用户名: 密码: 验证码:
倾斜煤层底板破坏特征及突水机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
底板突水是承压水上采煤时,采动矿压和水压的共同作用导致煤层底板岩体变形破坏,造成大量承压水涌入采掘空间的现象,它严重威胁着煤矿的安全生产。长期以来,国内外学者在近水平及缓倾斜煤层底板的变形破坏、突水机理及突水预测等方面进行了大量的研究,取得了丰富的研究成果,对承压水上煤层的安全开采起到了重要的指导作用,但在承压水上倾斜煤层底板的变形破坏、突水机理及突水预测方面的理论研究还不够深入。因此,本文采用理论分析、数值模拟与现场监测相结合的手段,从采动矿压和水压对底板岩体共同作用的角度出发,对倾斜煤层底板的变形破坏、突水机理及突水预测进行了系统的研究,取得了如下创新性成果:
     (1)依据倾斜煤层上覆岩层载荷的分布特点,建立了沿煤层倾斜方向底板破坏特征力学分析模型,利用弹性力学理论结合Mohr - Coulomb(莫尔-库仑)屈服准则,推导了沿煤层倾斜方向底板岩层内任意一点的应力表达式及底板破坏深度计算公式;
     (2)根据倾斜煤层赋存特点,利用FLAC3D数值计算软件,建立了倾斜煤层工作面走向长壁开采三维数值计算模型,模拟分析了倾斜煤层在不同埋深、不同工作面宽度时,沿煤层倾斜方向底板岩体应力、破坏深度、破坏形态随煤层倾角变化的规律;
     (3)针对承压水上倾斜煤层底板所受载荷的分布特点,建立了线性增加水压作用下倾斜煤层底板隔水关键层的力学分析模型,利用弹性力学理论结合Mohr - Coulomb(莫尔-库仑)破坏准则,求解了倾斜煤层底板隔水关键层所能承受的极限水压值,推导了倾斜煤层底板突水力学判据的表达式,为现场倾斜煤层底板突水预测提供了理论依据;
     (4)从流固耦合的角度出发,利用FLAC3D数值计算软件,建立了承压水上倾斜煤层底板三维流固耦合数值计算模型,模拟分析了倾斜煤层工作面推进过程中,在采动矿压和水压共同作用下底板岩体的变形破坏、承压水的入侵导升及工作面底板易于突水的位置,为现场确定倾斜煤层底板突水危险区域提供了理论依据;
     (5)利用井下高精度微震监测技术,对桃园煤矿承压水上1066倾斜煤层工作面底板岩体进行了连续的、动态监测,结合本文提出的底板突水判据对1066工作面底板突水预测的结果,划分了底板突水危险区域,通过对底板突水危险区域进行注浆加固,成功的实现了桃园煤矿承压水上1066倾斜煤层工作面的安全高效开采。
     本文研究成果可为承压水上倾斜煤层的安全高效开采提供重要指导作用。
     该论文有图67幅,表7个,参考文献186篇。
At present, water-inrush from coal seam floor is a problem that serious threatens to the safety production in coal mine. Water-inrush is a phenomenon that when mining is carried out above a confined aquifer, the combined action of mining pressure and hydraulic pressure may induce the deformation failure of coal seam floor and large confined water inrush into mining space. For a long time, many scholars have made a large number research on the deformation failure, water-inrush mechanism and water-inrush prediction of the nearly horizontal and gently inclined coal seam floor, and have achieved the comparatively abundant research achievements which perform an important directive function to the safety mining above a confined aquifer. However, the theoretical research on the deformation failure, water-inrush mechanism and water-inrush prediction of an inclined coal seam floor is not adequate, and must be investigated further. So in the present paper, from the perspective of the combined action of mining pressure and hydraulic pressure, we used theoretical analysis, numerical calculation combined with the field monitoring to systematic research on the deformation failure, water-inrush mechanism and water-inrush prediction of an inclined coal seam floor, and obtained some innovative achievements as follows:
     (1) According to the overburden load distribution characteristics of an inclined coal seam, we established a mechanical analysis model of coal seam floor failure characteristic along the tilted direction of coal seam, using the theory of elasticity combined with Mohr-Coulomb yield criterion, and we deduced the stress expressions at any point of floor strata along the tilted direction of coal seam and the calculation formula of floor failure depth.
     (2) On the basis of the occurrence features of an inclined coal seam, using the software FLAC3D, we established a three-dimensional numerical calculation model of an inclined coal seam workface with longwall mining, simulated and analyzed the distribution law of stress, failure depth and failure form of floor strata along the tilted direction of coal seam at different mining depth, different workface width and different coal seam pitch.
     (3) Based on the load distribution characteristics of an inclined coal seam floor above a confined aquifer, we established a mechanical analysis model of water-resisting key strata of an inclined coal seam floor with the load of linear increased hydraulic pressure, using the theory of elasticity combined with Mohr-Coulomb yield criterion, and calculated the ultimate hydraulic pressure that the water-resisting key strata of inclined coal seam floor can bear, and deduced the mechanical criterion expressions of water-inrush from an inclined coal seam floor, which can provide a theoretical basis to predict the water-inrush from an inclined coal seam floor in the field.
     (4) From the view of the fluid-solid coupling, using the software FLAC3D, we established a three-dimensional fluid-solid coupling numerical calculation model of an inclined coal seam floor above a confined aquifer, simulated and analyzed the deformation failure, intrusion of confined water and the location prone to water-inrush of an inclined coal seam floor under the combined action of mining pressure and hydraulic pressure, which can provide a theoretical basis to determine areas in an inclined coal seam floor prone to water-inrush in the field.
     (5) We used a high-precision micro-seismic monitoring technique to continuous and dynamic monitor the 1066 workface floor strata of an inclined coal seam above a confined aquifer at Taoyuan Coal Mine, and determined the areas prone to water-inrush. Combined the water-inrush prediction result obtained by the water-inrush criterion of an inclined coal seam floor, through grouting consolidation the dangerous areas prone to water-inrush, we have achieved safe and highly efficient mining of the 1066 inclined coal seam above the confined aquifer at the Taoyuan coal mine successfully.
     The research achievements above can provide an important directive function to the inclined coal seam safety mining above a confined aquifer.
引文
[1]朱开鹏.非均布水压作用下采煤工作面底板破坏突水机理研究[D].煤炭科学研究总院硕士学位论文, 2009.
    [2]张文泉.矿井(底板)突水灾害的动态机理及综合判测和预报软件开发研究[D].山东科技大学博士学位论文, 2004.
    [3]虎维岳.矿山水害防治理论与方法[M].北京:煤炭工业出版社, 2005.
    [4]张金才,张玉卓,刘天泉.岩体渗流与煤层底板突水[M].北京:地质出版社. 1997.
    [5]徐永圻.采矿学[M].徐州:中国矿业大学出版社, 2003.
    [6]杨孟达.煤矿地质学[M].北京:煤炭工业出版社, 2000.
    [7]王作宇,刘鸿泉.承压水上采煤[M].北京:煤炭工业出版社, 1992.
    [8] Reibieic M.S., Hydrofracturing of rock as a method of water, mudmand gas inrush hazards in underground coal mining [J]. 4th IMWA, Yugoslavia, 1991.
    [9] B.斯列萨列夫.水体下安全采煤的条件,国外矿山防治水技术的发展与实践,冶金矿山设计院, 1983.
    [10] M.鲍莱茨基, M.胡戴克著,于振海,刘天泉译.矿山岩体力学[M].北京:煤炭工业出版社, 1985.
    [11] N.A.多尔恰尼诺夫,赵淳义译.构造应力与井巷工程稳定性[M].北京:煤炭工业出版社, 1984.
    [12]虎维岳,田干,李抗抗.煤层底板隔水层阻抗高压水侵入机理及其控制因素[J].煤田勘探, 2008, 36(6): 38-41.
    [13]田干.煤层底板隔水层阻抗高压水侵入机理研究[D].煤炭科学研究总院西安分院硕士学论文, 2005.
    [14]孙晓光.煤层底板突水预测及防治研究[D].中国矿业大学硕士学位论文, 2008.
    [15]武龙飞.朱村矿承压水上膏体充填开采底板破坏规律研究[D].中国矿业大学硕士学位论文, 2008.
    [16]靳德武.我国煤层底板突水问题的研究现状及展望[J].煤炭科学技术, 2002, 30(6): 1-4.
    [17]曹吉盛.高承压水作用下工作面突水机理数值模拟研究[D].山东科技大学硕士学位论文, 2006.
    [18]王希良,彭苏萍,郑世书.深部煤层开采高承压水突水预报及控制[J].辽宁工程技术大学学报, 2004, 23(6): 758-760.
    [19]刘树才.煤矿底板突水机理及破坏裂隙带演化动态探测技术[D].中国矿业大学博士学论文, 2008.
    [20]白海波,陈忠胜,张景钟.徐州矿区奥灰岩溶水突出的原因与防治[J].煤田地质与勘探,1999, 27(3): 47-49.
    [21]于喜东.地质构造与煤层底板突水[J].煤炭工程, 2004, (12): 34-35.
    [22]卜万奎.采场底板断层活化及突水力学机理研究[D].中国矿业大学博士学位论文, 2009.
    [23]李家祥,李大普,张文泉等.原始地应力与煤层底板突水的关系[J].岩石力学与工程1999, 18(4): 419-423.
    [24]韩爱民,白玉华,孙家齐.断层透水性工程地质评价[J].南京建筑工程学院学报, 2002, (1): 21-25.
    [25]刘蕴祥,陈祥恩,张胜利.永城矿区煤层底板裂隙灰岩突水机理[J].煤田地质与勘探, 30(3): 45-46.
    [26]牛建立.煤层底板采动岩水耦合作用与高承压水体上安全开采技术研究[D].煤炭科学研究总院西安分院博士学论文, 2008.
    [27]郑纲.煤矿底板突水机理与底板突水实时监测技术研究[D].长安大学博士学位论文, 2004.
    [28]许学汉,王杰等.煤矿突水预报研究.北京:地质出版社, 1991.
    [29]荆自刚.峰峰二矿开采活动与底板突水关系研究[J].煤炭学报, 1984, (4).
    [30]王良,庞荫恒,郝顾明等.采动矿压与底板突水的研究[J].煤田地质与勘探, 1986, (3).
    [31]刘宗才,于红.“下三带”理论与底板突水机理[J].中国煤田地质, 1991, (2).
    [32]李白英.预防矿井底板突水的“下三带”理论及其发展与应用明[J].山东矿业学院学报, 1999, (4): 11-18.
    [33]张渊.开采矿压对底板的损伤破坏及其对突水的诱发作用[J].太原理工大学学报, 2002, 33(3): 252-256.
    [34]施龙青,宋振骐.采场底板突水条件及位置分析[J].煤田地质与勘探, 1999, 27(5): 49-51.
    [35]施龙青,韩进,高延法.采场损伤底板破坏深度[J].煤炭学报, 2004, 29(增): 1-4.
    [36]施龙青.底板突水机理研究综述[J].山东科技大学学报, 2009, 28(3): 17-23.
    [37]施龙青,韩进,刘同彬,景继东,李子林.采场底板断层防水煤柱留设研究[J].岩石力学与工程学报, 2005, 24(增2): 5585-5590.
    [38]施龙青,韩进.开采煤层底板“四带”划分理论与实践[J].中国矿业大学学报, 2005, 42(1):16-23.
    [39]王作宇,刘鸿泉,王培彝等.承压水上采煤学科理论与实践[J].煤炭学报, 1994, 19(1): 40-48.
    [40]杨映涛,李抗抗.用物理相似模拟技术研究煤层底板突水机理[J],煤田地质与勘探, 1997, (25): 33-36.
    [41]张金才,刘天泉.论煤层底板采动裂隙带的深度及分布特征[J].煤炭学报, 1990, 15(1): 46-54.
    [42]张金才,肖奎仁.煤层底板采动破坏特征研究[J].煤矿开采, 1993, (3): 44-49.
    [43] Zhang Jincai, Shen Baohong, Coal mining under aquifers in China: a case study [J]. International Journal of Rock Mechanics & Mining Sciences, 2004, 41: 629-639.
    [44] Zhang Jincai, Investigations of water inrushes from aquifers under coal seams [J]. International Journal of Rock Mechanics & Mining Sciences, 2005, 42: 350-360.
    [45] Zhang Jincai, Peng Suping, Water inrush and environmental impact of shallow seam mining [J]. Environmental Geology, 2005, 48: 1068-1076.
    [46] Yin Shangxian, Zhang Jincai, Impacts of karst paleo-sinkholes on mining and environment in northern China [J]. Environmental Geology, 2005, 48: 1077-1083.
    [47]钱鸣高,缪协兴,许家林,茅献彪.岩层控制的关键层理论[M].徐州:中国矿业大学出版社, 2003.
    [48]钱鸣高,缪协兴,黎良杰.采场底板岩层破断规律的理论研究[J].岩土工程学报, 1995, 17(6): 56-61.
    [49] Xu Jialin, Qian Minggao, Study and application of mining-induced fracture distribution in green mining [J]. Journal of China University of Mining & Technology, 2004, 33(2): 141-144.
    [50] Qian Minggao, Miao Xiexing, Li Liangjie, Mechanical behaviour of main floor for water inrush in longwall mining [J]. Journal of China University of Mining & Technology, 1995, 5(1): 9-16.
    [51]黎良杰,钱鸣高,李树刚.断层突水机理分析[J].煤炭学报, 1996, 21(2): 119-123.
    [52]黎良杰.采场底板突水机理的研究[D].中国矿业大学博士学位论文, 1995.
    [53]黎良杰,钱鸣高,闻全,孟益平.底板岩体结构稳定性与底板突水关系的研究[J].中国矿业大学学报, 1995, 24(4): 18-23.
    [54]浦海.保水采煤的隔水关键层模型及力学分析与应用[D].中国矿业大学博士学位论文, 2007.
    [55]白海波.奥陶系顶部岩层渗流力学特性及作为隔水关键层应用研究[D].中国矿业大学博士学位论文, 2008.
    [56] Wang Jingming, Ge Jiade, Wu Yuhua, Deng Xiqing, He Zhaoli, Mechanism on progressive intrusion of pressure water under coal seams into protective aquiclude and its application in prediction of water inrush [J]. Journal of Coal Science & Engineering, 1996, 2(2): 9-15.
    [57] Wang Jingming, Li Jingsheng, Gao Zhilian, Yang Baoyu, Coupling model of two phase flow in a fracture-rock matrix system and its stochastic feature analysis [J]. Journal of Coal Science & Engineering, 1998, 4(1): 5-10.
    [58]王经明.承压水沿底板递进导升机理的模拟与观测[J].岩土工程学报, 1999, 5(21): 546-550.
    [59]王经明.承压水沿底板递进导升机理的物理方法研究[J].煤田地质与勘探, 1992, 27(6): 40-44.
    [60]王经明.承压水沿煤层底板递进导升的突水机理及其应用[D].煤炭科学研究总院博士学位论文, 2004.
    [61]高延法,于永辛,牛学良.水压在底板突水中的力学作用[J].煤田地质与勘探, 1996, 24(6): 37-39.
    [62]高延法,施龙青,娄华君等.底板突水规律与突水优势面[M].徐州:中国矿业大学出版社, 1999.
    [63]高延法,于永辛,牛学良.水压在底板突水中的力学作用[J].煤田地质与勘探, 1989, 24(6): 37-39.
    [64]高延法,李白英.受奥灰承压水威胁煤层采场底板变形破坏规律研究[J].煤炭学报, 1992, 17(2): 32-39.
    [65]王延福,靳德武,曾艳京,王晓明.岩溶煤矿矿井煤层底板突水非线性预测方法研究[J].中国岩溶, 1998, 17(1): 57-66.
    [66]王延福,庞西岐,靳德武,曾艳京,王晓明.岩溶矿井煤层底板突水的非线性动力学模型[J].中国岩溶, 2000, 19(1): 81-89.
    [67]王延福,靳德武,曾艳京,王晓明.岩溶矿井煤层底板突水系统的非线性特征初步分析[J].中国岩溶, 1998, 17(4): 331-341.
    [68]靳德武,王延福,马培智.煤层底板突水的动力学分析[J].西安矿业学院学报, 1997, 17(4): 354-356.
    [69]王连国,宋杨.底板突水煤层的突变学特征[J].中国安全科学学报, 1999, 9(5): 10-21.
    [70]王连国,宋杨,缪协兴.底板岩层变形破坏过程中混沌性态的Lyapunov指数描述[J].岩土工程学报,2002, 24(3): 356-359.
    [71]王连国,宋杨.煤层底板突水突变模型[J].工程地质学报, 2000, 8(2): 160-163.
    [72]王连国,宋杨.底板突水的非线性特征及预测[M].北京:煤炭工业出版社, 2001.
    [73]王连国,宋杨.煤层底板突水自组织临界特性研究[J].岩石力学与工程学报, 2002, 21(8): 1205-1208.
    [74]王连国,宋杨.基于尖点突变模型的煤层底板突水预测研究[J].岩石力学与工程学报, 2003, 22(4): 573-577.
    [75]白晨光,黎良杰,于学馥.承压水底板关键层失稳的尖点突变模型[J].煤炭学报,1997, 22(2): 149-154.
    [76]缪协兴,刘卫群,陈占清.采动岩体渗流理论[M].北京:科学出版社, 2004.
    [77] Kong Hailing, Miao Xiexing, Wang Luzhen, Zhang Yu, Chen Zhanqing, Analysis of the harmfulness of water-inrush from coal seam floor based on seepage instability theory [J]. Journal of China University of Mining & Technology, 2007, 17(4): 453-458.
    [78]李高兴,高延法.开采对底板岩体渗透性的影响[J].岩石力学与工程学报, 2003, 22(7): 1078-1082.
    [79] Jenny Suckale, Induced seismicity in hydrocarbon fields [J]. Advances in Geophysics, 2009, 51(2): 55-106.
    [80] Slawomir J. Gibowicz, Seismicity induced by mining: recent research. [J]. Advances in Geophysics, 2009, 51(1): 1-53.
    [81]张文泉,张红日,徐方军,李敬法,大采深倾斜薄煤层底板采动破坏形态的连续探测[J].煤田地质与勘探, 2000, 28(2): 39-42.
    [82]张红日,张文泉,温兴林,等.矿井底板采动破坏特征连续观测的工程设计与实践[J].矿业研究与开发, 2000, 20(4): 1-4.
    [83]刘盛东,刘士刚,吴荣新等.网络并行电法仪与稳态电法勘探方向[J].中国科技成果, 2007, (24): 31-33.
    [84] T. Li, M.F. Cai, M. Cai, A review of mining-induced seismicity in China [J]. Int. Jour. of Rock Mech. and Min. Sci., 2007, 44(8): 1149-1171.
    [85] Milev A.M., Spottisswoode S M. Effect of the rock properties on mining-induced seismicity around the venterdrop contact roof, Witwatersrand Basin, South Africa [J]. Pure Appl. Geophys., 2002, (159): 165-177.
    [86] Gibowicz S. J., Seismicity induced by mining [J]. Advances in Geophysics, 1990, 32: 1-74.
    [87] Mendecki A.J., Principles of monitoring seismic rock mass to mining [A]. Gibowiez and Lasocki eds.Rock bursts and Seismieity in Mines [C]. Rotterdam: Balkema, 1997, 69-80.
    [88] Yong R.P., Talebi S., Hutchins A., eta1, Analysis of mining-induced microseismic events at Strathcona mine, Sudbury, Cannada [J]. Pageoth., 1989, 129(3-4): 455-474.
    [89] Zhang Xingmin, Cheng Jiulong, Jiang Fuxing, Research on coalmine disaster accident forecasting using microseismic monitoring technology , Mine Hazards Prevention and Control Technology [C], Science Press USA Inc., 2007.
    [90]唐礼忠,杨承祥,潘长良.大规模深井开采微震监测系统站网布置优化[J].岩石力学与工程学报, 2006, 25(10): 2036-2042.
    [91]李庶林,尹贤刚,郑文达等.凡口铅锌矿多通道微震监测系统及其应用研究[J].岩石力学与工程学报, 2005, 24(12): 2048-2053.
    [92]姜福兴,杨淑华,成云海等.煤矿冲击地压的微地震监测研究[J].地球物理学报, 2006, 49(5): 1511-1516.
    [93]刘国清,基于声发射的岩体工程灾害微震监测系统[J].采矿技术, 2005, 5(1): 37-38.
    [94]董世华,基于微震监测技术在深井矿山地震波形的识别[J].现代矿业, 2009, 7(7): 129-131.
    [95]唐礼忠,潘长良,杨承祥.冬瓜山铜矿微震监测系统及其应用研究[J].金属矿山, 2006 (10): 41-45.
    [96]唐礼忠,潘长良,谢学斌等.冬瓜山铜矿深井开采岩爆危险区分析与预测[J].中南工业大学报(自然科学版), 2002, 33(4): 335-338.
    [97]李庶林,尹贤刚.矿山微震震源机制的初步研究[J].矿业研究与开发,长沙矿山研究院建院50周年院庆论文集, 2006, (10): 141-146.
    [98]杨志国,于润沧,郭然.深井矿山微震事件波形研究[J].中国工程科学, 2008, 10(8): 69-72.
    [99]张银平.岩体声发射与微震监测定位技术及其应用[J].工程爆破, 2002, 8(1): 58-61.
    [100]王焕义.岩体微震事件的精确定位研究[J].工程爆破, 2001, 7(3): 5-8.
    [101]赵兴东,唐春安,李元辉,袁瑞甫.基于微震监测及应力场分析的冲击地压预测方法[J].岩石力学与工程学报, 2005, 24(增1):4745-4749.
    [102]李世愚,和雪松,张少泉等.矿山地震监测技术的进展及最新成果[J].地球物理学进展, 2004, 19(4): 853-859.
    [103]赵向东,陈波,姜福兴.微地震工程应用[J].岩石力学与工程学报, 2002, 21(增2): 2609-2612.
    [104]刘国清.基于声发射的岩体工程灾害微震监测系统[J].采矿技术, 2005, 5(1): 30.
    [105]李庶林.我国金属矿山首套微震监测系统建成并投入使用[J].岩石力学与工程学报, 2004, 23(13): 2156.
    [106]李庶林.试论微震监测技术在地下工程中的应用[J].地下空间与工程学报, 2009, 5(1): 122-128.
    [107]李庶林,尹贤刚,李爱兵.多通道微震监测技术在大爆破余震监测中的应用[J].岩石力学与工程学报, 2005, 24(增1): 4711-4714.
    [108]陆菜平,窦林名,吴兴荣,王慧明,秦玉红.岩体微震监测的频谱分析与信号识别[J].岩土工程学报, 2005, 27(7): 772-775.
    [109]孙庆国,程久龙,韩荣军.微震监测系统监测精度与可靠性分析[J].中国矿业, 2008, 17(5):89-92.
    [110]成云海,姜福兴,张兴民,毛仲玉,冀贞文.微震监测揭示的C型采场空间结构及应力场[J].岩石力学与工程学报, 2007, 26(1): 102-107.
    [111]杨志国,于润沧,郭然,杨承祥,汪令辉.微震监测技术在深井矿山中的应用[J].岩石力学与工程学报, 2008, 27(5): 1066-1073.
    [112]张兴民,于克君,席京德等.微地震技术在煤矿“两带”监测领域的研究与应用[J].煤炭学报, 2000, 25(6): 566-569.
    [113]汪华君,姜福兴,成云海等.覆岩导水裂隙带高度的微地震(MS)监测研究[J].煤炭工程, 2006, (3): 74-76.
    [114]钱鸣高,石平五.矿山压力与岩层控制[M].徐州:中国矿业大学出版社, 2003.
    [115]将金泉,顾兵.大倾角采场围岩应力分布特征[J].矿山压力与顶板管理, 1993, 11(3-4): 110-114.
    [116]将金泉.采场围岩与控制[M].北京:煤炭工业出版社, 1993.
    [117]尹光志,王登科,张卫中. (急)倾斜煤层深部开采覆岩变形力学模型及应用[J].重庆大学学报(自然科学版), 2006, 29 (2): 79-82.
    [118]殷露中,乔福祥,王苇.大倾角条件初次破断薄板挠度位移初探[J].矿山压力与顶板管理, 1996, 14(3): 21-23.
    [119]闻少宏,张勇,王苇.大倾角软岩底板破坏滑移机理[J].矿山压力与顶板管理, 1995,13 (1): 19-24.
    [120]徐芝纶.弹性力学[M].北京:高等教育出版社, 2007.
    [121]贾晓亮.基于FLAC3D的断层数值模拟及其应用[D].河南理工大学硕士学位论文, 2010.
    [122]鲁海峰.承压水上采煤底板变形破坏特征数值模拟研究及其工程应用[D].安徽理工大学硕士学位论文, 2008.
    [123]郑大同编.地基极限承载力的计算[M].北京:中国建筑工业出版社, 1979.
    [124]王作宇.底板零位破坏带最大破坏深度的分析计算[J].煤炭科学技术, 1992, (2): 2-6.
    [125]付国彬,洪允和.缓倾斜工作面的底板破坏区[J].矿山压力与顶板管理, 1992, 10(1): 62-65.
    [126]张金才.矿井防水煤柱稳定性的理论研究[J].煤田地质与勘探, 1987, (2): 37-42.
    [127]蔡美峰,何满潮,刘东燕.岩石力学与工程[M].北京:科学出版社, 2002.
    [128]刘波,韩彦辉. FLAC原理、实例与应用指南[M].北京:人民交通出版社, 2005.
    [129] Itasca Consulting Group, Inc., FLAC 3D user’s Manual [R]. Itasea Consulting Group, Inc., 2000.
    [130]陈育民,徐鼎平. FLAC/ FLAC 3D基础与工程实例[M].北京:中国水利水电出版社, 2009.
    [131]谢文兵,陈晓祥,郑百生.采矿工程问题数值模拟研究与分析[M].徐州:中国矿业大学出版社, 2005.
    [132]彭苏萍,王金安.承压水体上安全采煤[M].北京:煤炭工业出版社, 2001.
    [133]赵阳升,胡耀青.承压水上采煤理论与技术[M].北京:煤炭工业出版社, 2004.
    [134]张文泉,杨传国,姜培旺,张红日,孔令珍,邵长义.矿井水害预防与治理[M].徐州:中国矿业大学出版社, 2008.
    [135] S.铁摩辛柯, J.盖莱.弹性稳定理论(第二版)[M].北京:科学出版社, 1965.
    [136] S.铁摩辛柯, S.沃诺斯基.板壳理论(第一版)[M].北京:科学出版社, 1977.
    [137]黄与宏.高等结构力学丛书之一板结构[M].北京:人民交通出版社, 1992.
    [138]史述昭.弹性力学及有限元[M].北京:水利电力出版社, 1990.
    [139]鲍四元. Mathematica有限元分析与工程应用[M].北京:清华大学出版社, 2010.
    [140]张金才,刘天泉.煤层底板突水影响因素的分析与研究[J].煤矿开采, 1993, (4): 35-39.
    [141]王作宇,刘鸿泉.底板空间剩余完整岩体极限阻抗水压能力的分析计算[J].岩石力学与工程学报, 1994, 13(4): 319-326.
    [142]张金才.煤层底板突水预测的理论判据及其应用[J].力学与实践, 1990, 12(2): 35-38.
    [143]冯梅梅.带压开采煤层底板阻隔水性能的力学分析及应用研究[D].中国矿业大学博士学位论文, 2007.
    [144]张培森.采动条件下底板应力场及变形破坏特征的研究[D].山东科技大学硕士学位论文, 2005.
    [145]海龙.基于流固耦合理论的煤层开采底板突水问题研究[D].辽宁工程技术大学硕士学位论文, 2007.
    [146]吉小明,王宇会.岩体地下流固耦合理论的研究综述[J].石家庄铁道学院学报, 2002, 15(2): 27-31.
    [147]董平川,徐小荷,何顺利.流固耦合问题及研究进展[J].地质力学学报, 1999, 5(1): 17-26.
    [148]徐曾和,徐小荷.论矿业工程中的流-固耦合渗流问题[J].中国矿业, 1996, 15(3): 53-60.
    [149]梁冰,孙可明,薛强.地下工程中的流-固耦合问题的探讨[J].辽宁工程技术大学学报, 2001, 20(2): 129-134.
    [150]任长吉,黄涛.裂隙岩体渗流场与应力场耦合数学模型的研究[J].武汉大学学报, 2004, 37(2): 8-12.
    [151]刘建军,薛强.岩土工程中的若干流-固耦合问题[J].岩土工程界, 2004, 7(11): 27-30.
    [152]杨天鸿,唐春安,谭志宏,朱万成,冯启言.岩体破坏突水模型研究现状及突水预测预报研究发展趋势[J].岩石力学与工程学报,2007, 26(2): 268-277.
    [153] Snow D.T., A parallel plates model of fractured permeable media [D]. University of California, Berkeley, 1996.
    [154] Snow D.T., Rock fracture spacing and porosities [J]. Jour. of Soil Mech. Found. Div., Proc. ASCE, 1968.
    [155] Snow, D.T., The Frequency and apertures of fractures in rock [J]. Int. Jour. of Rock Mech. & Min. Sci. & Geomech. Abst., 1970, 7: 23-40.
    [156] Louis C., Rock hydraulics in rock mechanics, edited by L. Muller [J], Verlay Wien, New York, 1974.
    [157] Bai M., Elsworth D. Coupled processes in subsurface deformation, flow, and transport [M]. [S. L.]: American Society of Civil Engineers, 2000.
    [158]王连国.淮北桃园煤矿底板水的防治[R].中国矿业大学工程力学研究所(项目报告), 2008.
    [159] Wang L G, Zhang Z K, Lu Y L, Yang H B, Yang S Q, Sun J, Zhang J Y. Combined ANN prediction model for failure depth of coal seam floors. Mining Science and Technology, 2009, 19(5): 684-688.
    [160]张文泉,李加祥,温兴林.缓倾斜煤层底板采动破坏深度与回采参数关系的研究[J].山东矿业学院学报, 1993, 12(1): 45-49.
    [161]付继武,姜增平.浅析缓倾斜煤层底板采动破坏深度与回采参数关系[J].煤炭技术, 2003, 22(2): 34-36.
    [162] D. Jolly, Stephen R. McNutt, Seismicity at the volcanoes of Katmai National Park, Alaska; 1995.7-1997.12 [J]. Journal of Volcanology and Geothermal Research, 1999, 93(3-4): 173-190.
    [163] Ernest L. Majer, Roy Baria, Mitch Stark, Stephen Oates, Julian Bommer, Bill Smith, Hiroshi Asanuma, Induced seismicity associated with enhanced geothermal systems [J]. Geothermics, 2007, 36(3):185-222.
    [164] M. C. Dentith, W. E. Featherstone, Controls on intra-plate seismicity in southwestern Australia [J]. Tectonophysics, 2003, 376(4): 167-184.
    [165] J.M. Ferreira, G.S. Fran?a, C.S. Vilar, A.F. do Nascimento, F.H.R. Bezerra, M. Assump??o, Induced seismicity in the Castanh?o reservoir, NE Brazil-Preliminary results [J]. Tectonophysics, 2008, 456(1): 103-110.
    [166] S. I. Sherman, V. M. Dem'yanovich, S. V. Lysak, Active faults, seismicity and recent fracturing in the lithosphere of the Baikal rift system [J]. Tectonophysics, 2004, 380(3): 261-272.
    [167] D. V. Rundquist, P. O. Sobolev, Seismicity of mid-oceanic ridges and its geodynamic implications: a review [J]. Earth-Science Reviews, 2002, 58(1-2): 143-161.
    [168] M.O. Cotilla Rodriguez, H.J. Franzke, D. Cordoba Barba, Seismicity and seismoactive faults of Cuba [J]. Russian Geology and Geophysics, 2007, 48(6): 505-522.
    [169] A. Badawy, S.M. Abdel-Monem, K. Sakr, Sh.M. Ali, Seismicity and kinematic evolution of middle Egypt [J]. Journal of Geodynamics, 2006, 42(1-3): 28-37.
    [170] Ya.B. Radziminovich, A.A. Shchetnikov, Historical seismicity on the southern margin of the Siberian craton: new data [J]. Russian Geology and Geophysics, 2008, 49(9): 698-707.
    [171] Theodoros M. Tsapanos, The depth distribution of seismicity parameters estimated for the South American area [J]. Earth and Planetary Science Letters, 2000, 180(1-2): 103-115.
    [172] Miguel A. Santoyo, Antonio García-Jerez, Francisco Luzón, A subsurface stress analysis and its possible relation with seismicity near the Itoiz Reservoir, Navarra, Northern Spain [J]. Tectonophysics, 2010, 482(1-4): 205-215.
    [173] Changyuan Qin, E. E. Papadimitriou, B. C. Papazachos, G. F. Karakaisis, Time-dependent seismicity in China [J]. Journal of Asian Earth Sciences, 2001, 19(1-2): 97-128.
    [174] M. Fernández, W. Rojas, Faulting, shallow seismicity and seismic hazard analysis for the Costa Rican Central Valley [J]. Soil Dynamics and Earthquake Engineering, 2000, 20(1-4): 59-73.
    [175] Chien-chih Chen, Ling-yunchiao, Ya-ting Lee, Hui-wen Cheng, Yih-min Wu, Long-range connective sandpile models and its implication to seismicity evolution [J]. Tectonophysics, 2008, 454(1-4): 104-107.
    [176] Sun J, Wang L G, Wang Z S, Hou H Q, Shen Y F. Determining areas in an inclined coal seam floor prone to water-inrush by micro-seismic monitoring, Mining Science and Technology, 2011, 21(2): 165-168.
    [177] Wang L G, Miao X X, Wu Y, Sun J, Yang H B. Discrimination condition and process of the water-resisting key strata, Mining Science and Technology, 2010,20(2): 224-229.
    [178]芦东平,潘一山.矿山微震监测结果可视化[J].辽宁工程技术大学学报(自然科学版), 2008, 27(增): 107-109.
    [179]李全晓,姜福兴,王存文,等.微震监测结果在矿图上的定位合成及应用[J].采矿与安全工程学报, 2007, 24(2): 165-168. [180逢焕东,姜福兴.微地震监测中传感器的布置方法[J].有色金属(矿山部分), 2003, 55(6): 20-21.
    [181]逄焕东,姜福兴,张兴民.微地震的线性方程定位求解及其病态处理[J].岩土力学,2004, 25(增): 60-62.
    [182]李会义,姜福兴,杨淑华.基于Matlab的岩层微地震破裂定位求解及其应用[J].煤炭学报, 2006, 31(2): 154-158.
    [183]姜福兴, XUN Luo,杨淑华.采场覆岩空间破裂与采动应力场的微震探测研究[J].岩土工程学报, 2003, 25(1): 23-25.
    [184]姜福兴,叶根喜,王存文,张党育,关永强.高精度微震监测技术在煤矿突水监测中的应用[J].岩石力学与工程学报, 2008, 27(9): 1932-1938.
    [185]姜福兴,杨淑华, XUN Luo.微地震监测揭示的采场围岩空间破裂形态[J].煤炭学报, 2003, 28(4): 357-360.
    [186]姜福兴, XUN Luo.微震监测技术在矿井岩层破裂监测中的应用[J].岩土工程学报, 2002, 24(2): 147-149.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700