用户名: 密码: 验证码:
煤层群开采瓦斯卸压抽采“三带”范围的理论研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
我国煤储层普遍具有变质程度高、渗透率低、压力小和含气饱和度低的特点,采前瓦斯抽采难度大,而煤层开采后会引起周围岩层产生“卸压增透”效应,煤岩层渗透率将增大数十倍至数百倍,瓦斯渗流速度加剧,瓦斯涌出量随之增大,这就为瓦斯的抽采创造了有利条件。因此,利用煤层开采引起的卸压作用进行煤与瓦斯共采将是我国煤矿瓦斯灾害防治与环境保护的最佳途径。目前,从煤与瓦斯共采的角度出发,作者所在课题组提出了煤层群条件下采动上覆瓦斯卸压抽采的“三带”划分:导气裂隙带、卸压解吸带和不易解吸带,但尚未给出明确的“三带”范围划分指标,也没有对其影响因素进行研究。本论文对此进行了深入研究。
     根据岩石三轴卸载过程中原生裂纹变形的岩石本构模型,得出了轴压卸载条件下岩石变形的计算解析式,并以膨胀率达到3‰作为充分卸压的变形临界值,计算、拟合得出不同埋深条件下充分卸压的应力卸压程度临界值计算通式,确定了煤层群开采瓦斯卸压抽采“三带”范围中卸压解吸带的应力卸压程度指标。运用相似材料物理模拟和数值模拟,就覆岩关键层结构、工作面面长和煤层采高对“三带”范围的影响进行了研究。结果表明:工作面面长、煤层采高对覆岩瓦斯卸压抽采“三带”范围影响的本质是其对覆岩关键层破断的控制作用,关键层的运动状态直接影响“三带”范围的变化;覆岩裂隙带内存在关键层时,该关键层的破断将引起导气裂隙带高度突增,其高度明显高于经验公式计算高度并止于该关键层上方另一层关键层之下;卸压解吸带止于覆岩中尚未发生破断且下方存在离层空间的关键层之下,其最大高度止于主关键层之下;在充分采动条件下,仅采空区周围一定范围(即采动裂隙“O”形圈)内覆岩长期处于充分卸压状态,该范围宽度随煤层采高的加大而增大。基于以上研究结果,确定了瓦斯卸压抽采“三带”范围的判别方法。
     基于“三带”范围判别提出了煤层群卸压瓦斯抽采模式的选择方法。通过对阳泉矿区9404综放面和K8206综放面覆岩瓦斯卸压抽采“三带”范围的判别,对瓦斯卸压涌出情况进行了预测,分别选择了“U+L型通风—上向穿层钻孔”抽采模式和“U+I型通风—走向高抽巷”抽采模式治理瓦斯。抽采效果表明:9404综放面导气裂隙带内卸压瓦斯抽采率达到77.32%;K8206综放面导气裂隙带内卸压瓦斯抽采率达到87.37%,卸压解吸带内卸压瓦斯抽采率达到88.43%。工程实践证明了瓦斯卸压抽采“三带”范围判别及卸压瓦斯抽采模式选择方法的可靠性和可行性。
The coal reservoirs in China are characteristic of high metamorphism degree, low permeability, tiny pressure and low gas saturation generally., and there is great difficulty in gas extraction before coal mining, but coal mining can lead to the pressure relief and permeability improvement among surrounding strata, the permeability of coal seam will increase by dozens of times to hundreds of times, the flow velocity faster, and gas emission volume greater, which provides a favorable condition for gas extraction. Therefore, coal and gas simultaneous extraction by the use of pressure relief induced by mining is the optimal method to prevent and cure gas disasters in coal mine as well as protect the environment. Presently, from the standpoint of coal and gas simultaneous extraction, the research group in which the author studies proposed‘three zones’of gas pressure relief and extraction in overlying strata of coal seam group, they are gas conductive fracture zone, gas pressure relief and desorption zone and difficult desorption zone. However, However, explicit scope dividing index of the“three zones”and its influencing factors were not studied. So, this dissertation has further studied these problems.
     The dissertation comes up with the calculating analytic formula for rock deformation under the condition of axial pressure unloading from the rock constitutive model of original fracture deformation in the process of rock triaxial unloading, and makes expansion ratio reaching 3‰as the deformation critical value for sufficient pressure relief. In addition, it also presents the calculative formula for critical value of sufficient pressure relief degree in different buried depths by calculating and fitting, and confirms the index of pressure relief degree of gas pressure relief and desorption zone. By the use of similar material physical simulation and numerical simulation, the influence of overlying key stratum structure, working face length and mining height on the scope of the“three zones”is studied. The results show that the essence of the influence of working face length and mining height on the scope of the“three zones”is their control effect on the failure of key stratum, and key stratum movement directly influences the scope of the“three zones”. If there exists a key stratum within the fracture zone of overlying strata, the failure of the key stratum will lead to an uprush in the height of gas conductive fracture zone, which is higher than empirical formula result, and the gas conductive fracture zone height will reach the bottom of the upper key stratum. Gas pressure relief and desorption zone develops to the unbroken key stratum under which exist much bed separation space, and its maximum height reaches the bottom of the primary key stratum;In the condition of critical mining, only the stratum in“O”shape circle could keep sufficient pressure relief, and the width of sufficient pressure relief scope increases as the mining height increases. Based on the research results above, the dissertation propose the discrimination method of the“three zones”of gas pressure relief and extraction.
     Based on the discrimination of the“three zones”of gas pressure relief and extraction, the method for selecting gas pressure relief and extraction mode in coal seam group is presented. According to the discrimination of“three zones”scope of the fully mechanized caving face 9404 and K8206 in Yangquan mine area, gas pressure relief and emission status are forecasted, and the gas extraction techniques of“U+L ventilation & crossing layers gas extraction drilling”and“U+I ventilation & gas extraction of strike high-level gas extraction roadway”were selected to control gas. Gas extraction effect show that gas extraction rate of gas conductive fracture zone in the fully mechanized caving face 9404 and K8206reach 77.32% and 87.37% respectively, gas extraction rate of gas pressure relief and desorption zone in the fully mechanized caving face K8206 reaches 88.43%. The reliability and feasibility of the discrimination method of the“three zones”of gas pressure relief and extraction, and the select method of gas extraction technique have been proved by engineering practices.
引文
[1]钱鸣高.煤炭产业特点与科学发展[J].中国煤炭,2006,32(11):5-8.
    [2]钱鸣高,许家林,缪协兴.煤矿绿色开采技术[J].中国矿业大学学报,2003,32(4):343-348.
    [3]钱鸣高,许家林.煤炭工业发展面临几个问题的讨论[J].采矿与安全工程学报,2006,23(2):127-132.
    [4]叶建平,史保生,张春才.中国煤储层渗透性及其主要影响因素[J].煤炭学报,1999,24(2):118-122.
    [5]黄盛初,朱超,刘馨,等.中国煤矿区煤层气开发产业化前景[A].2001年煤矿区煤层气项目投资与技术国际研讨会论文集[C].徐州:中国矿业大学出版社,2001.
    [6]周世宁,鲜学福,朱旺喜.煤矿瓦斯灾害防治理论战略研讨[M].徐州:中国矿业大学出版社,2001.
    [7] Romeo M. Flores.Coalbed methane:From hazard to resource[J].International Journal of Coal Geology,1998,35(1-4):3-26.
    [8]彭成.我国煤矿瓦斯抽采与利用的现状及问题[J].中国煤炭,2007,33(2):60-62.
    [9] Enever R E,Hennig A.The relationship between permeability and effective stress for Australian coals and its implications with respect to coalbed methane exploration and reservoir modeling[C]. In: Proceedings of the 1997 International Coalbed Methane Symposium.Alabama:The University of Alabama Tuscaloosa,1997:13-22.
    [10]许家林,钱鸣高,金宏伟.基于岩层移动的“煤与煤层气共采”技术研究[J].煤炭学报,2004,29(2):129-132.
    [11]屈庆栋.采动上覆瓦斯卸压运移的“三带”理论及其应用研究[D].中国矿业大学博士论文,2010.
    [12]钱鸣高,石平五,许家林.矿山压力与岩层控制[M].徐州:中国矿业大学出版社,2010.
    [13]陈炎光,钱鸣高.中国煤矿采场围岩控制[M].徐州:中国矿业大学出版社,1994.
    [14] B.A.布克林斯基.矿山岩层与地表移动[M].北京:煤炭工业出版社,1989.
    [15] Helmut kratzsch.Mining Subsidence Engineering[M].Springer,1983.
    [16] H.克拉茨.采动损害及其防护[M].北京:煤炭工业出版社,1984.
    [17]宋振骐.实用矿山压力与控制[M].徐州:中国矿业大学出版社,1988.
    [18] Qian Minggao.A study of the behavior of overlying strata in longwall mining and its application to strata control.In:Proceedings of the Symposium on Strata Mechanics. Elsevier Scientific Publishing Company,1982:13-17.
    [19]钱鸣高.采场上覆岩层岩体结构模型及其应用[J].中国矿业学院学报,1982(2):1-11.
    [20]钱鸣高,李鸿昌.孔庄矿上行开采的研究[J].中国矿业学院学报,1982(2):12-24.
    [21]钱鸣高,李鸿昌.采场上覆岩层活动规律及其对矿山压力的影响[J].煤炭学报,1982(2):1-8.
    [22]钱鸣高,朱德仁,王作棠.老顶岩层断裂型式及对工作面来压的影响[J].中国矿业大学学报,1986(2):9-17.
    [23]钱鸣高,赵国景.老顶断裂前后的矿山压力变化[J].中国矿业大学学报,1986(6):11-19.
    [24] Qian Minggao,Zhao Guojing.The behavior of the main roof fracture in longwall mining and its effect on roof pressure.In:Rock Mechanics(Proceedings of the 28th U.S.Symposium),1987:1123-1128.
    [25]钱鸣高,何富连,王作棠等.再论采场矿山压力理论[J].中国矿业大学学报,1994(3):1-9.
    [26]缪协兴,钱鸣高.采场围岩整体结构与砌体梁力学模型[J].矿山压力与顶板管理,1995(4):2-8.
    [27]钱鸣高,缪协兴,许家林.岩层控制中的关键层理论研究[J].煤炭学报,1996,21(3):225-230.
    [28]许家林.岩层移动与控制的关键层理论及其应用[D].徐州:中国矿业大学,1999.
    [29]钱鸣高,缪协兴,许家林,等.岩层控制的关键层理论[M].徐州:中国煤炭出版社,2003.
    [30]许家林,钱鸣高.覆岩关键层位置的判别方法[J].中国矿业大学学报,2000,29(5):464-467.
    [31]许家林,吴朋,朱卫兵.关键层判别方法的计算机实现[J].矿山压力与顶板管理,2000(4):29-31.
    [32]许家林,钱鸣高.关键层运动对覆岩及地表移动影响的研究[J].煤炭学报,2000,25(2):122-126.
    [33] Xu Jialin,Zhu weibing,Lai Wenqi,et al.Green Mining Techniques in the Coal Mines of China[J].Journal of Mines,Metals & Fuels,2004,52(12):395-398.
    [34]许家林,钱鸣高,朱卫兵.覆岩主关键层对地表下沉动态的影响研究[J].岩石力学与工程学报,2005,24(5):787-791.
    [35]朱卫兵,许家林,赖文奇,等.覆岩离层分区隔离注浆充填减沉技术的理论研究[J].煤炭学报,2007,32(5):458–462.
    [36]许家林,尤琪,朱卫兵,等.条带充填控制开采沉陷的理论研究[J].煤炭学报,2007,32(2):119-122.
    [37]许家林,连国明,朱卫兵,等.深部开采覆岩关键层对地表沉陷的影响[J].煤炭学报,2007,32(7):686–690.
    [38]朱卫兵,许家林,施喜书,等.覆岩主关键层运动对地表沉陷影响的钻孔原位测试研究[J].岩石力学与工程学报,2009,28(2):403-409.
    [39]许家林,钱鸣高,金宏伟.岩层移动离层演化规律及其应用研究[J].岩土工程学报,2004,
    26(5):632-636.
    [40] Xu Jialin,Zhu Weibing,Qian Minggao.Mechanism of coupling effect between key strata and soil on subsidence[C].Proceedings of the 12th International Congress of International Society for Mine Surveying:353-357.
    [41] Xu Jialin,Qian Minggao.Study on influences of key stratum on mining-induced fractures distribution in overlying strata[J].Journal of Mines,Metals & Fuels,2006,54(12):240-244.
    [42]许家林,王晓振,刘文涛,等.覆岩主关键层位置对导水裂隙带高度的影响[J].岩石力学与工程学报,2009,28(2):381-385.
    [43]屈庆栋,许家林,钱鸣高.关键层运动对邻近层瓦斯涌出的影响研究[J].岩石力学与工程学报,2007,26(7):1478-1484.
    [44]缪协兴,茅献彪,钱鸣高.采动覆岩中关键层的复合效应分析[J].矿山压力与顶板管理,1999,(3):19-25.
    [45]缪协兴,钱鸣高.采动岩体的关键层理论研究新进展[J].中国矿业大学学报,2000,29(1):25-29.
    [46]缪协兴,茅献彪,孙振武.采场覆岩中复合关键层的形成条件与判别方法[J].中国矿业大学学报,2005,34(5):547-550.
    [47]茅献彪,缪协兴,钱鸣高.采高及复合关键层效应对采场来压步距的影响[J].湘潭矿业学院学报,1999,14(1):1-5.
    [48]茅献彪,缪协兴,钱鸣高.采动覆岩中复合关键层的断裂跨距计算[J].岩土力学,1999,20(2):1-4.
    [49]浦海,缪协兴.采动覆岩中关键层运动对围岩支承压力分布的影响[J].岩石力学与工程学报,2002,21(增2):2366-2369.
    [50]缪协兴,钱鸣高.超长综放工作面覆岩关键层破断特征及对采场矿压的影响[J].岩石力学与工程学报,2003,22(1):45-47.
    [51]陈荣华,浦海,缪协兴,等.相邻亚关键层破断对采场来压的影响分析[J].煤炭学报,2004,29(3):257-259.
    [52]缪协兴,陈荣华,浦海等.采场覆岩厚关键层破断与冒落规律分析[J].岩石力学与工程学报,2005,24(8):1289-1295.
    [53]陈荣华,钱鸣高,缪协兴.注水软化法控制厚硬关键层采场来压数值模拟[J].岩石力学与工程学报,2005,24(13):2266-2271.
    [54]缪协兴,浦海,白海波.隔水关键层原理及其在保水采煤中的应用研究[J].中国矿业大学学报,2008,37(1):1-4.
    [55]缪协兴,陈荣华,白海波.保水开采隔水关键层的基本概念及力学分析[J].煤炭学报,2007,32(6):561-564.
    [56]王佑安,朴春杰.用煤解吸瓦斯速度法井下测定煤层瓦斯含量的初步研究[J].煤矿安全,1981,(11):8-13.
    [57]王佑安,朴春杰.井下煤的解吸指标及其与煤层区域突出危险性的关系[J].煤矿安全,1982,7,16-22.
    [58]杨其銮,王佑安.煤屑瓦斯扩散理论及其应用[J].煤炭学报,1986,11(3):62-70.
    [59]杨其銮.关于煤屑瓦斯扩散规律的试验研究[J].煤矿安全,1987(2):9-16.
    [60]聂百胜,何学秋,王恩元.瓦斯气体在煤孔隙中的扩散模式[J].矿业安全与环保,2000,27(5):14-16.
    [61]聂百胜,何学秋,王恩元.瓦斯气体在煤层中的扩散机理及模式[J].中国安全科学学报,2000,(12):24-28.
    [62]何学秋,聂百胜.孔隙气体在煤层中扩散的机理[J].中国矿业大学学报,2001,30(1):1-3.
    [63] C.O.Karacan,E.Okandan.Adsorption and gas transport in coal microstructure:investigation and evaluation by quantitative X-ray CT imaging[J].Fuel,2001,80(4):509-520.
    [64]郭勇义,吴世跃,王跃明.煤粒瓦斯扩散及扩散系数测定方法的研究[J].山西矿业学院学报,1997,15(1):15-19.
    [65]吴世跃,郭勇义.煤粒瓦斯扩散规律与突出预测指标的研究[J].太原理工大学学报,1998,29(2):138-141.
    [66]聂百胜,郭勇义,吴世跃.煤粒瓦斯扩散的理论模型及其解析解[J].中国矿业大学学报,2001,30(1):19-22.
    [67]周世宁,孙辑正.煤层瓦斯流动理论及其应用[J].煤炭学报.1965,2(1):24-36.
    [68]周世宁.用电子计算机对两种测定煤层透气系数方法的检验[J].中国矿业学院学报,1984,2(3):46-51.
    [69]余楚新,鲜学福,谭学术.煤层瓦斯流动理论及渗流控制方程的研究[J].重庆大学学报,1989,12(5):1-9.
    [70]余楚新,鲜学福.煤层瓦斯渗流有限元分析中的几个问题[J].重庆大学学报,1997,17(4):58-63.
    [71]孙培德.煤层瓦斯动力学及其应用的研究[J].山西矿业学院学报,1989,7(2):126-135.
    [72]孙培德.瓦斯动力学模型的研究[J].煤田地质与勘探,1993,21(1):32-40.
    [73]孙培德.煤层瓦斯流动方程补正[J].煤田地质与勘探,1993,21(5):6-62.
    [74] Sun Peide.Coal gas dynamics and its applications[J].Scientia Geologica Sinica.1994,3(1):66-72.
    [75] Sun Peide.Modeling and numerical simulation for gas seepage in the leaky system for a couple of coal seam[C].Proceedings of 30th Int.Geol.Cong.Beijing:Press of geology.August,1996.
    [76]黄运飞,孙广忠.煤─瓦斯介质力学[M] .北京:煤炭工业出版社,1993.
    [77]丁晓良,俞善炳,丁雁生,等.煤在瓦斯渗流作用下持续破坏的机制[J].中国科学:A辑,1989,(6):600~607.
    [78]彼特罗祥.煤矿沼气涌出.宋世钊译[M].北京:煤炭工业出版社,1983.
    [79] R.C.Dudley,I.M.Soylemezoglu,Wilbur H.Somerton.Effect of stress on permeability of coal[J].Int.J.Rock Meck.Mech.Min.Sci.& Geomech.Abstr. ,1975,12(3):151-158.
    [80]罗新荣.煤层瓦斯运移物理模拟与理论分析[J].中国矿业大学学报,1991,20(3):36-42.
    [81]姚宇平.煤层瓦斯流动的达西定律与幂定律[J].山西矿业学院学报,1992,10(1):32-37.
    [82]孙培德.煤层瓦斯流场流动规律的研究[J].煤炭学报,1987,12(4):74-82.
    [83] Collins,R,E.new theory for gas adsorption and transport in coal[C].in proceedings of the 1991 coal methane symposium,tuscaloosa,1991.
    [84]段三明,聂百胜.煤层瓦斯扩散-渗流规律的初步研究[J].太原理工大学学报,1998,29(4):14-18.
    [85]吴世跃.煤层瓦斯扩散渗流规律的初步探讨[J].山西矿业学院学报,1994,(3):259-26.
    [86]吴世跃,郭勇义.煤层气运移特征的研究[J].煤炭学报,1999,24(1):65-70.
    [87]周世宁,林柏泉.煤层瓦斯赋存与流动理论[M].北京:煤炭工业出版社,1999.
    [88] Saghafi,A.煤层瓦斯流动的计算机模拟及其在预测瓦斯涌出和抽放瓦斯中的应用[C].第22届国际采矿安全会议论文集.北京:煤炭工业出版社,1987.
    [89] S.Durucan,J.S.Edwards.The effects of stress and fracturing on permeability of coal[J].Mining Science and Technology,1986,3(3):205-216.
    [90] Harpalani,S..Gas flow through stressed coal[D].Univ.of California Berkeley,Ph.D.thesis,1985.
    [91] Harpalani,S..Mechanism of Methane Flow Through Solid Coa1[C].27th US Symposium on Rock Mechanics,1986.
    [92] JK.Gawuga.Folw of gas through stressed carboniferous strata[D].Univ.of Nottingham,Ph.D.thesis,1979.
    [93]张代钧.煤结构与煤孔隙性、弹性、强度和吸附特征关系的研究[D].重庆:重庆大学,1990.
    [94]鲜学福.地电场对煤层中瓦斯渗流影响的研究.国家自然科学基金资助项目研究总结报告,1993.
    [95]余楚新.煤层中瓦斯富集、运移的基础与应用研究[D].重庆:重庆大学,1993.
    [96]杜云贵.地物场中煤层瓦斯渗流特性及瓦斯涌出的研究[D].重庆:重庆大学,1993.
    [97]张广洋.煤结构与煤的瓦斯吸附-渗流特性研究[D].重庆:重庆大学,1995.
    [98]程瑞端.煤层瓦斯涌出规律及其深部开采预测的研究[D].重庆:重庆大学,1995.
    [99]王宏图,杜云贵,鲜学福,等.受地应力、地温和地电效应影响的煤层瓦斯渗流方程[J].重庆大学学报,2003,23(增刊):47-50.
    [100]王宏图,杜云贵,鲜学福.地电场对煤中瓦斯渗流特性的影响[J].重庆大学学报,2000,23(增刊):22-24.
    [101]刘保县,鲜学福,王宏图.交变电场对煤瓦斯渗透特性的影响实验[J].重庆大学学报,2000,23(增刊):41-43.
    [102]李树刚,徐精彩.软煤样渗透特性的电液伺服试验研究[J].岩土工程学报,2001,23(1):68-70.
    [103]李树刚,钱鸣高,石平五.煤样全应力应变过程中的渗透系数—应变方程[J].煤田地质与勘探,2001,29(1):22-24.
    [104]梁冰,刘建军,王锦山.非等温情况下煤和瓦斯固流耦合作用的研究[J].辽宁工程技术大学学报,1999,18(5):483-486.
    [105]梁冰,刘建军,范厚彬,等.非等温条件下煤层中瓦斯流动的数学模型及数值解法[J].岩石力学与工程学报,2000,19(1):1-5.
    [106]梁冰,章梦涛.可压缩瓦斯气体在煤层中渗流规律的数值模拟[C].水电与矿业工程中的岩石力学问题—中国北方岩石力学与工程应用学术会议论文集.北京:科学出版社,1991.
    [107]孙培德,鲜学福.上保护层保护范围的固气耦合分析[J].煤,1999,8(1):36-39.
    [108]孙培德,万华根.煤层气越流固-气耦合模型及可视化模拟研究[J].岩石力学与工程学报,2004,23(7):1179-1185.
    [109]梁运陪.邻近层卸压瓦斯越流规律的研究[J].矿业安全与环保,2000,27(1):32-33,37.
    [110]梁运陪.采用岩石水平长钻孔抽放邻近层瓦斯[J].煤矿安全,2001,9(1):28-29,57.
    [111]赵阳升.煤体瓦斯耦合理论及其应用[D].同济大学博士学位论文,1992.
    [112]赵阳升.煤体、瓦斯耦合数学模型及数值解法[J].岩石力学与工程学报,1994,13(3):229-239.
    [113]赵阳升,胡耀青,杨栋等.气液二相流体裂缝渗流规律的模拟实验研究[J].岩石力学与工程学,1999,18(3):354-356.
    [114] Serizawa,Akimi; Feng,Ziping; Zensaku.Two-phase flow in microchannels[J].Experimental Thermal and Fluid Science,2002,26(6-7),703-714.
    [115]孙可明,梁冰,王锦山.煤层气开采中两相流阶段的流固耦合渗流[J].辽宁工程技术大学学报,2001,20(1):36-39.
    [116]孙可明,梁冰,朱月明.考虑解吸扩散过程的煤层气流固耦合渗流研究[J].辽宁工程技术大学学报,2001,20(4):548-549.
    [117]刘建军.煤层气热-流-固耦合渗流的数学模型[J].武汉工业学院学报,2002,(2):91-94.
    [118] E . John Finnemore , Joseph B . Franzini . Fluid Mechanics with EngineeringApplications[M].Beijing:Tsinghua University Press(影印版),2003.
    [119] A.Olajossy.Methane release through coal bed diffusion[J].Fuel and Energy Abstracts,1997,38(1):21
    [120]尹光志,王登科,张东明,等.含瓦斯煤岩固气耦合动态模型与数值模拟研究[J].岩土工程学报,2008,30(10):1430-1436.
    [121]赵洪宝,尹光志,李小双.突出煤渗透特性与应力耦合试验研究[J].岩石力学与工程学报,2009,28(增2),3357-3362.
    [122]钱鸣高,许家林.覆岩采动裂隙分布的“O”形圈特征研究[J].煤炭学报,1998,23(5):466-469.
    [123]许家林,钱鸣高.地面钻井抽放上覆远距离卸压煤层气试验研究[J].中国矿业大学学报,2000,29(1):78-81.
    [124]许家林,孟广石.应用上覆岩层采动裂隙“O”形圈特征抽放采空区瓦斯[J].煤矿安全,1995,26(7):2-4.
    [125]许家林.岩层采动裂隙分布理论与应用[M].徐州:中国矿业大学出版社,2003.
    [126]许家林,钱鸣高.岩层采动裂隙分布在绿色开采中的应用[J].中国矿业大学学报,2004,33(2):141-149.
    [127]许家林,刘华民.采空区瓦斯抽放钻孔布置的研究[J].煤炭科学技术,1997,25(4):28-30.
    [128]刘泽功.高位巷道抽放采空区瓦斯实践[J].煤炭科学技术,2001,29(12):10-13.
    [129]卢平,刘泽功,廖光煊,等.高瓦斯综采面顶板覆岩卸压抽放瓦斯实验研究[J].力学与实践,2003,(4):53-56.
    [130]袁亮,刘泽功.淮南矿区开采煤层顶板抽放瓦斯技术的研究[J].煤炭学报,2003,28(2):149-152.
    [131]刘泽功,袁亮,戴广龙,等.开采煤层顶板环形裂隙圈内走向长钻孔法抽放瓦斯研究[J].中国工程科学,2004,6(5):32-38.
    [132]刘泽功,袁亮,戴广龙等.采动覆岩裂隙特征研究及在瓦斯抽放中应用[J].安徽理工大学学报,2004,24(4):10-15.
    [133]涂敏,刘泽功.综放开采顶板离层裂隙变化研究.煤炭科学技术[J].2004,32(4):44-47.
    [134]叶建设,刘泽功.顶板巷道抽放采空区瓦斯的应用研究[J].淮南工业学院学报,1999,19(2):32-36.
    [135]刘泽功.开采煤层顶板抽放瓦斯流场分析[J].矿业安全与环保.2000,27(3):4-6.
    [136]李树刚,石平五,钱鸣高.覆岩采动裂隙椭抛带动态分布特征研究[J].矿山压力与顶板管理,1999,(3-4):44-46.
    [137]李树刚.综放开采围岩活动及瓦斯运移[M].徐州:中国矿业大学出版社,2000.
    [138]李树刚,钱鸣高,石平五.煤层采动后甲烷运移与聚集形态分析[J].煤田地质与勘探,2000,28(4):31-33.
    [139]于不凡,王佑安.煤矿瓦斯灾害防治及利用技术手册[M].北京:煤炭工业出版社,2005.
    [140]俞启香.矿井瓦斯防治[M].徐州:中国矿业大学出版社,1992.
    [141]何学秋,周心权,杨大明,等.中国煤矿灾害防治理论与技术[M].徐州:中国矿业大学出版社,2006.
    [142]林柏泉,崔恒性.矿井瓦斯防治理论与技术[M].徐州:中国矿业大学出版社,1998.84-85.
    [143]胡千庭,蒋时才,苏文叔.我国煤矿瓦斯灾害防治对策[J].矿业安全与环保,2000,27(1):1-4.
    [144]俞启香,程远平,蒋承林,等.高瓦斯特厚煤层煤与卸压瓦斯共采原理及实践[J].中国矿业大学学报,2004,33(2):127-131.
    [145]程远平,俞启香,袁亮,等.煤与远程卸压瓦斯安全高效共采试验研究[J].中国矿业大学学报,2004,33(2):132-136.
    [146]程远平,俞启香.煤层群煤与瓦斯安全高效共采体系及应用[J].中国矿业大学学报,2003,32(5):471-475.
    [147]吴仁伦,许家林,孔翔,石成涛,罗宝林等.长综放面采动上覆煤层的瓦斯卸压规律研究[J].采矿与安全工程学报,2010,27(1):8-12,18.
    [148] Shi Su,Hongwei Chen,Philip Teakle et al.Characteristics of coal mine ventilation air flows[J].Journal of environmental management. 2006(11):1-19.
    [149] M.T. Parra,J.M. Villafruela,F Castro et al.Castro et al. Numerical and experimental analysis of different ventilation systems in deep mines[J].Building and Environment. 2006(41):87-93.
    [150] Klaus Noack.Control of gas emissions in underground coal mines.International[J].Journal of Coal Geology,1998(35):369-379.
    [151] Leszek_Les.W. Lunarzewski.Gas emission prediction and recovery in underground coal mines[J].International Journal of Coal Geology,1998(35):117-145.
    [152]缪协兴,刘卫群,陈占清.采动岩体渗流理论[M].北京:科学出版社,2004.
    [153]刘卫群.破碎岩体渗流理论及其应用研究[D].徐州:中国矿业大学,2002.
    [154] D.N.Whittles,I.S.Lowndes,S.W.Kingman,et al.The stability of methane capture boreholes around a long wall coal panel[J].International Journal of Coal Geology,2006(11):1-16.
    [155] I.L.Ettinger.Solubility diffusion of methane in coal strata [J].Soviet Mining Science,1980,16(1):49-54.
    [156] Waclaw Dxiurzynski,Andrzej Krach.Mathematical model of methane emission caused by a collapse of rock mass crump [J].Archives of Mining Sciences,2001,46(4):433-449.
    [157]蒋曙光,张人伟.综放采场流场数学模型及数值计算[J].煤炭学报,1998,23(3):258-261.
    [158]丁广骧,柏发松.采空区混合气运动基本方程及有限兀解法[J].中国矿业大学学报,1996,25(3):21-26.
    [159]丁广骧.矿井大气与瓦斯二维流动[M].徐州:中国矿业大学出版社,1996.
    [160]袁亮.松软低透煤层群瓦斯抽采理论与技术[M].北京:煤炭工业出版社,2004.
    [161]林柏泉,张建国.矿井瓦斯抽放理论与技术[M].徐州:中国矿业大学出版社,1996.
    [162]王兆丰,刘军.我国煤矿瓦斯抽放存在的问题及对策探讨[J].煤矿安全,2005,36(3):29-32.
    [163]王德明.矿井通风与安全[M].徐州:中国矿业大学出版社,2005.
    [164]周世宁,鲜学福,朱旺喜.煤矿瓦斯灾害防治理论战略率研究[M].徐州:中国矿业大学出版社,2001.
    [165]中华人民共和国国家发展和改革委员会.煤层气(煤矿瓦斯)开发利用“十一五”规划.http://www.sdpc.gov.cn/fzgh/ghwb/115zxgh/P020080616531975890273.pdf.
    [166]李明好.下保护层开采卸压范围及卸压程度的研究[D].安徽理工大学硕士论文,2005.
    [167]余国锋,薛俊华,袁瑞甫.远距离保护层开采卸压机理数值模拟分析[J].煤矿安全,2007,(11):5-8.
    [168]刘宝安.下保护层开采上覆煤岩变形与卸压瓦斯抽采研究[D].安徽理工大学硕士论文,2006.
    [169]涂敏,黄乃斌,刘宝安.远距离下保护层开采上覆煤岩体卸压效应研究[J].采矿与安全工程学报,2007,24(4):418-421,424.
    [170]哈秋聆.岩石边坡工程与卸荷非线性岩石(体)力学[J].岩石力学与工程学报,1997,16(4):386-391.
    [171]周小平.裂隙岩体卸荷本构理论研究及应用[D].重庆大学博士论文,2000.
    [172] Zhou X P,Ha Q L,Zhang Y X,et a1.Analysis of the deformation localization and the complete stress-swain relation for brittle rock subjected to dynamic compressive loads[J].Int.J.Rock Mech.Min.Sci.,2004,41(2),311-319.
    [173]任建喜,葛修润,蒲毅彬,等.岩石卸荷损伤演化机理CT实时分析初探[J].岩石力学与工程学报,2000,l9(6):697-701.
    [174]陈卫忠,朱维申.船闸边坡断续节理岩体强度特性分析[J].岩石力学与工程学报,1998,l7(5):479-486.
    [175]肖洪天,周维垣,杨若琼.岩体裂纹流变扩展细观机理分析[J].岩石力学与工程学报,1999,l8(6);623-626.
    [176]王水林,葛修润,章光.受压状态下裂纹扩展的数值分析[J].岩石力学与工程学报,1999,l8(5):671-675.
    [177] Li H B,Zhao J,Li T J.Micromechanical modeling of the mechanical properties of a granite underdynamic uniaxial compressive loads[J].Int.J.Rock Mech.Min.Sci.,2000,37(5):923-935.
    [178]徐平,周火明.高边坡岩石开挖卸荷效应流变数值分析[J].岩石力学与工程学报,2000,1(4):482-485.
    [179]李建林,孟庆义.卸荷岩体的各向异性研究[J].岩石力学与工程学报,2001.20(3):338-341.
    [180]哈秋聆.三峡工程永久船闸陡高边坡各向异性卸荷岩体力学研究[J].岩石力学与工程学报,2001,2(5):603-618.
    [181]徐松林.吴文,王广印等.大理岩等围压三轴压缩全过程研究[J].岩石力学与工程学报,2001,20(61):763-767.
    [182]周小平,哈秋聆,张永兴等.峰前围压卸荷条件下岩石的应力一应变全过程分析和变形局部化研究[J].岩石力学与工程学报,2005,24(18):3236-3245.
    [183]赵明阶,许锡宾,徐蓉.岩石在三轴加卸荷过程中的一种本构模型研究[J].岩石力学与工程学报,2002,21(5):626-631.
    [184]黄达.大型地下洞室开挖围岩卸荷变形机理及其稳定性研究[D].成都:成都理工大学,2007.
    [185] CAIM,H.Horii.A constitutive model of highly jointed roekmasses[J].Journal of Mechanie Material,1992,13:217-246.
    [186] CAIM ,KAISER P K.Assessment of excavation damaged zone using a micromechanics model[J].Tunnelling and Underground Space Technology 2005,20:301-310.
    [187]周维垣,杨若琼,剡公瑞等.岩体边坡非连续非线性卸荷及流变分析[[J].岩石力学与工程学报,1997,16(3):210-216.
    [188] Simo J C,Ju J W.Strain-and sfess-based continuum damage models[J].Int.J.Solids Struct.,1987,24(2/3):821-840.
    [189] Ortiz M.A constimtive theory for the inelastic behaviour of concrete[J].Mech.Mater.,1985,4:67-93.
    [190] Zhou X P.Analysis of the localization of deformation and the complete stress-strain relation for mesoscopic heterogeneous brittle rock under dynamic uniaxial tensile loading[J].Int.J.Solids Swuct.,2004,41(5/6). 1725-1738.
    [191] Horii H,Nemat-Nasscr S.Britle failure in compression:splitting.faulting and brittle-ductile transition[J].Philosophical Transactions of Royal Society ofLondon,1986,319:337-374.
    [192] Namet-Nasser S , Obata M . A microcrack model of dilatancy in brittle material[J].J.App1.Mech.,1988,52:24-35.
    [193]刘东燕.断续节理岩体的压剪断裂及其强度特性研究[D].重庆建筑工程学院博士论文,1993.
    [194] Rice J R.Inelastic constitutive relations for solids:an internal-variable theory and its appfication to metal plasticity[J].Journal of the Mechanics and Physics of Sofids,1971,19:433-455.
    [195] Basista M,Gross D.The sliding crack model of brittle deformation:an internal variable approach[J].Int.J.Solids Struct.,1998,35(5/6):487-509.
    [196]赵明阶,吴德伦.单轴受荷条件下岩石的声学特性模型与实验研究[J].岩土工程学报,1999.21(5):540-545.
    [197]赵明阶,吴德伦.单轴加载条件下岩石声学参数与应力的关系研究[J].岩石力学与工程学报,1999.18(1):500-54.
    [198]赵明阶,徐蓉.裂隙岩体在受荷条件下的变形特性分析[J].岩土工程学报,2000.22(4):454-460.
    [199]煤炭科学研究总院北京开采所.煤矿地表移动与覆岩破断规律及其应用[M].北京:煤炭工业出版社,1981.
    [200]国家煤炭工业局.建筑物、水体、铁路及主要井巷煤柱留设与压煤开采规程[S].北京:煤炭工业出版社,2000.
    [201] Schuring,D.T.:Scale Models in Engineering - Fundamental and Applications,Pergamon Press,1997.
    [202]崔广心.相似理论与模型试验[M].徐州:中国矿业大学出版社,1990.
    [203]李鸿昌.矿山压力的相似模拟试验[M].徐州:中国矿业大学出版社,1987.
    [204]许家林,钱鸣高,高红新.采动裂隙实验结果的量化方法[J].辽宁工程技术大学学报(自然科学版),1998,17(6):586-589.
    [205]徐华.图像理解[M].长沙:国防科技大学出版社,1995,391-405.
    [206]张远鹏,董海,周文灵.计算机图像处理技术基础[M].北京:北京大学出版社,1996,122-123.
    [207]尹增德.采动覆岩破坏特征及其应用研究[D].山东科技大学博士论文,2007.
    [208]黄炳香,刘长友,许家林.采动覆岩破断裂隙的贯通度研究[J].中国矿业大学学报,2010,39(1):45-49.
    [209]杨贵.综放开采导水裂隙带高度及预测方法研究[D].山东科技大学硕士论文,2004.
    [210]陈荣华,白海波,冯梅梅.综放面覆岩导水裂隙带高度的确定[J].采矿与安全工程学报,2006,23(6):220-223.
    [211]袁景.谢桥煤矿12013工作面覆岩导水裂缝带高度预测[D].辽宁工程技术大学硕士论文,2005.
    [212]涂敏.潘谢矿区采动岩体裂隙发育高度的研究[J].煤炭学报,2004,29(6):641-645.
    [213]戴露,谭海樵,胡戈.综放开采条件下导水裂隙带发育规律探测[J].煤矿安全,2009,(3):90-92.
    [214]胡戈,李文平,程伟等.淮南煤田综放开采导水裂隙带发育规律研究[J].煤炭工程,2008,(5):74-76.
    [215]李洋,李文平,李登宪.潘谢矿区导水裂隙带发育高度与采厚关系回归分析[J].地球与环境,2005,33(增):66-69.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700