 1936.
    [130]边秀房.金属熔体结构.上海:上海交通大学出版社, 2003.
    [131] Alcock C B, Richardson F D. Dilute Solutions in Molten Metals and Alloys. Acta Metallurgica, 1958, 6(6): 385-395.
    [132] O'Connell J P, Prausnitz J M. Thermodynamics of Gas Solubility in Mixed Solvents. Industrial and Engineering Chemistry Fundamentals, 1964, 3(4): 347-351.
    [133] Alcock C B, Richardson F D. Dilute Solutions in Alloys. Acta Metallurgica, 1960, 8(12): 882-887.
    [134] Wagner C. Activity Coefficient of O and Other Non-Metallic Elements in Binary Liquid Alloys as a Function of Alloy Composition. Acta Metallugica, 21(9): 1297-1303.
    [135] Chiang T, Chang Y. The Activity Coefficient of Oxygen in Binary Liquid Metal Alloys. Metallurgical and Materials Transactions B, 1976, 7(3): 453-467.
    [136] Chang Y A, Fitzner K, Zhang M X. The Solubility of Gases in Liquid Metals and Alloys. Progress in Materials Science, 1988, 32: 97-259.
    [137] Kung J K, Nararlo F N, Joffe J, et al. Prediction of Henry's Constants in Mixed Solvents from Binary Data. Industrial and Engineering Chemistry Process Design and Development, 1984, 23(1): 170-175.
    [138] Carroll J J. Use Henry's Law for Multicomponent Mixtures. Chemical Engineering Progress, 1992, 88(8): 53-58.
    [139] Bagshaw T, Mitchell A. Hydrogen Solubility in Liquid Iron Alloys. Journal of the Iron and Steel Institute, 1967, 205(7): 769-771.
    [140] Anyalebechi P N.Analysis of The Effects of Alloyings Elements on Hydrogen Solubility in Liquid Aluminum Alloys. Scripta Metallurgica et Materialia, 1995, 33(8): 1209- 1216.
    [141] Strel'tsov F N, Gershkovich V K, Kunin L L. Solubility of Hydrogen in Cast Copper Alloys. Russian Casting Production, 1976, (2): 67-68.
    [142] Lin R Y, Hoch M. A Solubility of Hydrogen in Molten Aluminum Alloys. Metallurgical Transactions A, 1989, 20(9): 1785-1791.
    [143] Anyalebechi P N. Analysis and Thermodynamic Prediction of Hydrogen Solution in Solid and Liquid Multicomponent Aluminum Alloys.// TMS, eds. Proceedings of the 127th TMS Annual Meeting. Warrendale: TMS, 1998: 827-842.
    [144] Sokolov V M, Fedorenko I V. Estimation of Hydrogen Solubility in Liquid Alloys of Iron, Nickel and Copper. International Journal of Hydrogen Energy, 1996, 21(11-12): 931- 934.
    [145] Shapovalov V I. Metal-Hydrogen Phase Diagrams in the Vicinity of Melting Temperatures//American Vacumm Society(AVS), eds. Proceedings of the 1999 International symposium on Liquid Metal Processing and Casting. Santa Fe: AVS, 1999: 330-343.
    [146] Shapovalov V I, Serdyuk N P. Cobalt-Hydrogen Phase Diagram. Izvestiya Vysshikh Uchebnykh Zavedenij Chernaya Metallurgiya, 1980, (12): 13-17.(in Russian)
    [147] Shapovalov V I. About Copper-Hydrogen Phase Diagram. Izvestiya Vuzov. Tsvetnaya Metallurgiya, 1980, (2): 90-93. (in Russian)
    [148] Zheng Y. Modelling of Solidification of Porous Metal-Hydrogen Alloys[D]. Department of Materials Science and Engineering, Massachusette Institute of Technology,1995.
    [149] Zheng Y, Sridhar S, Russell K C. Controlled Porosity Alloys through Solidification Processing: a Modelling Study.// Materials Research Society, eds. Proceedings of Materials Research Society Symposium. Pittsburgh, PA: Materials Research Society, 1995: 365-370.
    [150]张华伟,李言祥,刘源. Gasar工艺中金属-氢二元相图的研究.金属学报, 2005, 41(1): 55-59.
    [151]中嶋英雄,池田輝之,玄丞均.ロータス型ポーラス金属の新規物性の解明と材料開発[R/OL]. 2002. http://www.mat.eng.osaka-u.ac.jp/coe21/res/pdf/20.pdf
    [152]刘源,李言祥,张华伟.藕状多孔金属Mg的Gasar工艺制备.金属学报, 2004, 40(11): 1121-1126.
    [153]谢建新,刘新华,刘雪峰等.藕状多孔纯铜棒的制备与表征.中国有色金属学报, 2005, 15(11): 1869-1873.
    [154]张华伟,李言祥,刘源.藕状规则多孔Cu气孔率的理论预测.金属学报, 2006, 42(11): 1165-1170.
    [155] Shapovalov V I, Apprill J M, Baldwin M D, et al. Production of Gas-Solid Structure in Aluminium and Nickel Alloys by GASAR Processing. //AVS, eds. Proceedings of the AVS International Symposium on Liquid Metal Processing and Casting. Santa Fe: AVS, 1997: 322-329.
    [156] Boiko L V, Shapovalov V I, Chernyhk E A, et al. Properties of Porous Nickel-Base Anisotropic Materials. Powder Metallurgy and Metal Ceramics, 1991, 30(10): 877-880.
    [157] Boyko L. Structural Features and Properties of GASARs - New Porous Composite Metals for Industry.// Rohatgi P K, eds. Proceedings of the TMS Fall Meeting. St. Louis: TMS, 2000: 303-312.
    [158] Hyun S K, Nakajima H. Fabrication of Lotus-Structured Porous Iron by Unidirectional Solidification under Nitrogen Gas. Advanced Engineering Materials, 2002, 4(10): 741- 744.
    [159] Hyun S K, Ikeda T, Nakajima H. Fabrication of Lotus-type Porous Iron and Its Mechanical Properties. Science and Technology of Advanced Materials, 2004, 5(1-2): 201- 205.
    [160] Nakahata T, Nakajima H. Fabrication of Lotus-Type Porous Silicon by Unidirectional Solidification in Hydrogen. Materials Science and Engineering A, 2004, 384(1-2): 373- 376.
    [161]池田輝之,星山英男,中嶋英雄.ロータス型ポーラスマグネシウムおよびその合金の作製と機械的性質.軽金属, 2004, 54(9): 388-393.
    [162] Hoshiyama H, Ikeda T, Nakajima H. Fabrication of Lotus-Type Porous Magnesium and its Alloys by Unidirectional Solidification under Hydrogen Atmosphere. High Temperature Materials and Processes, 2007, 26(4): 303-316.
    [163] Taguchi K, Sato M, Mizuta A, et al. Casting and Mechanical Properties of Lotus-type Porous Hastelloy X. //Nakajima H, Kanetake N, eds. Proceedings of MetFoam2005. Sendai: The Japan Institute of Metals, 2006: 219-222
    [164] Shapovalov V I, Withers J C. Hydrogen Technology for Porous Metals (Gasars) Production. //Baranowski B, Zaginaichenko S, Schur D, Skorokhod V V, Veziroglu A, eds. Carbon Nanomaterials in Clean Energy Hydrogen Systems. Berlin: Springer Netherlands.. 2009: 29-51.
    [165]鈴木進補,朴宰成,玄丞均,等.連続鋳造法によるロータス型ポーラス金属の作製高温学会誌, 2008, 34(2): 38-44.
    [166] Hyun SK, Park J S, Tane M, et al. Fabrication of Lotus-type Porous Metals by continuous Zone Melting and Continuous Casting Techniques. //Nakajima H, Kanetake N, eds. Proceedings of MetFoam2005. Sendai: The Japan Institute of Metals, 2006: 211-214.
    [167] Hyun S K, Suzuki S, Nakajima H. Fabrication of Lotus-Type Porous Magnesium by Continuous Casting Process. // Lefebvre L P, Banhart J, Dunand D C, eds. Proceedings of MetForm2007. Montreal: DEStech Publications, 2008: 233-235.
    [168] Nakajima H, Hyun S K, Park J S, et al. Fabrication of Lotus-Type Porous Metals by Continuous Zone Melting and Continuous Casting Techniques. Materials Science Forum, 2007, 539-543: 187-192
    [169] Park J S, Hyun S K, Tane M, et al. Pore Morphology of Lotus-Type Porous Copper Fabricated by Continuous Casting Technique. Solid State Phenomena, 2007, 124-126: 1725-1728.
    [170] Onishi H, Hyun S K, Nakajima H, et al. Magnetization Process of Lotus-Type Porous Metals. Journal of Applied Physics, 2008, 103(9): 0935391-5.
    [171]池田輝之,玄丞均,中嶋英雄.医療器具用ロータス型ポーラスチタンおよびチタンコーティングロータス型ポーラスステンレス鋼の作製 [R/OL]. 2002. http://www.mat.eng.osaka-u.ac.jp/coe21/edu/pdf/21.pdf
    [172] Park J S, Suzuki S, Nakajima H, et al. Fabrication of Lotus-Type Porous Al-Si Alloys Using Continuous Casting Technique. //Lefebvre L P, Banhart J, Dunand D C, eds. Proceedings of MetForm2007. Montreal: DEStech Publications, 2008: 229-232.
    [173] Park J S, Hyun S K, Suzuki S, et al. Fabrication of Lotus-Type Porous Al-Si Alloys Using the Continuous Casting Technique. Metallurgical and Materials Transactions A, 2009, 40(2): 406-414.
    [174] Suzuki S, Kim T B, Nakajima H. Fabrication of Al-Cu Alloy with Elongated Pores by Continuous Casting Technique. Journal of Physics: Conference Series, 2009. 165: 012068
    [175] Ueno S, Lin L M, Hyun S K, et al. Fabrication of Lotus-type Porous Alumina by Unidirectional Solidification. //Nakajima H, Kanetake N, eds. Proceedings of MetFoam2005. Sendai: The Japan Institute of Metals, 2006: 251-254.
    [176] Lin L M, Ueno S, Nakajima H. Fabrication of Lotus-Type Porous Alumina with High Compressive Strength Using Unidirectional Solidification. //Lefebvre L P, Banhart J, Dunand D C, eds. Proceedings of MetForm2007. Montreal: DEStech Publications, 2008: 221-224.
    [177] Ueno S, Lin L M, Nakajima H. Formation Mechanism of Porous Alumina with Oriented Cylindrical Pores Fabricated by Unidirectional Solidification. Journal of the American Ceramic Society, 2008, 91(1): 223-226
    [178] Ueno S, Akatsu T, Nakajima H. Fabrication of Porous Magnesium Spinel with Directional Pores by Unidirectional Solidification. Ceramics International, 2009, 35(6): 2469-2473.
    [179] Tane M. Nakajima H. Fabrication of Lotus-Type Porous Magnesium Using Hydrogen Decomposed from MgH2. 2008. // Lefebvre L P, Banhart J, Dunand D C, eds. Proceedings of MetForm2007. Montreal: DEStech Publications, 2008: 241-244.
    [180] Tane M., H. Nakajima. Fabrication of Lotus-Type Porous Magnesium through Thermal Decomposition of Magnesium Hydride. Journal of Physics: Conference Series, 2009. 165: 012065.
    [181] Nakajima H, Ide T. Method for Manufacturing Porous Body: WO, WO/2008/004460, 2008-01-10.
    [182] Nakajima H. Fabrication of Lotus-Type Porous Metals through Hydride Decomposition. Advanced Engineering Materials, 2008, 10(9): 816-819.
    [183] Nakajima H. Fabrication and Applications of Lotus-Type Porous Metals through Hydride Decomposition.// Lefebvre L P, Banhart J, Dunand D C, eds. Proceedings of MetForm2007. Montreal: DEStech Publications, 2008: 193-196.
    [184] Nakajima H, Ide T. Fabrication of Porous Copper with Directional Pores through Thermal Decomposition of Compounds. Metallurgical and Materials Transactions A, 2008, 39(2):390-394
    [185] Kim S Y, Nakajima H, Hur B Y. Fabrication of Lotus-Type Porous Nickel through Thermal Decomposition Method of Compounds by Mold Casting Technique.// Lefebvre L P, Banhart J, Dunand D C, eds. Proceedings of MetForm2007. Montreal: DEStech Publications, 2008: 197-200.
    [186] Wada T, Ide T, Nakajima H. Fabrication of Porous Iron with Directional Pores through Thermal Decomposition of Chromium Nitride. Metallurgical and Materials Transactions A, 2009, 40(13): 3204-3209.
    [187] Kim S Y, Park J S, Nakajima H. Fabrication of Lotus-Type Porous Aluminum through Thermal Decomposition Method. Metallurgical and Materials Transactions A, 2009, 40(4): 937-942.
    [188] Nakajima H, Kim S Y, Park J S. Fabrication of Porous Aluminium with Directional Pores through Thermal Decomposition Method. Journal of Physics: Conference Series, 2009. 165: 012063.
    [189] Onishi H, Ueuo S, Hyun S K, et al. Fabrication of Lotus-Type Porous Cobalt and Silicon through Decomposition of Moisture. Metallurgical and Materials Transactions A, 2009, 40(2): 438-443.
    [190] Kim T B, Suzuki S, Nakajima H. Fabrication of A Lotus-Type Porous Al-Si Alloy by Continuous Casting with A Thermal Decomposition Method. Journal of Physics: Conference Series, 2009. 165: 012067
    [191] Nakahata T, Hyun S K, Nakajima H. Fabrication of Lotus-type Silver by Unidirectional Solidificaion in Oxygen Atmosphere.//Nakajima H, Kanetake N, eds. Proceedings of MetFoam2005. Sendai: The Japan Institute of Metals, 2006: 223-228.
    [192] Nakahata T, Nakajima H. Fabrication of Lotus-Type Silver with Directional Pores by Unidirectional Solidification in Oxygen Atmosphere. Materials Transactions, 2005, 46(3): 587-592.
    [193] Shapovalov V I, Withers J C. About Plasma Scanning GASAR Technology[EB/OL]. 2009. http://www.metalfoam.net/Papers-conference/2009-Slovakia-Paper.pdf.
    [194] Withers J C, Shapovalov V I. Method and Apparatus for Manufacturing Porous Articles: US, 20090047439, 2009-02-19.
    [195] Wolla J M, Provenzano V. Mechanical properties of GASAR porous copper.// Materials Research Society, eds. Proceedings of Materials Research Society Symposium. Pittsburgh: Materials Research Society, 1995: 377-382.
    [196] Simone A E, Gibson L J. Tensile Strength of Porous Copper Made by the GASAR Process. Acta Materialia, 1996, 44(4): 1437-1447.
    [197] Shapovalov V I, Eryomenko N D. The Structure and Properties of Composite Porous Materials with Monolithic Framework for Slide Bearing Units. // European Advanced Material Institute, eds. Proceedings of International New Business and High-Tech Research Conference. Jyvaskyla: European Advanced Material Institute.1989: 1-12.
    [198] Hyun S K, Murakami K, Nakajima H. Anisotropic Mechanical Properties of Porous Copper Fabricated by Unidirectional Solidification. Materials Science and Engineering A, 2001, 299(1-2): 241-248.
    [199]项亦斌.一维定向凝固规则多孔镁力学性能研究[硕士学位论文].北京:清华大学, 2006.
    [200] Tane M, Ichitsubo T, Hirao M, et al. Extended Mean-Field Method for Predicting Yield Behaviors of Porous Materials. Mechanics of Materials, 2007, 39(1): 53-63.
    [201] Nakajima H, Tane M, Hyun S K, et al. Anisotropic Mechanical Properties of Lotus-Type Porous Metals// Zhao H, Fleck N A, eds. Proceedings of the IUTAM Symposium on Mechanical Properties of Cellular Materials. Berlin: Springer Netherlands, 2009: 43-50.
    [202] Hyun S K, Ikeda T, Tane M, et al. Fabrication and Tensile Properties of Lotus-Type Porous Iron and SUS304L Stainless Steel. Materials Science Forum. 2006, 512: 337-342.
    [203] Hyun S K, Nakajima H. Anisotropic Compressive Properties of Porous Copper Produced by Unidirectional Solidification. Materials Science and Engineering A, 2003, 340(1-2): 258-264.
    [204] Ide T, Tane M, Ikeda T, et al. Compressive Properties of Lotus-Type Porous Stainless Steel. Journal of Materials Research, 2006, 21(1): 185-193.
    [205] Ide T, Tane M, Nakajima H. Compressive Deformation Behavior of Porous TiAl with Directional Pores. Materials Science and Engineering A, 2009, 508(1-2): 220-225.
    [206] Hyun S K, Nakajima H, Boyko L V, et al. Bending Properties of Porous Copper Fabricated by Unidirectional Solidification. Materials Letters, 2004, 58(6): 1082-1086.
    [207] Seki H, Tane M, Nakajima H.Effects of pore size distribution and loading direction on fatigue property of lotus-type porous copper.// Lefebvre L P, Banhart J, Dunand D C, eds. Proceedings of MetForm2007. Montreal: DEStech Publications, 2008: 237-240.
    [208] Seki H, Tane M, Nakajima H. Fatigue Crack Initiation and Propagation in Lotus-Type Porous Copper. Materials Transactions, 2008, 49(1): 144-150.
    [209] Simone A E, Gibson L J. Efficient Structural Components Using Porous Metals. Materials Science & Engineering A, 1997, A229(1-2): 55-62.
    [210] Shapovalov V I. Prospective Manufacture and Aircraft Applications of Cast Metal Porous Materials.//Rohatgi P K, eds. State of the Art in Cast Metal Matrix Composites in the Next Millenium. Warrendale,Pa: TMS, 2000: 291-302.
    [211] Ogushi T, Chiba H, Nakajima H, et al. Measurement and Analysis of Effective Thermal Conductivities of Lotus-Type Porous Copper. Journal of Applied Physics, 2004, 95(10): 5843-5847.
    [212] Ochsner A, Tane M, Nakajima H. Prediction of the Thermal Properties of Lotus-Type and Quasi-Isotropic Porous Metals: Numerical and Analytical Methods. Materials Letters, 2006, 60(21-22): 2690- 2694.
    [213] Chiba H, Nakajima H, Tomimura T, et al.Steady State Comparative-Longitudinal Heat Flow (SCHF) Method Using Specimen of Different Thickness for Measuring Thermal Conductivity of Anisotropic and Thin Porous Metals.// Lefebvre L P, Banhart J, Dunand D C, eds. Proceedings of MetForm2007. Montreal: DEStech Publications, 2008:521-524
    [214] Chiba H, Ogushi T, Nakajima H, et al. Steady State Comparative-Longitudinal Heat Flow Method Using Specimen of Different Thicknesses for Measuring Thermal Conductivity of Lotus-Type Porous Metals. Journal of Applied Physics, 2008, 103(1): 013515.
    [215] Chiba H, Ogushi T, Nakajima H, et al. Heat Transfer Capacity of Lotus-Type Porous Copper Heat Sink. JSME International Journal, Series B, 2004, 47(3): 516-521.
    [216] Ogushi T, Chiba H, Nakajima H. Development of Lotus-type Porous Copper Heat Sink.// Nakajima H, Kanetake N, eds. Proceedings of MetFoam2005. Sendai: The Japan Institute of Metals, 2006: 27-34.
    [217] Chiba H, Ogushi T, Nakajima H. Heat Transfer Capacity of Lotus-Type Porous Copper Heat Sink.//Nakajima H, Kanetake N, eds. Proceedings of MetFoam2005. Sendai: The Japan Institute of Metals, 2006: 27-34.
    [218]千葉博,大串哲朗,中嶋英雄.ロータス型ポーラス銅を使用した高性能ヒートシンクの開発. Journal of the Heat Transfar Society of Japan, 2008, 47(199): 11-15.
    [219] Sergent J E, Krum A. Thermal Management Handbook: for Electronic Assemblies. New York: McGraw-Hill Companies, 1998.
    [220]謝振凱,奥田良行,玄丞均,等.ロータス型ポーラスマグネシウムの吸音特性[R/OL]. 2002. http://www.mat.eng.osaka-u.ac.jp/coe21/edu/pdf/41.pdf.
    [221] Xie J X, Yamada Y, Banno T, et al. Sound Absorption of Lotus-type Porous Magnesium. //Nakajima H, Kanetake N, eds. Proceedings of MetFoam2005. Sendai: The Japan Institute of Metals, 2006: 607-610.
    [222] Wang X L, Peng F, Chang B J. Sound Absorption of Porous Metals at High Sound Pressure Levels. The Journal of the Acoustical Society of America, 2009, 126(2): EL55-EL61.
    [223] Shapovalov V I, Boyko L. Advantages of Gasar-Materials for Brake Shoes and Plates.// Society of Automotive Engineers, eds. Proceedings of the 18th Annual Brake Colloquium And Engineering Display. San Diego: Society of Automotive Engineers , 2000: 5-8.
    [224] Loufy R L, Boyoko L V, Shapovalov V I. Is Gasar brakes having future? [R/OL]. 2002. http://www.metalfoam.de/Papers-conference/2002-Brakes.pdf.
    [225] Kato T, Nakahata T, Nakajima H. Tribological Behaviour of Lotus-type Porous Metal.// Nakajima H, Kanetake N, eds. Proceedings of MetFoam2005. Sendai: The Japan Institute of Metals, 2006: 615-618.
    [226] Kato T, Nakahata T, Nakajima H. Tribological Behaviour of Lotus-Type Porous Cast Iron. Materials Transactions, 2006, 47(9): 2259-2263.
    [227]肖华星,陈光,崔鹏.定向凝固多孔金属制造人工骨的前景展望.特种铸造及有色合金, 2001(2): 88-89.
    [228] Higuchi Y, Ohashi Y, Nakajima H. Biocampatibility of Lotus-type Porous Metals in Alveolar Bone.// Nakajima H, Kanetake N, eds. Proceedings of MetFoam2005. Sendai: The Japan Institute of Metals, 2006: 47-50.
    [229] Higuchi Y, Ohashi Y, Nakajima H. Biocompatibility of Lotus-Type Stainless Steel and Titanium in Alveolar Bone. Advanced Engineering Materials, 2006, 8(9): 907-912.
    [230] Alvarez K, Hyun S K, Nakano T, et al. In Vivo Osteocompatibility of Lotus-Type Porous Nickel-Free Stainless Steel in Rats. Materials Science and Engineering C, 2009, 29(4): 1182-1190.
    [231] Karpov, V. Properties of GASARs-Metallic Materials with Pores Formed by Released Hydrogen. Materials Science, 2007. 43(5): 746-749.
    [232] Apprill J M, Poirier D R, Maguire M C, et al. GASAR Porous Metals Process Control. //Schwartz D S, Shih D S, Wadley H N G, Evans A G, eds. Materials Research Society Symposium Proceedings. San Francisco: MRS. 1998: 291-296.
    [233] Sridhar S. Thermodynamics of Solidification of Controlled Porosity Alloys.// Nash P, Sundman B, eds. Proceedings of the Applications of Thermodynamics in the Synthesis and Processing of Materials. Warrendale: Metals & Materials Society, 1995: 259-269.
    [234] Sridhar S. Russell K C. Nucleation Mechanisms for Bubbles in Materials with Controlled Porosity. Journal of Materials Synthesis and Processing, 1995, 3(4): 215-222.
    [235] Kato E. Pore Nucleation in Solidifying High-Purity Copper. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 1999, 30(9)2449-2453.
    [236] Onishi H, Ueno S, Nakajima H. An Effect of Addition of NiO Powder on Pore Formation in Lotus-Type Porous Nickel. Materials Transactions, 2008, 49(11): 2670-2672.
    [237] Jackson K A, Hunt J D. Lamellar and Rod Eutectic Growth. Transactions of the Metallurgical Society of AIME, 1996, 236: 1129-1142.
    [238]刘源,李言祥,张华伟,等.金属-气体共晶定向凝固工艺参数对藕状多孔金属镁结构的影响.稀有金属材料与工程, 2005, 34(7): 1128-1130.
    [239] Hyun S K, Nakajima H. Effect of Solidification Velocity on Pore Morphology of Lotus-Type Porous Copper Fabricated by Unidirectional Solidification. Materials Letters, 2003, 57(21): 3149-3154.
    [240] Park J S, Hyun S K, Suzuki S, et al. Effect of Transference Velocity and Hydrogen Pressure on Porosity and Pore Morphology of Lotus-Type Porous Copper Fabricated by a Continuous Casting Technique. Acta Materialia, 2007, 55(16): 5646-5654.
    [241]刘源,李言祥,刘润发,等.连铸法Gasar工艺中抽拉速率对多孔金属结构影响的理论分析.金属学报, 2010, 46(2): 129-134.
    [242] Murakami K, Nakajima H. Formation of Pores during Unidirectional Solidification of Water Containing Carbon Dioxide. Materials Transactions, 2002, 43(10): 2582- 2588.
    [243] Park C, Nutt S R. Metallographic Study of GASAR Porous Magnesium.// Daniel S S, Donald S S, Anthony G E, Haydn N G W, eds. Materials Research Society Symposium Proceedings. Warrendale: MRS, 1998: 315-320.
    [244] Shapovalov V I, Timchenko A G. Production of Gas-Crystal Structures in Aluminium and Its Alloys in The Presence of Hydrogen. The Physics of Metals and Metallography, 1993, 76(3): 335-337.
    [245] Paradies C J, Tobin A, Wolla J. The Effect of GASAR Processing Parameters on Porosity and Properties in Aluminum Alloy.//Schwartz D S, Shih D S, Wadley H N G, Evans A G, eds. Materials Research Society Symposium Proceedings. San Francisco: MRS. 1998: 297-302.
    [246] Atwood R C, Sridhar S, Zhang W, et al. Diffusion-Controlled Growth of Hydrogen Pores in Aluminium-Silicon Castings: in Situ Observation and Modelling. Acta Materialia, 2000, 48(2): 405-417.
    [247] Lee P D, Hunt J D. Hydrogen Porosity in Directionally Solidified Aluminium-Copper Alloys: A Mathematical Model. Acta Materialia, 2001, 49(8): 1383- 1398.
    [248] Melo M L N M, Rizzo E M S, Santos R G. Numerical Model to Predict the Position, Amount and Size of Microporosity Formation in Al - Cu Alloys by Dissolved Gas and Solidification Shrinkage. Materials Science and Engineering A, 2004, 374(1-2): 351-361.
    [249]赵海东,吴朝忠,李元元,等.垂直向上凝固Al-Cu铸件中微观孔洞形成的数值模拟.金属学报, 2008, 44(11): 1340-1347.
    [250] Jamgotchian H, Trivedi R, Billia B. Interface Dynamics and Coupled Growth in Directional Solidification in Presence of Bubbles. Journal of Crystal Growth, 1993, 134(3-4): 181-195.
    [251] Shapovalov V, Boiko L, Baldwin M D, et al. Anisotropic Porous Metals Production by Melt Processing.//AVS, eds Proceedings of the AVS International Symposium on Liquid Metal Processing and Casting. Santa Fe: AVS, 1997: 417-426.
    [252] Lide D R. CRC Handbook of Chemistry and Physics. 84th ed. Boca Raton : CRC Press, c2003: 4.37-4.132.
    [253] Shapovalov V I, Kutsinskii V G. Solubility of Hydrogen in Liquid Molybdenum. Metally, 1989, (3)185-187.
    [254] Shahani H, Wictorin L. Solubility of Hydrogen in Liquid Gold, Gold-Copper and Gold-Palladium Alloys at One Atmosphere Pressure. Scandinavian Journal of Metallurgy, 1989, 18(4): 211-212.
    [255]卡恩.北京钢铁学院金属物理教研室,译.物理金属学(上).北京:科学出版社, 1984: 85-258.
    [256] Smithells C J. Gases and Metals : An Introduction to the Study of Gas-Metal Equilibria. New York : John Wiley & Sons, Inc., 1937.
    [257] Mott N F, Jones H. The Theory of the Properties of Metals and Alloys. Oxford: Oxford University Press, 1936.
    [258]傅恒志.铸钢和铸造高温合金及其熔炼.西安:西北工业大学出版社, 1985: 181-200.
    [259] Beck M, Ellner M, Mittemeijer E J. The Formation of Interstitial Solid Solutions Based on Solvents Showing the FCC Structure: Elastic versus Chemical Interaction. Acta Materialia, 2001, 49(6): 985-993.
    [260] Jones D W, Pessall N, McQuillan A D. Correlation Between Magnetic Susceptibility and Hydrogen Solubility in Alloys of Early Transition Elements. Philosophical Magazine, 1961, 6(63): 455-459.
    [261] Jones D W, McQuillan A D. Magnetic Susceptibility and Hydrogen Affinity of BCC Alloys of Nb-Mo Nb-Re and Mo-Re. The Journal of Physics and Chemistry of Solids, 1962, 23: 1441-1447.
    [262] Kadono J, Hirano K, Nishiuchi S, et al.Hydrogen absorbing characteristics of R-M (R=La, Ce; M=Co, Rh, Ir, Ni, Pd, Pt) binary systems. Journal of Alloys and Compounds, 2006, 408-412: 327-330.
    [263] Woolley F E, Pehlke R D. Solubility of Hydrogen in Liquid Cobalt Alloys. Transactions of the Metallurgical Society of AIME, 1965, 233(8): 1454-1461.
    [264] Pehlke R D, Elliott J F. Solubility of Nitrogen in Liquid Iron Alloys. 1 Thermodynamics. Transactions of the Metallurgical Society of AIME, 1960, 218(6): 1088-1101.
    [265]徐祖耀,李麟.材料热力学.第三版.北京:科学出版社, 2005.
    [266]下地光雄.郭淦钦,译.液态金属.北京:科学出版社, 1987.
    [267]马永庆.多元合金的电子、原子层次的理论计算及应用.大连:大连海事大学出版社, 2006.
    [268]迪安.尚久方等译.兰氏化学手册.北京:科学出版社, 1991: 3.117-3.123.
    [269] Levente S. Pseudopotential Theory of Atoms and Molecules. New York: John Wiley & Sons, Inc, 1985.
    [270]潘志军,张澜庭,吴建生. CoSi电子结构第一性原理研究.物理学报, 2005, 54(1): 328-332.
    [271] Harrison W A. Electronic Structure and the Properties of Solids: the Physics of the Chemical Bond. San Francisco: Freeman, 1980: 476-530.
    [272]王海川,董元篪.冶金热力学数据测定与计算方法.北京:冶金工业出版社, 2005: 95-111.
    [273]范鹏,周国治.由组元的物性参数预测金属熔体的热力学性质.金属学报, 1999, 35(4): 423-426.
    [274]乐启炽,张新建,崔建忠,等.金属合金溶液热力学模型研究进展.金属学报, 2003, 39(1): 35-42.
    [275] Hardy H K. A Sub-Regular Solution Model and Its Application to Some Binary Alloy Systems.Acta Metallurgica,1953,1: 202-209.
    [276] Wilson G M. A New Expression for the Excess Free Energy of Mixing. Journal of the American Chemical Society, 1964, 86(2): 127-130.
    [277]陶东平.用Wilson方程预测三元液态合金的热力学性质.金属学报, 1991, 27(6): 380- 386.
    [278]陶东平,杨显万.用Wilson方程估算多元液态合金在给定温度下的组元活度.金属学报, 1997, 33(10): 1079-1084.
    [279] Abrams D S, Prausnitz J M. Statistical Thermodynamics of Liquid Mixtures: A New Expression for the Excess Gibbs Energy of Partly of Completely Miscible Systems. AIChE Journal, 1975, 21(1): 116-128.
    [280] Miedema A R, de Boer F R, Boom R. Model Predictions for the Enthalpy of Formation of Transition Metal Alloys. Calphad, 1977, 1(4): 341-359.
    [281] Miedema A R, de Chatel P F, de Boer F R. Cohesion in Alloys--Fundamentals of a Semi-Empirical Model. Physica B & C, 1980, 100(1): 1- 28.
    [282]丁学勇,王文忠.二元系熔体中组元活度的计算式.金属学报, 1994, 30(10): B444- B447.
    [283]陈星秋,丁学勇,刘新,等.二元合金熔体组元活度计算式的改进.金属学报, 2000, 36(05): 492-496.
    [284] Ansara I. Comparison of Methods for Thermodynamic Calculation of Phase Diagrams. International Metals Reviews, 1979, 24(1): 20-53.
    [285]周国治.新一代的溶液几何模型及其今后的展望.金属学报, 1997, 33(2): 126-132.
    [286] Tao D P. A New Model of Thermodynamics of Liquid Mixtures and Its Application to Liquid Alloys. Thermochimica Acta, 2000, 363(1-2): 105-113.
    [287] Tao D P. Prediction of the Thermodynamic Properties of Multicomponent Liquid Alloys by Binary Infinite Dilute Activity Coefficients. Metallurgical and Materials Transactions B, 2001, 32(6): 1205-1211.
    [288] Tao D P. Prediction of the Thermodynamic Properties of Solutes in Pb-Based Dilute Solutions. Thermochimica Acta, 2002, 385(1-2): 5-10.
    [289] Tao D P. Prediction of Thermodynamic Properties of the C-Fe-Co-Ni Solid Solutions by Binary Infinite Dilute Activity Coefficients. Materials Science and Engineering A, 2005, 390(1-2): 70-75.
    [290] Yang H W, Tao D P, Yuan Q M, et al. Predicting the Formation Enthalpies of Cd-Ga-In-Sn-Zn Liquid Alloys by the Limiting Partial Enthalpies. Fluid Phase Equilibria, 2009, 275(1): 64-69.
    [291] John M P, Rueniger L. Molecular Thermodynamics of Fluid-Phase Equilibria. New Jersey: Prentice-Hall.Inc.,Englewood Cliffs, 1986: 328-333.
    [292] Tao D P. Prediction of the Coordination Numbers of Liquid Metals. Metallurgical and Materials Transactions A, 2005, 36(12): 3495-3497.
    [293] Dinsdale A T. SGTE Data for Pure Elements. Calphad, 1991, 15(4): 317-425.
    [294] Iida T, Guthrie R I L. The Physical Properties of Liquid Metals. Oxford: Clarendon Press, 1988.
    [295] Tanaka T, Gokcen N A, Morita Z. Relationship Between Enthalpy of Mixing and Excess Entropy in Liquid Binary Alloys. Zeitschrift fuer Metallkunde, 1990, 81(1): 49-54.
    [296] Tanaka T, Gokcen N A, Morita Z. Relationship Between Partial Enthalpy of Mixing and Partial Excess Entropy of Solute Elements in Infinitely Dilute Solutions of Liquid Binary Alloys. Zeitschrift fuer Metallkunde, 1990, 81(5): 349-353.
    [297] Tanaka T, Gokcen N A, Morita Z, et al. Thermodynamic Relationship between Enghalpy of Mixing and Excess Entropy in Solid Solutions of Binary Alloys. Zeitschrift fuer Metallkunde, 1996, 87(1): 779-783.
    [298] Hultgren R, Dessai P D, Hawkins D T. Selected Values of the Thermodynamic Properties of Binary Alloys. Metal Park, Ohio: ASM, 1973: 180-233.
    [299] Peng M, Mikula A. Thermodynamic Properties of Liquid Cu-Sn-Zn Alloys. Journal of Alloys and Compounds, 1997, 247(1-2): 185-189.
    [300] Peng M, Mikula A. Emf Measurements of Liquid Cu-Sb-Zn Alloys. Zeitschrift fuer Metallkunde, 1995, 86(4): 228-233.
    [301] Oktay E. Thermodynamic Activities of Silver in Liquid Silver-Copper-Germanium Alloys. Zeitschrift fuer Metallkunde, 1994, 85(12): 824-824.
    [302] American Society for Metals. ASM handbook v. 3: Alloy phase diagrams. Materials Park : ASM International, 1992: 2.1-2.383.
    [303] Redlich O, Kister A T. Algebraic Representation of Thermodynamic Properties and the Classification of Solutions. Industrial & Engineering Chemistry, 1948, 40(2): 345-348.
    [304] Liang P, Tarfa T, Robinson J A, et al. Experimental Investigation and Thermodynamic Calculation of the Al-Mg-Zn System. Thermochimica Acta, 1998, 314(1-2): 87-110.
    [305] Miettinen J. Thermodynamic Description of the Cu-Al-Zn and Cu-Sn-Zn Systems in the Copper-Rich Corner. Calphad, 2002, 26(1): 119-139.
    [306] Chen S-W, Jan C-H, Lin J-C, et al. Phase Equilibria of the Al-Li Binary System. Metallurgical Transactions. A, 1989, 20 A(11): 2247-2258.
    [307] Miettinen J. Thermodynamic Description of the Cu-Al-Si System in the Copper-Rich Corner. Calphad, 2007, 31(4): 449-456.
    [308] Tomiska J. Computer-Aided Thermodynamics of Liquid Ternary Fe-Ni-Co Alloys by Knudsen Cell Mass Spectrometry. Journal of Alloys and Compounds, 2004, 373(1-2): 142-150.
    [309] Tomiska J, Kopecky K, Belegratis M S, et al. Thermodynamic Mixing Functions and Phase Equilibria in the Nickel-Chromium System by High-Temperature Knudsen Cell Mass Spectrometry. Metallurgical and Materials Transactions A, 1995, 26(2): 259-265.
    [310] Turchanin M A. Phase Equilibria and Thermodynamics of Binary Copper Systems with 3d-Metals. VI. Copper-Nickel System. Powder Metallurgy and Metal Ceramics, 2007, 46(9-10): 467-477.
    [311] Tomiska J. The System Fe-Ni-Cr: Revision of the Thermodynamic Description. Journal of Alloys and Compounds, 2004, 379(1-2): 176-187.
    [312] Fernandez Guillermet A. Assessing the Thermodynamics of the Fe-Co-Ni System Using a CALPHAD Predictive Technique. Calphad, 1989, 13(1): 1-22.
    [313] Anyalebechi P N. Attempt to Predict Hydrogen Solubility Limits in Liquid Multicomponent Aluminum alloys. Scripta Materialia, 1996, 34(4): 513-517.
    [314] Anyalebechi P N, Talbot D E J, Granger D A. Solubility of Hydrogen in Liquid Binary Al-Li Alloys. Metallurgical Transactions B, 1988, 19(2): 227-232.
    [315]李敏.铝合金熔体中氢含量的测定[硕士学位论文].哈尔滨:哈尔滨工业大学, 2006.
    [316] Bagshaw T, Engledow D, Mitchell A. Solubility of Hydrogen in Some Liquid Iron-Based Alloys. Journal of the Iron and Steel Institute, 1965, 203(2): 160-165.
    [317] Busch T, Dodd R A. Solubility of Hydrogen and Nitrogen in Liquid Alloys of Iron, Nickel, and Cobalt. Transactions of the Metallurgical Society of AIME, 1960, 218(3): 488-490.
    [318] Mitra M, Lange K W. Experimental Studies on Hydrogen Solubility in Liquid Ternary Iron-Nickel-Chromium Alloys. Steel Research, 1990, 61(8): 353-358.
    [319] Mitra M, Lange K W. Effect of Chromium on the Hydrogen Solubility in Liquid Ternary Iron-Cobalt-Chromium Alloys. Steel Research, 1988, 59(9): 394-398.
    [320] Blossey R G, Pehlke R D. Solubility of Hydrogen in Liquid Fe-Co-Ni Alloys. Metallurgical and Materials Transactions B, 1971, 2(11): 3157-3161.
    [321] Hubberstey P, Adams P F, Pulham R J, et al. Hydrogen in Liquid Alkali Metals. Journal of the Less-Common Metals, 1976, 49: 253-269.
    [322] Wilson J R. The Structure of Liquid Metals and Alloys. Metallurgical Review, 1965, 10(40): 381-560.
    [323] Kubaschewski O. The Thermodynamic Stability of Metallic Phases. // Rudman P S, Stringer J, Jaffee R I, eds. Proceeding 1st Battelle Materials Science Colloquium. New York: McGraw-Hill Book Company, 1966: 63-83.
    [324] Elliott R. Eutectic Solidification. Materials Science and Engineering, 1984, 65: 85-92.
    [325] Jackson K A. Interface Structure.//Doremus R H, Roberts B W, Turnbull, eds. Growth and Perfection of Crystal. New York: John Wiley & Sons, Inc., 1958: 319-324.
    [326] Pollock D D. Physical Properties of Materials for Engineers. 2nd Ed, Boca Raton: CRC Press, 1993: 191-227.
    [327]邓华铭,陈树川.锰基高阻尼合金的研究进展.金属功能材料, 2000, 7(2): 1-6.
    [328] Gokcen N. The Cu-Mn (Copper-Manganese) System. Journal of Phase Equilibria and Diffusion, 1993, 14(1): 76-83.
    [329] Sato S, Kleppa O. Thermochemistry of Liquid Alloys of Transition Metals: I. The Systems Mn-Cu and Mn-Sn. Metallurgical and Materials Transactions B, 1979, 10(1): 63-66.
    [330] He C, Du Y, Chen H-L, et al. Thermodynamic Modeling of the Cu-Mn System Supported by Key Experiments. Journal of Alloys and Compounds, 2008, 457(1-2): 233-238.
    [331] Sichen D, Seetharaman S, Staffansson L I. Some Phase-Diagram Aspects of the Manganese-Carbon System. Metallurgical Transactions B, 1989, 20(5): 747-754.
    [332]徐达鸣,曹福洋,李庆春.变速定向生长条件下Pb-Sn共晶组织变化.金属学报, 1995, 31(11): 494-500.
    [333]潘冶,孙国雄.变速生长的MnSb/Sb共晶相间距选择.稀有金属材料与工程, 1999, 28(2): 85-88.
    [334] Ratke L, Alkemper J. Ordering of the Fibrous Eutectic Microstructure of Al-Al3Ni due to Accelerated Solidification Conditions. Acta Materialia, 2000, 48(8): 1939-1948.
    [335] Gündüz M, Cad?rl? E. Directional Solidification of Aluminium-Copper Alloys. Materials Science and Engineering A, 2002, 327(2): 167-185.
    [336] Bianchi M V A, Viskanta R. The Effect of Air Bubbles on the Diffusion-Controlled Solidification of Water and Aqueous Solutions of Ammonium Chloride. International Journal of Heat and Mass Transfer. 1999, 42(6): 1097-1110.
    [337]熊守美,许庆彦,康进武.铸造过程模拟仿真技术.北京:机械工业出版社,2004.
    [338]余其铮.辐射换热原理.哈尔滨:哈尔滨工业大学出版社,2000.
    [339]美国金属学会编.金属手册(第二册).第九版.北京:机械工业出版社, 1994: 923-976.
    [340] Hunt J D, Lu S Z. Numerical Modeling of Cellular/Dendritic Array Growth: Spacing and Structure Predictions. Metallurgical and Materials Transactions A, 1996, 27(3): 611-623.
    [341] Trivedi R, Kurz W. Solidification Microstructures: A Conceptual Approach. Acta Metallurgica et Materialia, 1994, 42(1): 15-23.
    [342] Trivedi R, Kurz W. Dendritic Growth. International Materials Reviews, 1994, 39(2): 49-74.
    [343] Hunt J D. Steady State Columnar and Equiaxed Growth of Dendrites and Eutectic. Materials Science and Engineering, 1984, 65(1): 75-83.
    [344] Gaumann M, Trivedi R, Kurz W. Nucleation Ahead of the Advancing Interface in Directional Solidification. Materials Science and Engineering A, 1997, 226-228: 763-769.
    [345] Mullins W W, Sekerka R F. Stability of a Planar Interface During Solidification of a Dilute Binary Alloy. Journal of Applied Physics, 1964, 35(2): 444-451.
    [346] Sekerka R F. A Stability Function for Explicit Evaluation of the Mullins-Sekerka Interface Stability Criterion. Journal of Applied Physics, 1965, 36(1): 264-268.
    [347] Kurz W, Fisher D J. Dendrite Growth at the Limit of Stability: Tip Radius and Spacing. Acta Metallurgica, 1981, 29(1): 11-20.
    [348] Schievenbusch A, Zinmernmann G, Lu X L. Morphopogies in Directionally Solidified Copper-Manganese Alloys with Compositions near the Melting Point Minimum. Zeitschrift fuer Metallkunde. 1995, 86(9): 614-623.
    [349] Rocha O L, Siqueira C A, Garcia A. Cellular/Dendritic Transition during Unsteady-State Unidirectional Solidification of Sn-Pb Alloys. Materials Science and Engineering A, 2003, 347(1-2): 59-69.
    [350] Rosa D M, Spinelli J E, Ferreira I L, et al. Cellular/Dendritic Transition and Microstructure Evolution during Transient Directional Solidification of Pb-Sb Alloys. Metallurgical and Materials Transactions A, 2008, 39(9): 2161-2174.
    [351] Lee J H, Kim H C, Jo C Y, et al. Microstructure Evolution in Directionally Solidified Fe-18Cr Stainless Steels. Materials Science and Engineering: A, 2005, 413-414: 306-311.
    [352] Boiko L V. Formation of Porous Structures in Metal-Hydrogen Systems. Materials Science, 2002, 38(4): 544-549.
    [353] Vrest'al J, Stepankova J, Broz P. Thermodynamics of the Copper-Manganese System: Knudsen-Cell Mass Spectrometric Study of the Liquid Cu-Mn System and Calculation of the Phase Diagram. Scandinavian Journal of Metallurgy, 1996, 25(5): 224-231.
    [354] Haddad-Sabzevar M, Fredriksson H. Microstructural Variation in Rapidly Solidified Ribbons of Ag-Cu and Cu-Mn Alloys. Materials Science and Engineering A, 1994, 181-182(pt2): 1320-1325.
    [355]杨森,苏云鹏,刘文今,等.激光快速凝固条件下Cu-31.4%Mn合金的微观组织特征.物理学报, 2003, 52(1): 81-86.
    [356] Brillo J, Egry I. Density Determination of Liquid Copper, Nickel, and Their Alloys. International Journal of Thermophysics. 2003, 24(4):1155-1170.
    [357] Xiao F. Density of Liquid Ni-Cr Alloy. Journal of Materials Science and Technology. 2003. 19(1):16-18.
    [358] Sharan A, Nagasaka T, Cramb A. Densities of Liquid Fe-Ni and Fe-Cr Alloys. Metallurgical and Materials Transactions B, 1994. 25(6): 939-942.
    [359] Mills K C, Monaghan B J, Keene B J. Thermal Conductivities of Molten Metals: Part 1 Pure Metals. International Materials Reviews, 1996. 41(6): 209- 242.
    [360] Terada Y, Ohkubo K, Mohri T, et al. Thermal Conductivity in Nickel Solid Solutions. Journal of Applied Physics, 1997, 81(5): 2263-2268.
    [361] Giordanengo B, Benazzi N, Vinckel J, et al. Thermal Conductivity of Liquid Metals and Metallic Alloys. Journal of Non-Crystalline Solids, 1999, 250-252(1): 377-383.
    [362] Digilov R M. Solid-Liquid Interfacial Tension in Metals: Correlation with the Melting Point. Physica B, 2004, 352(1-4): 53-60.
    [363] Butler J A V. The Thermodynamics of the Surfaces of Solutions. Proceedings of the Royal Society of London. Series A, 1932, 135(827): 348-375.
    [364] Yeum K S, Speiser R, Poirier D R. Estimation of the Surface Tensions of Binary Liquid Alloys. Metallurgical Transactions B, 1989, 20(5): 693-703.
    [365] Mills K C, Su Y C. Review of Surface Tension Data for Metallic Elements and Alloys: Part 1 - Pure Metals. International Materials Reviews, 2006, 51(6): 329-351.
    [366] Terzieff P. The Viscosity of Liquid Alloys. Journal of Alloys and Compounds, 2008, 453(1-2): 233-240.
    [367] Battezzati L, Greer A L. The Viscosity of Liquid Metals and Alloys. Acta Metallurgica, 1989, 37(7): 1791-1802.
    [368]陈国权,林家骝,影响铸件铸型界面热交换因素综述.铸造技术. 1992, (5): 36-37.
    [369] Liu Y, Guo J, Jia J, et al. Equivalent Heat Transfer Coefficient at Casting/ Cu Mould Interface and Temperature Field Simulation. Transactions of Nonferrous Metals Society of China (English Edition), 2003, 13(5): 1119-1123.
    [370] Lau F, Lee W B, Xiong S M, et al. Study of the Interfacial Heat Transfer Between an Iron Casting and a Metallic Mould. Journal of Materials Processing Technology, 1998, 79(1-3): 25-29.
    [371] Browne D J, O'Mahoney D. Interface Heat Transfer in Investment Casting of Aluminum Alloys. Metallurgical and Materials Transactions A, 2001, 32(12): 3055-3063.
    [372] Sahin H M, Kocatepe K, Kayikci R, et al. Determination of Unidirectional Heat Transfer Coefficient during Unsteady-State Solidification at Metal Casting-Chill Interface. Energy Conversion and Management, 2006, 47(1): 19-34.
    [373] Guo Z P, Xiong S M, Liu B C, et al. Effect of Process Parameters, Casting Thickness, and Alloys on the Interfacial Heat-Transfer Coefficient in the High-Pressure Die-Casting Process. Metallurgical and Materials Transactions A, 2008, 39(12): 2896-2905.
    [374] Martorano M A, Capocchi J D T. Heat Transfer Coefficient at the Metal-Mould Interface in the Unidirectional Solidification of Cu-8%Sn Alloys. International Journal of Heat and Mass Transfer, 2000, 43(14): 2541-2552.
    [375] Santos C A, Quaresma J M V, Garcia A. Determination of Transient Interfacial Heat Transfer Coefficients in Chill Mold Castings. Journal of Alloys and Compounds, 2001, 319(1-2): 174-186.
    [376] Muojekwu C, Samarasekera I, Brimacombe J. Heat Transfer and Microstructure during the Early Stages of Metal Solidification. Metallurgical and Materials Transactions B, 1995, 26(2): 361-382.
    [377]林柏年.金属热态成形传输原理.哈尔滨:哈尔滨工业大学出版社, 2000: 198.
    [378] Hunt J D, Lu S Z. Numerical Modeling of Cellular/Dendritic Array Growth: Spacing and Structure Predictions. Metallurgical and Materials Transactions A, 1996, 27A(3): 611-623.
    [379]冯坚,黄卫东,林鑫等. Al-Zn合金定向凝固过程中的组织形态选择.西北工业大学学报, 2000, 18(1): 52-55
    [380] Juarez Islas J A, Jones H, Kurz W. Effect of Solidification Front Velocity on the Characteristics of Aluminium-Rich Al-Mn Alloy Solutions Extended by Rapid Solidification. Materials science and engineering, 1988, 98: 201-205.
    [381] Xu W, Feng Y P, Li Y, et al. Cellular Growth of Zn-Rich Zn-Ag Alloys Processed by Rapid Solidification. Materials Science and Engineering A, 2004, 373(1-2): 139-145.
    [382] Martorano M A, Beckermann C, Gandin C A. A Solutal Interaction Mechanism for the Columnar-to-Equiaxed Transition in Alloy Solidification. Metallurgical and Materials Transactions A, 2003, 34A (8): 1657-1674.
    [383] Gandin C A. From Constrained to Unconstrained Growth during Directional Solidification. Acta Materialia, 2000, 48(10): 2483-2501.
    [384]林鑫,李延民,王猛,等.合金凝固列状晶/等轴枝晶转变.中国科学E辑, 2003, 33(7): 577-588.
    [385] Ziv I, Weinberg F. Columnar-to-Equiaxed Transition in Al 3 Pct Cu. Metallurgical transactions. B, 1989, 20(5): 731-734.
    [386] Nguyen-Thi H, Reinhart G, Mangelinck-Noel N, et al. In-Situ and Real-Time Investigation of Columnar-to-Equiaxed Transition in Metallic Alloy. Metallurgical and Materials Transactions A, 2007, 38A(7): 1458-1464.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700