用户名: 密码: 验证码:
非高斯随机激励下非线性系统的随机平均法
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文研究了非高斯随机激励下非线性系统的几种随机平均方法。
     在第一章中,介绍了非高斯随机激励下动力学问题的研究概况和随机平均法的近期发展。
     在第二章中,介绍了泊松白噪声及其相关概念、随机微分法则和Monte Carlo数值模拟方法。
     在第三章中,提出了泊松白噪声激励下拟线性系统的广义FPK方程系数随机平均法,并对四种典型的拟线性系统,即van der Pol振子、Rayleigh振子、能量依赖阻尼系统以及幂律阻尼系统,通过摄动方法求得了平均广义FPK方程的近似平稳解。用Monte Carlo数值模拟方法对摄动解的可靠性进行了验证,发现解析解与数值模拟结果相一致,还发现在预测拟线性系统总能量的概率密度时,激励非高斯特性的影响是不可忽略的。
     在第四章中,提出了一种预测拟不可积Hamilton系统在泊松白噪声激励下响应的随机平均法,推导了关于系统Hamilton函数转移概率密度的一维平均广义FPK方程,用摄动方法求解了系统平稳响应的概率密度,并将此方法应用于线性和非线性弹性耦合的van der Pol振子和二自由度碰撞振动系统,验证了方法的有效性。
     在第五章中,从运动方程的标准形式出发,推导了非高斯平稳宽带随机激励下n维非线性动力系统的平均广义FPK方程,用级数形式给出了平均广义FPK方程在四阶近似下的系数表达式,并给出了相应的级数收敛条件,而后发现所得平均广义FPK方程可化为Stratonovich得到过的一维非线性动力系统的平均广义FPK方程,并且对泊松白噪声激励下的n维非线性动力系统,将所得平均广义FPK方程与Di Paola和Falsone得到的广义FPK方程的截断形式进行了比较,最后,由van der Pol变换生成的运动方程标准形式及相应的平均广义FPK方程出发,提出了非高斯平稳宽带随机激励下拟线性系统的随机平均法,得到了滤过泊松白噪声激励下拟线性系统响应的平稳概率密度,在算例中通过在不同参数下的Monte Carlo数值模拟验证了相应理论结果的正确性。
     最后,在第六章中,对本文进行了总结并指出了后续研究工作的方向。
Several stochastic averaging methods for nonlinear systems subject to non-Gaussian random excitations are investigated in the present dissertation.
     In chapter 1, the dynamical problems subject to non-Gaussian random excitations and recent development of stochastic averaging method are introduced.
     In chapter 2, Poisson white noise and its related concepts, stochastic differential rules and Monte Carlo simulation methods are introduced.
     In chapter 3, stochastic averaging method of coefficients of generalized Fokker-Planck- Kolmogorov (GFPK) equation for quasi linear systems subject to Poisson white noise is proposed. Approximate stationary solutions of the averaged GFPK equations are obtained by using the perturbation method for four typical quasi linear systems, i.e., van der Pol oscillator, Rayleigh oscillator, system with energy-dependent damping, and systems with power law damping. The reliability of the perturbation solution is assessed by performing appropriate Monte Carlo simulations. It is found that analytical and numerical results agree well and effect of non-Gaussianity of the excitation process is not negligible for predicting probability density of total energy of quasi linear system in most cases.
     In chapter 4, a stochastic averaging method is proposed for predicting the response of multi-degree-of-freedom quasi-noninegrable-Hamiltonian systems subject to Poisson white noises. A one-dimensional averaged GFPK equation for the transition probability density of the Hamiltonian is derived and the probability density of the stationary response of the system is obtained by using the perturbation method. Two examples, two linearly and nonlinearly coupled van der Pol oscillators and 2-degree-of-freedom vibro-impact system, are given to illustrate the application and validity of the proposed method.
     In chapter 5, the averaged GFPK equation for response of n-dimensional (n-d) nonlinear dynamical systems to non-Gaussian wide-band stationary random excitation is derived from the standard form of equation of motion. The explicit expressions for coefficients of the fourth-order approximation of the averaged GFPK equation are given in series form. Conditions for convergences of these series are pointed out. The averaged GFPK equation is then reduced to that for 1-d dynamical systems derived by Stratonovich and compared with the closed form of GFPK equation for n-d dynamical systems subject to Poisson white noise derived by Di Paola and Falsone. Finally, stochastic averaging method for quasi linear systems subject to non-Gaussian wide-band stationary random excitation is proposed by using the equation of motion generated from van der Pol transformations and its corresponding averaged GFPK equation. Stationary probability density for quasi linear system subject to filtered Poisson white noise is obtained. Theoretical results for the example are confirmed by using Monte-Carlo simulation for different parameter values.
     Finally, in chapter 6, conclusion remarks of the present paper are made and the direction of future research is pointed out.
引文
[1]GARDINER C W. Handbook of stochastic methods for physics, chemistry, and the natural sciences [M]. Berlin:Springer-Verlag,1983.
    [2]LANGEVIN P. Sur la theorie du mouvement brownien [J]. C. R. Acad. Sci. Paris,1908:530-532.
    [3]WIENER N. Differential space [J]. J. Math. Phys.,1923,58:131-174.
    [4]ITO K. Differential equations determining a Markoff process (in Japanese) [J]. Journ. Pan-Japan Math. Coll.,1942, No.1077.
    [5]ITO K. Stochastic integral [J]. Proc. Imp. Acad. Tokyo,1944,20:519-524.
    [6]STRATONOVICH R L. Topics in the Theory of Random Noise [M]. Vol.1. New York:Gordon and Breach,1963.
    [7]WONG E, ZAKAI M. On the relation between ordinary and stochastic differential equations [J]. Int. J. Engng. Sci.,1965,3(2):213-229.
    [8]朱位秋.随机振动[M].北京:科学出版社,1992.
    [9]θKSEND AL B, SULEM A. Applied Stochastic Conrol of Jump Diffusions [M]. Germany:Springer Press,2005.
    [10]蔡明超,孙培源.金融数学与分析技术[M].上海:复旦大学出版社,2002.
    [11]范龙振,胡畏.金融工程学[M].上海:上海人民出版社,2003.
    [12]MERTON R C. Continuous Time Finance [M]. Oxford:Basil Blackwell Ltd., 1990.
    [13]FURRER H, MICHNA Z, WERON A. Stable Levy motion approximation in collective risk theory [J]. Insurance Mathematics & Economics,1997,20(2): 97-114.
    [14]CARTEA A, HOWISON S. Option pricing with Levy-stable processes generated by Levy-stable integrated variance [J]. Quantitative Finance,2009, 9(4):397-409.
    [15]HANSON F B. Applied Stochastic Processes and Control for Jump-Diffusions, Modeling, Analysis, and Computation [M]. Philadelphia:SIAM,2007.
    [16]SOONG T T, GRIGORIU M. Random Vibration of Mechanical and Structural Systems [M]. Englewood Cliffs, New Jersey:P T R Prentice Hall,1993.
    [17]GRIGORIU M. Applied non-Gaussian processes:examples, theory, simulation, linear random vibration, and MATLAB solutions [M]. Englewood Cliffs, New Jersey:P T R Prentice Hall,1995.
    [18]CAI G Q, LIN Y K. Generation of non-Gaussian stationary stochastic processes [J]. Phys. Rev. E,1996,54:299-303.
    [19]PRIMAK S. Generation of compound non-Gaussian random processes with a given correlation function [J]. Phys. Rev. E,2000,61(1):100-103.
    [20]SARKANI S, KIHL D P, BEACH J E. Fatigue of welded-joints under narrow-band non-Gaussian loadings [J]. Probab. Engng. Mech.,1994,9(3): 179-190.
    [21]ZHU J, WANG X Q, XIE W C, et al. Flow-induced instability under bounded noise excitation in cross-flow [J]. J. Sound Vibr.,2008,312(3):476-495.
    [22]HIJAWI M, IBRAHIM R A, MOSHCHUK N. Nonlinear random response of ocean structures using first-and second-order stochastic averaging [J]. Nonlinear Dynamics,1997,12(2):155-197.
    [23]TUNG C C. Random response of highway bridges to vehicle loads [J]. J. Engng. Mech. Div. ASCE,1967,93:79-94.
    [24]RICCIARDI G. Random vibration of beam under moving loads [J]. J. Engng. Mech. Div. ASCE,1994,120(11):2361-2380.
    [25]CHEN Y B, TAN C A, FENG M Q. Physics-based traffic excitation model for highway bridges [C]//Smart Structures and Materials 2004:Sensors and Smart Structures Technologies for Civil, Mechanical, and Aerospace Systems, c2004: 377-388
    [26]CHEN Y B, FENG M Q, TAN C A. Modeling of traffic excitation for system identification of bridge structures [J]. Computer-Aided Civil and Infrastructure Engineering,2006,21(1):57-66.
    [27]MISHRA S K, CHAUDHURI S R, CHAKRABORTY S, et al. Spectral characterization of the stochastically simulated vehicle queue on bridges [J]. Engineering with Computers,2009,25(4):367-378.
    [28]张彬,吴子燕,闫云聚.桥梁交通激励模型研究[M]//李杰,陈建兵.随机振动理论与应用新进展.上海:同济大学出版社,2009:148-154.
    [29]W.B. Moseley, C.G. Justus, The velocity probability density of upper atmospheric turbulence, J. Geophysical Res.72(9) (1967) 2460-2462.
    [30]LIEPMANN H W. On the application of statistical concepts to the buffeting problem [J]. Journal of the Aeronautical Sciences,1952,19:793-800.
    [31]CORNELL C A. Stochastic process models in structural engineering [R]. Stanford University, Technical Report 34,1964.
    [32]MERCANT D H. A stochastic model of wind gusts [R]. Stanford University, Technical Report 48,1964.
    [33]R. Racicot, F. Moses, Filtered Poisson process for random vibration problems, J. Eng. Mech. Div. ASCE.98 (1972) 159-176.
    [34]CORNELL C A. Stochastic process models in structural engineering [R]. Stanford University, Technical Report 34,1964.
    [35]LIN Y K. Application of non-stationary shot noise in the study of system response to a class of a non-stationary excitations [J]. J. Applied Mech. Trans. ASME,1963,30:555-558.
    [36]殷涌泉.地震随机点过程的统计模型[M].北京:地震出版社,1982.
    [37]BITTNER H R, TOSI P, BRAUN C, et al. Counting statistics of f-β fluctuations: A new method for analysis of earthquake data [J]. Geologische Rundschau, 1996,85(1):110-115.
    [38]ROBERTS J B. The response of linear vibratory systems to random impulses [J]. J. Sound Vibr.,1965,2:375-390.
    [39]ROBERTS J B. On the response of a simple oscillator to random impulses [J]. J. Sound Vibr.,1966,4:51-61.
    [40]LINDGREN G. Jumps and bumps on random roads [J]. J. Sound Vibr.,1981,78: 383-395.
    [41]HURST A W. Stochastic simulation of volcanic tremor from Ruapehu [J]. Journal of Volcanology and Geothermal Research,1992,51(3):185-198.
    [42]JOHNSTONE A D, KRAUKLIS I C. The effect of Poisson statistics on studies of turbulence in the solar wind [J]. Journal of Geophysical Research-Space Physics,1998,103(A7):14575-14585.
    [43]COTTONE G, DI PAOLA M, IBRAHIM R, et al. Ship Roll Motion under Stochastic Agencies Using Path Integral Method [J]. Vibro-Impact Dynamics of Ocean Systems and Related Problems,2009,44:29-40.
    [44]GAVEAU B, MOREAU M, SCHUMAN B. The mechanochemical stochastic processes of molecular motors [J]. Journal De Mathematiques Pures Et Appliquees,2005,84(12):1758-1793.
    [45]DALY E, PORPORATO A. Probabilistic dynamics of some jump-diffusion systems [J]. Phys. Rev. E,2006,73(2):026108
    [46]SORENSEN J D, NIELSEN S R K. Damage accumulation in vertical breakwaters due to combined impact loading and pulsating wave loads [C]// Fourth European Conference on Structural Dynamics EURODYN '99, Vols 1 and 2, c1999:491-496.
    [47]STEINWOLF A, WHITE R G, WOLFE H F. Simulation of jet-noise excitation in an acoustic progressive wave tube facility [J]. Journal of the Acoustical Society of America,2001,109(3):1043-1052.
    [48]BIRKELUND Y, HANSSEN A, POWERS E J. On the estimation of nonlinear volterra models in offshore engineering [J]. International Journal of Offshore and Polar Engineering,2003,13(1):12-20.
    [49]BOUYSSY V, RACKWITZ R. Polynomial approximation of Morison wave loading [J]. ASME Journal of Offshore Mechanics and Arctic Engineering, 1997,119(1):30-36.
    [50]KIM K I, POWERS E J, RITZ C P, et al. Modeling of the nonlinear drift-oscillations of moored vessels subject to non-Gaussian random sea-wave excitation [J]. IEEE Journal of Oceanic Engineering,1987,12(4):568-575.
    [51]MOSHCHUK N, IBRAHIM R A. Response statistics of ocean structures to non-linear hydrodynamic loading.2. Non-Gaussian Ocean waves [J]. J. Sound Vibr.,1996,191(1):107-128.
    [52]KOPONEN I, HAUTALA M. Modeling ion-bombardment induced submicron-scale surface roughening [J]. Nuclear Instruments & Methods in Physics Research Section B-Beam Interactions with Materials and Atoms,1995, 103(2):156-160.
    [53]DI PAOLA M, FALSONE G. Ito and Stratonovich integrals for delta-correlated processes [J]. Probab. Engng. Mech.,1993,8:197-208.
    [54]DI PAOLA M, FALSONE G. Stochastic dynamics of nonlinear systems driven by non-normal delta-correlated processes [J]. J. Applied Mech. Trans. ASME, 1993,60(1):141-148.
    [55]DIPAOLA M, VASTA M. Stochastic integro-differential and differential equations of non-linear systems excited by parametric Poisson pulses [J]. Int. J. Non-Linear Mech.,1997,32(5):855-862.
    [56]DI PAOLA M, PIRROTTA A, ZINGALES M. Ito calculus extended to systems driven by alpha-stable Levy white noises (a novel clip on the tails of Levy motion) [J]. Int. J. Non-Linear Mech.,2007,42(8):1046-1054.
    [57]DI PAOLA M, PIRROTTA A. Direct derivation of corrective terms in SDE through nonlinear transformation on Fokker-Planck equation [J]. Nonlinear Dynamics,2004,36(2-4):349-360.
    [58]PIRROTTA A. Multiplicative cases from additive cases:Extension of Kolmogorov-Feller equation to parametric Poisson white noise processes [J]. Probab. Engng. Mech.,2007,22(2):127-135.
    [59]HU S L J. Parametric random vibrations under non-Gaussian delta-correlated processes [J]. J. Engng. Mech. Div. ASCE,1995,121(12):1366-1371.
    [60]GRIGORIU M. The Ito and Stratonovich integrals for stochastic differential equations with Poisson white noise [J]. Probab. Engng. Mech.,1998,13(3): 175-182.
    [61]GOUGH J. Asymptotic stochastic transformations for nonlinear quantum dynamical systems [J]. Reports on Mathematical Physics,1999,44(3):313-338.
    [62]ZYGADLO R. Martingale integrals over Poissonian processes and the Ito-type equations with white shot noise [J]. Phys. Rev. E,2003,68(4):046117.
    [63]PROPPE C. The Wong-Zakai theorem for dynamical systems with parametric Poisson white noise excitation [J]. Int. J. Engng. Sci.,2002,40(10):1165-1178.
    [64]LUTES L D, PAPADIMITRIOU C. Direct derivation of response moment and cumulant equations for non-linear stochastic problems [J]. Int. J. Non-Linear Mech.,2000,35(3):817-835.
    [65]BOBRYK R V, CHEZESZCZYK A. Transitions induced by bounded noise [J]. Physica A:Statistical Mechanics and its Applications,2005,358(2-4):263-272.
    [66]BOBRYK R V, CHEZESZCZYK A. Transitions in a Duffing oscillator excited by random noise [J]. Nonlinear Dynamics,2008,51(4):541-550.
    [67]BOBRYK R V. Comparison of some approaches to stability of a SDOF system under random parametric excitation [J]. Journal of Sound and Vibration,2007, 305(1-2):317-321.
    [68]BOBRYK R V. Stochastic stability of coupled oscillators [J]. Applied Mathematics and Computation,2008,198(2):544-550.
    [69]CAI G Q, SUZUKI Y. On statistical quasi-linearization [J]. Int. J. Non-Linear Mech.,2005,40(8):1139-1147.
    [70]CAI G Q, SUZUKI Y. Response of systems under non-Gaussian random excitations [J]. Nonlinear Dynamics,2006,45(1-2):95-108.
    [71]CAI G Q, LIN Y K. An improved equivalent linearization procedure for non-linear systems under bounded random excitations [J]. Structural Control and Health Monitoring,2006,13(1):336-346.
    [72]FENG C S, ZHU W Q. Asymptotic Lyapunov stability with probability one of Duffing oscillator subject to time-delayed feedback control and bounded noise excitation [J]. Acta Mechanica,2009,208(1-2):55-62.
    [73]FLORIS C. Nonlinear response to polynomial of filtered Gaussian process [J]. J. Vibr. Control,2001,7(7):953-978.
    [74]FLORIS C, PULEGA R. Stochastic response of offshore structures via statistical cubicization [J]. Meccanica,2002,37(1-2):15-32.
    [75]DI PAOLA M, FLORIS C. Iterative closure method for non-linear systems driven by polynomials of Gaussian filtered processes [J]. Computers & Structures,2008,86(11-12):1285-1296.
    [76]GAN C B, CHENG X Y. Chaotic and non-chaotic responses in a class of stochastic Hamiltonian systems [C]//Proceedings of the 5th International Conference on Nonlinear Mechanics,2007:1240-1254.
    [77]HUANG Z L, ZHU W Q, NI Y Q, et al. Stochastic averaging of strongly non-linear oscillators under bounded noise excitation [J]. Journal of Sound and Vibration,2002,254(2):245-267.
    [78]HUANG Z L, ZHU W Q. Stochastic averaging of quasi-integrable Hamiltonian systems under bounded noise excitations [J]. Probabilistic Engineering Mechanics,2004,19(3):219-228.
    [79]ZHU W Q, HUANG Z L, KO J M, et al. Optimal feedback control of strongly non-linear systems excited by bounded noise [J]. J. Sound Vibr.,2004,274(3-5): 701-724.
    [80]HUANG Q H, XIE W C. Stability of SDOF linear viscoelastic system under the excitation of narrow-band noise [C]//Proceedings of the ASME International Design Engineering Technical Conference and Information in Engineering Conference, Vol 1, Pts a-C,2008:1377-1385.
    [81]LEI Y M, XU W. Homoclinic chaos in averaged oscillator subjected to combined deterministic and narrow-band random excitations [J]. Acta Physica Sinica,2007,56(9):5103-5110.
    [82]LIU W Y, ZHU W Q, HUANG Z L. Effect of bounded noise on chaotic motion of duffing oscillator under parametric excitation [J]. Chaos Solitons and Fractals,2001,12(3):527-537.
    [83]LIU Z H, ZHU W Q. Homoclinic bifurcation and chaos in simple pendulum under bounded noise excitation [J]. Chaos Solitons and Fractals,2004,20(3): 593-607.
    [84]ZHU W Q, LIU Z H. Homoclinic bifurcation and chaos in coupled simple pendulum and harmonic oscillator under bounded noise excitation [J]. Int. J. Bifurcation and Chaos,2005,15(1):233-243.
    [85]LI J R, XU W, YANG X L, et al. Chaotic motion of van der Pol-Mathieu-Duffing system under bounded noise parametric excitation [J]. Journal of Sound and Vibration,2008,309(1-2):330-337.
    [86]NIU Y J, XU W, RONG H W, et al. Chaos prediction in the Duffing-type system with non-smooth periodic perturbation and bounded parametric excitation [J]. Acta Physica Sinica,2008,57(12):7535-7540.
    [87]POTAPOV V D. Stability of elastic and viscoelastic systems under stochastic non-Gaussian excitation [J]. Acta Mechanica,2008,199(1-4):167-179.
    [88]RONG H W, WANG X D, XU W, et al. Bifurcation of safe basins in softening duffing oscillator under bounded noise excitation [J]. Acta Physica Sinica,2005, 54(10):4610-4613.
    [89]RONG H W, WANG X D, XU W, et al. Bifurcations of safe basins and chaos in softening Duffing oscillator under harmonic and bounded noise excitation [J]. Acta Physica Sinica,2007,56(4):2005-2011.
    [90]RONG H W, WANG X D, XU W, et al. Bifurcations of safe basins and chaos in Flickering oscillator under multi-frequency harmonic and bounded noise excitation [J]. Acta Physica Sinica,2008,57(3):1506-1513.
    [91]RONG H W, WANG X D, XU W, et al. Erosion of safe basins in a nonlinear oscillator under bounded noise excitation [J]. Journal of Sound and Vibration, 2008,313(1-2):46-56.
    [92]RONG H W, WANG X D, XU W, et al. Saturation and resonance of nonlinear system under bounded noise excitation [J]. Journal of Sound and Vibration, 2006,291(1-2):48-59.
    [93]SUN Z, XU W, YANG X L. Influences of time delay and noise on the chaotic motion of a bistable system [J]. Phys. Lett. A,2006,352(1-2):21-35.
    [94]XIE W C. Moment Lyapunov exponents of a two-dimensional viscoelastic system under bounded noise excitation [J]. J. Applied Mech. Trans. ASME, 2002,69(3):346-357.
    [95]XIE W C. Moment Lyapunov exponents of a two-dimensional system under bounded noise parametric excitation [J]. J. Sound Vibr.,2003,263(3):593-616.
    [96]XIE W C, SO R M C. Parametric resonance of a two-dimensional system under bounded noise excitation [J]. Nonlinear Dynamics,2004,36(2-4):437-453.
    [97]XIE W C. Monte Carlo simulation of moment Lyapunov exponents [J]. J. Applied Mech. Trans. ASME,2005,72(2):269-275.
    [98]XIE W C, SO R M C. Numerical determination of moment Lyapunov exponents of two-dimensional systems [J]. J. Applied Mech. Trans. ASME, 2006,73(1):120-127.
    [99]XING Z C, XU W, RONG H W, et al. Response to bounded noise excitation of stochastic Mathieu-Duffing system with time delay state feedback [J]. Acta Physica Sinica,2009,58(2):824-829.
    [100]YUNG K L, LEI Y M, XU Y. Stochastic resonance in the FitzHugh-Nagumo system driven by bounded noise [J]. Chinese Physics B,2010,19(1):010503.
    [101]ZHU J Y, XIE W C, SO R M C, et al. Parametric resonance of a two degrees-of-freedom system induced by bounded noise [J]. J. Applied Mech. Trans. ASME,2009,76(4):041007.
    [102]DI PAOLA M, FAILLA G. Stochastic response of linear and non-linear systems to alpha-stable Levy white noises [J]. Probab. Engng. Mech.,2005,20(2): 128-135.
    [103]DI PAOLA M, PIRROTTA A, ZINGALES M. Non-linear systems under parametric alpha-stable Levy white noises [C]//Proceedings of the ASME International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, Vol 1, Pts A-C. c2005:1783-1789.
    [104]DI PAOLA M, PIRROTTA A, ZINGALES M. Stochastic analysis of external and parametric dynamical systems under sub-Gaussian Levy white-noise [J]. Struct. Engng Mech.,2008,28(4):373-386.
    [105]DI PAOLA M, SANTORO R. Path integral solution for non-linear system enforced by Poisson white noise [J]. Probab. Engng Mech.,2008,23(2-3): 164-169.
    [106]DI PAOLA M, SANTORO R. Non-linear systems under Poisson white noise handled by path integral solution [J]. J. Vibr. Control,2008,14(1-2):35-49.
    [107]DI PAOLA M. Linear systems excited by polynomials of filtered Poisson pulses [J]. J. Applied Mech. Trans. ASME,1997,64(3):712-717.
    [108]GRIGORIU M, WAISMAN F. Linear systems with polynomials of filtered Poisson processes [J]. Probab. Engng. Mech.,1997,12(2):97-103.
    [109]DUNNE J F. A fast time-domain integration method for computing non-stationary response histories of linear oscillators with discrete-time random forcing [J]. J. Sound Vibr.,2002,254(4):635-676.
    [110]ER G K, ZHU H T, IU V P, et al. Probabilistic solution of nonlinear oscillators under external and parametric Poisson impulses [J]. AIAA Journal,2008,46(11): 2839-2847.
    [111]ER G K, ZHU H T, IU V P, et al. PDF solution of nonlinear oscillators subject to multiplicative Poisson pulse excitation on displacement [J]. Nonlinear Dynamics,2009,55(4):337-348.
    [112]ZHU H T, ER G K, IU V P, et al. EPC procedure for PDF solution of non-linear oscillators excited by Poisson white noise [J]. Int. J. Non-Linear Mech.,2009, 44(3):304-310.
    [113]GRIGORIU M. A partial differential equation for the characteristic function of the response of non-linear systems to additive Poisson white noise [J]. J. Sound Vibr.,1996,198(2):193-202.
    [114]GRIGORIU M. Characteristic function equations for the state of dynamic systems with Gaussian, Poisson, and Levy white noise [J]. Probab. Engng. Mech.,2004,19(4):449-461.
    [115]SAMORODNITSKY G, GRIGORIU M. Characteristic function for the stationary state of a one-dimensional dynamical system with Levy noise [J]. Theoretical and Mathematical Physics,2007,150(3):332-346.
    [116]GRIGORIU M. Linear and nonlinear systems with non-Gaussian white noise input [J]. Probab. Engng. Mech.,1995,10(3):171-179.
    [117]GRIGORIU M. Numerical solution of stochastic differential equations with Poisson and Levy white noise [J]. Phys. Rev. E,2009,80(2):026704.
    [118]GRIGORIU M. Reliability of linear systems under Poisson white noise [J]. Probab. Engng. Mech.,2009,24(3):397-406.
    [119]GRIGORIU M. Response of dynamic systems to Poisson white noise [J]. J. Sound Vibr.,1996,195(3):375-389.
    [120]GRIGORIU M. Lyapunov exponents for nonlinear systems with Poisson white noise [J]. Phys. Lett. A,1996,217(4-5):258-262.
    [121]MCWILLIAM S. Random response of catenary moored offshore vessels to non-linear wave forces [J]. Int. J. Non-Linear Mech.,1996,31(5):755-769.
    [122]ORABI Ⅱ, AHMADI G. Response of the Duffing oscillator to a non-Gaussian random excitation [J]. J. Applied Mech. Trans. ASME,1988,55(3):740-743.
    [123]MUSCOLINO G, RICCIARDI G, CACCIOLA P. Monte Carlo simulation in the stochastic analysis of non-linear systems under external stationary Poisson white noise input [J]. Int. J. Non-Linear Mech.,2003,38(8):1269-1283.
    [124]PIRROTTA A. Non-linear systems under parametric white noise input:Digital simulation and response [J]. Int. J. Non-Linear Mech.,2005,40(8):1088-1101.
    [125]WU C F, CAI G Q. Transient behaviors of linear and nonlinear systems under stationary non-Gaussian random excitation [C]//Advances in Stochastic Structural Dynamics, CRC Press. c2003:473-483.
    [126]NAESS A, SKAUG C. Path integration methods for calculating response statistics of nonlinear oscillators driven by alpha-stable Levy noise [C]// IUTAM Symposium on Nonlinearity and Stochastic Structural Dynamics, c2001:159-169.
    [127]IWANKIEWICZ R, NIELSON S R K. Solution techniques for pulse problems in non-linear stochastic dynamics [J]. Probab. Engng. Mech.,2000,15(1): 25-36.
    [128]KOYLUOGLU H U, NIELSEN S R K, CAKMAK A S. Fast cell-to-cell mapping (path integration) for nonlinear white-noise and Poisson driven systems [J]. Structural Safety,1995,17(3):151-165.
    [129]WU Y, ZHU W Q. Stochastic analysis of a pulse-type prey-predator model [J]. Phys. Rev. E,2008,77(4):041911.
    [130]PAPADIMITRIOU C. Stochastic response cumulants of MDOF linear systems [J]. J. Engng. Mech. Div. ASCE,1995,121(11):1181-1192.
    [131]PAPADIMITRIOU C, LUTES L D. Stochastic cumulant analysis of MDOF systems with polynomial type nonlinearities [J]. Probab. Engng. Mech.,1996, 11(1):1-13.
    [132]PAPADIMITRIOU C, KATAFYGIOTIS L S, LUTES L D. Response cumulants of nonlinear systems subject to external and multiplicative excitations [J]. Probab. Engng. Mech.,1999,14(1-2):149-160.
    [133]PROPPE C. Equivalent linearization of MDOF systems under external Poisson white noise excitation [J]. Probab. Engng. Mech.,2002,17(4):393-399.
    [134]PROPPE C. Stochastic linearization of dynamical systems under parametric Poisson white noise excitation [J]. Int. J. Non-Linear Mech.,2003,38(4): 543-555.
    [135]GRIGORIU M. Equivalent linearization for Poisson white-noise input [J]. Probab. Engng. Mech.,1995,10(1):45-51.
    [136]TYLISKOWSKI A, MAROWSKI W. Vibration of a non-linear single-degree-of-freedom system due to poissonian impulse excitation [J]. Int. J. Non-Linear Mech.,1986,21:229-238.
    [137]GRIGORIU M. Equivalent linearization for systems driven by Levy white noise [J]. Probab. Engng. Mech.,2000,15:185-190.
    [138]ROBERTS J B. System response to random impulses [J]. J. Sound Vibr.,1972, 24(1):23-34.
    [139]CAI G Q, LIN Y K. Response distribution of non-linear systems excited by non-Gaussian impulsive noise [J]. Int. J. Non-Linear Mech.,1992,27(6): 955-967.
    [140]WU Y, ZHU W Q. Stationary response of MDOF dissipated Hamiltonian systems to Poisson white noises [J]. J. Applied Mech. Trans. ASME,2008, 75(4):044502.
    [141]WU Y, ZHU W Q. Stationary response of multi-degree-of-freedom vibro-impact systems to Poisson white noises [J]. Phys. Lett. A,2008,372(5): 623-630.
    [142]VASTA M. Exact stationary solution for a class of nonlinear systems driven by a non-normal delta-correlated process [J]. Int. J. Non-Linear Mech.,1995,30(4): 407-418.
    [143]SOBIECHOWSKI C. Stationary probability density functions for nonlinear SIDEs [J]. Stochastic Structural Dynamics,1999,241-247.
    [144]PROPPE C. Exact stationary probability density functions for non-linear systems under Poisson white noise excitation [J]. Int. J. Non-Linear Mech., 2003,38(4):557-564.
    [145]VASTA M, LUONGO A. Dynamic analysis of linear and nonlinear oscillations of a beam under axial and transversal random Poisson pulses [J]. Nonlinear Dynamics,2004,36(2-4):421-435.
    [146]WAISMAN P, GRIGORIU M. Nonlinear systems driven by polynomials of filtered Poisson processes [J]. Probab. Engng. Mech.,1999,14(1-2):195-203.
    [147]WOJTKIEWICZ S F, JOHNSON E A, BERGMAN L A, et al. Response of stochastic dynamical systems driven by additive Gaussian and Poisson white noise:Solution of a forward generalized Kolmogorov equation by a spectral finite difference method [J]. Computer Methods in Applied Mechanics and Engineering,1999,168(1-4):73-89.
    [148]TO C W S. Responses of stochastic shell structures to non-Gaussian random excitations [C]//2008 Proceedings of the NoiseCon/ASME NCAD,2009: 311-318.
    [149]CHOI H, KANDA J. Translation method:a historical review and its application to simulation of non-Gaussian stationary processes [J]. Wind and Structures, 2003,6(5):357-386.
    [150]DEODATIS G, MICALETTI R C. Simulation of highly skewed non-Gaussian stochastic processes [J]. J. Engng. Mech. Div. ASCE,2001,127(12): 1284-1295.
    [151]KONTOROVICH V Y, LYANDRES V Z. Stochastic differential equations-an approach to the generation of continuous non-Gaussian processes [J]. IEEE Transactions on Signal Processing,1995,43(10):2372-2385.
    [152]KONTOROVICH V Y, LYANDRES V Z, PRIMAK S. The generation of diffusion Markovian processes with probability density function defined on part of the real axis [J]. IEEE Signal Processing Letters,1996,3(1):19-21.
    [153]KONTOROVICH V Y, LYANDRES V Z. Dynamic systems with random structure:an approach to the generation of nonstationary stochastic processes [J]. Journal of the Franklin Institute-Engineering and Applied Mathematics, 1999,336(6):939-954.
    [154]KONTOROVICH V Y, LYANDRES V Z, PRIMAK S. Non-linear methods in information processing:Modelling, numerical simulation and application [J]. Dynamics of Continuous Discrete and Impulsive Systems-Series B-Applications & Algorithms,2003,10(1-3):417-428.
    [155]PRIMAK S, LYANDRES V Z. On the generation of the baseband and narrowband non-Gaussian processes [J]. IEEE Transactions on Signal Processing,1998,46(5):1229-1237.
    [156]SMALLWOOD D O. Generation of stationary non-Gaussian time histories with a specified cross-spectral density [J]. Shock and Vibration,1997,4(5-6): 361-377.
    [157]ZHANG S B, ZHANG X S. Exact simulation of IG-OU processes [J]. Methodology and Computing in Applied Probability,2008,10(3):337-355.
    [158]STEINWOLF A, WHITE R G. Experimental simulation of non-Gaussian random vibrations in mechanical systems (symmetrical probability distributions) [J]. Experimental Mechanics, Vols 1 and 2-Advances in Design, Testing and Analysis,1998,259-264.
    [159]STEINWOLF A, IBRAHIM R A. Numerical and experimental studies of linear systems subjected to non-Gaussian random excitations [J]. Probab. Engng. Mech.,1999,14(4):289-299.
    [160]STEINWOLF A. True-random mode simulation of non-Gaussian vibrations with high kurtosis values [C]//2000 Proceedings:Institute of Environmental Sciences and Technology, c2000:148-155.
    [161]KHASMINSKII R Z. A limit theorem for the solutions of differential equations with random right-hand sides [J]. Theory of Probability and Application,1966, 11:390-405.
    [162]PAPANICOLAOU G C, KOHLER W. Asymptotic theory of mixing stochastic ordinary differential equations [J]. Communications on Pure and Applied Mathematics,1974,27:641-668.
    [163]ZHU W Q. Stochastic averaging methods in random vibration [J]. ASME Applied Mechanics Reviews,1988,41(5):189-199.
    [164]ZHU W Q. Recent developments and applications of the stochastic averaging method in random vibration [J]. ASME Applied Mechanics Reviews,1996, 49(10):s72-s80.
    [165]LIN Y K, CAI G Q. Probabilistic Structural Dynamics, Advanced Theory and Applications [M]. New York:McGraw-Hill,1995.
    [166]ROBERTS J B, SPANOS P D. Stochastic averaging:an approximate method of solving random vibration problems [J]. Int. J. Non-Linear Mech.,1986,21: 111-134.
    [167]朱位秋.非线性随机动力学与控制——Hamilton理论体系框架[M].北京:科学出版社,2003.
    [168]ZHU W Q. Nonlinear stochastic dynamics and control in Hamiltonian formulation [J]. ASME Applied Mechanics Reviews,2006,59(1-6):230-248.
    [169]KHASMINSKII R Z. On the averaging principle for Ito stochastic differential equations [J]. Kibernetka,1968,3(4):260-279. (in Russian)
    [170]LIU Z H, ZHU W Q. Stochastic averaging of quasi-integrable Hamiltonian systems with delayed feedback control [J]. J. Sound Vibr.,2007,299(1-2): 178-195.
    [171]CHEN L C, ZHU W Q. Stochastic averaging of strongly nonlinear oscillators with small fractional derivative damping under combined harmonic and white noise excitations [J]. Nonlinear Dynamics,2009,56(3):231-241.
    [172]LI X P, ZHU W Q, LIU Z H. Stochastic averaging of quasi linear systems subject to multi-time-delayed feedback control and wide-band random excitation [J]. J. Vibr. Control,2009,15(8):1187-1205.
    [173]HUANG Z L, ZHU W Q. Stochastic averaging of quasi-generalized Hamiltonian systems. Int J Non-Linear Mech 2009,44:71-80.
    [174]LIU Z H, ZHU W Q. Stochastic Hopf bifurcation of quasi-integrable Hamiltonian systems with time-delayed feedback control [J]. Journal of Theoretical and Applied Mechanics,2008,46(3):531-550.
    [175]LIU Z H, ZHU W Q. Asymptotic Lyapunov stability with probability one of quasi-integrable Hamiltonian systems with delayed feedback control [J]. Automatica,2008,44(7):1923-1928.
    [176]LIU Z H, ZHU W Q. First-passage failure of quasi-integrable Hamiltonian systems under time-delayed feedback control [J]. J. Sound Vibr.,2008,315(1-2): 301-317.
    [177]ZHU W Q, LIU Z H. Response of quasi-integrable Hamiltonian systems with delayed feedback bang-bang control [J]. Nonlinear Dynamics,2007,49(1-2): 31-47.
    [178]LIU Z H, ZHU W Q. Compensation for time-delayed feedback bang-bang control of quasi-integrable Hamiltonian systems [J]. Science in China Series E-Technological Sciences,2009,52(3):688-697.
    [179]DENG M L, ZHU W Q. Feedback minimization of first-passage failure of quasi integrable Hamiltonian systems [J]. Acta Mechanica Sinica,2007,23(4): 437-444.
    [180]CHEN L C, DENG M L, ZHU W Q. First passage failure of quasi integrable-Hamiltonian systems under combined harmonic and white noise excitations [J]. Acta Mechanica,2009,206(3-4):133-148.
    [181]CHEN L C, HUAN R H, ZHU W Q. Feedback maximization of reliability of MDOF quasi integrable-Hamiltonian systems under combined harmonic and white noise excitations [J]. Journal of Zhejiang University-Science A,2009, 10(9):1245-1251.
    [182]CHEN L C, ZHU W Q. Stochastic stability of Duffing oscillator with fractional derivative damping under combined harmonic and white noise parametric excitations [J]. Acta Mechanica,2009,207(1-2):109-120.
    [183]CHEN L C, ZHU W Q. The first passage failure of SDOF strongly nonlinear stochastic system with fractional derivative damping [J]. J. Vibr. Control,2009, 15(8):1247-1266.
    [184]CHEN L C, ZHU W Q. Reliability of quasi integrable generalized Hamiltonian systems [J]. Probab. Engng. Mech.,2010,25(1):61-66.
    [185]CHEN L C, ZHU W Q. First passage failure of quasi-partial integrable generalized Hamiltonian systems [J]. Int. J. Non-Linear Mech.,2010,45(1): 56-62.
    [186]FENG C S, WU Y J, ZHU W Q. First-passage failure of strongly non-linear oscillators with time-delayed feedback control under combined harmonic and wide-band noise excitations [J]. Int. J. Non-Linear Mech.,2009,44(3): 269-275.
    [187]FENG C S, ZHU W Q. Response of harmonically and stochastically excited strongly nonlinear oscillators with delayed feedback bang-bang control [J]. Journal of Zhejiang University-Science A,2009,10(1):54-61.
    [188]FENG C S, WU Y J, ZHU W Q. Response of Duffing system with delayed feedback control under combined harmonic and real noise excitations [J]. Communications in Nonlinear Science and Numerical Simulation,2009,14(6): 2542-2550.
    [189]YING Z G, ZHU W Q. A stochastically averaged optimal control strategy for quasi-Hamiltonian systems with actuator saturation [J]. Automatica,2006,42(9): 1577-1582.
    [190]YING Z G, ZHU W Q. A stochastic optimal control strategy for partially observable nonlinear quasi-Hamiltonian systems [J]. J. Sound Vibr.,2008, 310(1-2):184-196.
    [191]WANG Y, YING Z G, ZHU W Q. Stochastic minimax control for stabilizing uncertain quasi-integrable Hamiltonian systems [J]. Automatica,2009,45(8): 1847-1853.
    [192]HUAN R H, ZHU W Q, WU Y J. Nonlinear stochastic optimal bounded control of hysteretic systems with actuator saturation [J]. Journal of Zhejiang University-Science A,2008,9(3):351-357.
    [193]HUAN R H, CHEN L C, JIN W L, et al. Stochastic optimal vibration control of partially observable nonlinear quasi Hamiltonian systems with actuator saturation [J]. Acta Mechanica Solida Sinica,2009,22(2):143-151.
    [194]HUAN R H, WU Y J, ZHU W Q. Stochastic optimal bounded control of MDOF quasi nonintegrable-Hamiltonian systems with actuator saturation [J]. Archive of Applied Mechanics,2009,79(2):157-168.
    [195]HUAN R H, ZHU W Q. Stochastic optimal control of quasi integrable Hamiltonian systems subject to actuator saturation [J]. J. Vibr. Control,2009, 15(1):85-99.
    [196]HUANG Z L, JIN X L, ZHU W Q. Lyapunov functions for quasi-Hamiltonian systems [J]. Probab. Engng. Mech.,2009,24(3):374-381.
    [197]HUANG Z L, JIN X L, ZHU W Q. Stability analysis of an inverted pendulum subjected to combined high frequency harmonics and stochastic excitations [J]. Chinese Physics Letters,2008,25(9):3099-3102.
    [198]HUANG Z L, JIN X L, ZHU W Q. First-passage time of an inverted pendulum subject to high frequency harmonic and Gaussian white noise excitations [J]. Probab. Engng. Mech.,2009,24(2):128-134.
    [199]LI X P, LIU Z H, HUAN R H, et al. Asymptotic Lyapunov stability with probability one of quasi linear systems subject to multi-time-delayed feedback control and wide-band parametric random excitation [J]. Archive of Applied Mechanics,2009,79(11):1051-1061.
    [200]LI X P, LIU Z H, ZHU W Q. First-passage failure of quasi linear systems subject to multi-time-delayed feedback control and wide-band random excitation [J]. Probab. Engng. Mech.,2009,24(2):144-150.
    [201]CERRAI S, FREIDLIN M. Averaging principle for a class of stochastic reaction-diffusion equations [J]. Probability Theory and Related Fields,2009, 144(1-2):137-177.
    [202]KOUGIOUMTZOGLOU I A, SPANOS P D. An approximate approach for nonlinear system response determination under evolutionary stochastic excitation [J]. Current Science,2009,97(8):1203-1211.
    [203]KUMAR D, DATTA T K. Stochastic response of nonlinear system in probability domain [J]. Sadhana-Academy Proceedings in Engineering Sciences,2006,31(4):325-342.
    [204]KUMAR D, DATTA T K. Stochastic stability of non-linear SDOF systems [J]. Int. J. Non-Linear Mech.,2007,42(6):839-847.
    [205]KUMAR D, DATTA T K. Response of nonlinear systems in probability domain using stochastic averaging [J]. J. Sound Vibr.,2007,302(1-2):152-166.
    [206]KUMAR D, DATTA T K. Stochastic response and stability of a nonintegrable system [J]. J. Engng. Mech. ASCE,2008,134(8):698-702.
    [207]LABOU M, MA T W. Lyapunov exponents of parametrically coupled linear two-DOF stochastic systems and related stability problems [J]. J. Sound Vibr., 2009,325(1-2),421-435.
    [208]LI W, XU W, ZHAO J, et al. The study on stationary solution of a stochastically complex dynamical system [J]. Physica a-Statistical Mechanics and Its Applications,2007,385(2):465-472.
    [209]XU Y, ZHANG H Q, XU W. On stochastic complex beam-beam interaction models with Gaussian colored noise [J]. Physica a-Statistical Mechanics and Its Applications,2007,384(2):259-272.
    [210]ZHANG H Q, XU Y, XU W. Approximate stationary solution and stochastic stability for a class of differential equations with parametric colored noise [J]. Nonlinear Dynamics,2009,56(3):213-221.
    [211]LI W, XU W, ZHAO J, et al. First-passage problem for strong nonlinear stochastic dynamical systems [J]. Chaos Solitons & Fractals,2006,28(2): 414-421.
    [212]PARK J H, NAMACHCHIVAYA N S. A problem in stochastic averaging of nonlinear filters [J]. Stochastics and Dynamics,2008,8(3):543-560.
    [213]PARK J H, NAMACHCHIVAYA N S, NEOGI N. Stochastic averaging and optimal prediction [J]. J. Vibr. Acoustics Trans. ASME,2007,129(6):803-807.
    [214]RONG H W, WANG X D, XU W, et al. Response of Duffing one-sided constraint oscillator to combined deterministic harmonic and random excitation [J]. Acta Physica Sinica,2008,57(11):6888-6895.
    [215]RONG H W, WANG X D, XU W, et al. Subharmonic response of a single-degree-of-freedom nonlinear vibro-impact system to a narrow-band random excitation [J]. Phys. Rev. E,2009,80(2).
    [216]SPANOS P D, SOFI A, DI PAOLA M. Nonstationary response envelope probability densities of nonlinear oscillators [J]. J. Applied Mech. Trans. ASME, 2007,74(2):315-324.
    [217]WU Y J, FANG W. Stochastic averaging method for estimating first-passage statistics of stochastically excited Duffing-Rayleigh-Mathieu system [J]. Acta Mechanica Sinica,2008,24(5):575-582.
    [218]WU Y J, HUAN R H. First-passage failure minimization of stochastic Duffing-Rayleigh-Mathieu system [J]. Mechanics Research Communications, 2008,35(7):447-453.
    [219]WU Y J, ZHU W Q. Stochastic averaging of strongly nonlinear oscillators under combined harmonic and wide-band noise excitations [J]. J. Vibr. Acoustics Trans. ASME,2008,13(5).
    [220]WU Y J, LUO M, ZHU W Q. First-passage failure of strongly nonlinear oscillators under combined harmonic and real noise excitations [J]. Archive of Applied Mechanics,2008,78(7):501-515.
    [221]YING Z G, NI Y Q, KO J M. A bounded stochastic optimal semi-active control [J]. J. Sound Vibr.,2007,304(3-5):948-956.
    [222]YING Z G, NI Y Q, KO J M. A semi-active stochastic optimal control strategy for nonlinear structural systems with MR dampers [J]. Smart Structures and Systems,2009,5(1):69-79.
    [223]YOUNG T H, SHIAU T N, KUO Z H. Dynamic stability of rotor-bearing systems subjected to random axial forces [J]. J. Sound Vibr.,2007,305(3): 467-480.
    [224]CAI G Q. Application of stochastic averaging to non-linear ecosystems [J]. Int. J. Non-Linear Mech.,2009,44(7):769-775.
    [225]CAI G Q, LIN Y K. Stochastic analysis of time-delayed ecosystems [J]. Phys. Rev. E,2007,76(4).
    [226]CAI G Q, LIN Y K. Stochastic analysis of predator-prey type ecosystems [J]. Ecological Complexity,2007,4(4):242-249.
    [227]DENG M L, ZHU W Q. Fermi resonance and its effect on the mean transition time and rate [J]. Phys. Rev. E,2008,77(6).
    [228]DENG M L, ZHU W Q. Stochastic dynamics and denaturation of thermalized DNA [J]. Phys. Rev. E,2008,77(2).
    [229]DENG M L, ZHU W Q. Some applications of stochastic averaging method for quasi Hamiltonian systems in physics [J]. Science in China Series G-Physics Mechanics & Astronomy,2009,52(8):1213-1222.
    [230]DIMENTBERG M F. Transverse vibrations of rotating shafts:Probability density and first-passage time of whirl radius [J]. Int. J. Non-Linear Mech., 2005,40(10):1263-1267.
    [231]DIMENTBERG M F, NAESS A. Nonlinear vibrations of a rotating shaft with broadband random variations of internal damping [J]. Nonlinear Dynamics, 2008,51(1-2):199-205.
    [232]HUANG D W, WANG H L, FENG J F, et al. Modelling algal densities in harmful algal blooms (HAB) with stochastic dynamics [J]. Applied Mathematical Modelling,2008,32(7):1318-1326.
    [233]LELAND R P. Mechanical-thermal noise in MEMS gyroscopes [J]. IEEE Sensors Journal,2005,5(3):493-500.
    [234]LI W, XU W, ZHAO J F, et al. Stochastic stability and bifurcation in a macroeconomic model [J]. Chaos Solitons & Fractals,2007,31(3):702-711.
    [235]HOFFMANN N, GAUL L. A stochastic averaging approach for printed circuit boards with nonlinear damping characteristics subjected to random vibration loads [J]. Mechanics Research Communications,2006,33(3):385-393.
    [236]ROBERTS J B, VASTA M. Markov modelling and stochastic identification for nonlinear ship rolling in random waves [J]. Philosophical Transactions of the Royal Society of London Series a-Mathematical Physical and Engineering Sciences,2000,358(1771):1917-1941.
    [237]ROSS S M. Stochastic processes [M]. New York:Wiley,1995.
    [238]邓永录,梁之舜.随机点过程及其应用[M].北京:科学出版社,1992.
    [239]COX D R, ISHAM V I. Point processes [M]. London:Chapman & Hall,1980.
    [240]SNYDER D L, MILLER M I. Random point processes in time and space [M]. New York:Springer-Verlag,1991.
    [241]GRIGORIU M. White noise processes [J]. ASCE Journal of Engineering Mechanics,1987,113:757-765.
    [242]LIN,Y K. Probabilistic theory of structural dynamics [M]. New York: McGraw-Hill,1967.
    [243]HU S L J. Responses of dynamic-systems excited by non-Gaussian pulse processes [J]. J. Engng. Mech. Div. ASCE,1993,119(9):1818-1827.
    [244]HU S L J. Responses of dynamic-systems excited by non-Gaussian pulse processes-closure [J]. J. Engng. Mech. Div. ASCE,1994,120(11):2473-2474.
    [245]徐钟济.蒙特卡罗方法[M].上海:上海科学技术出版社,1985.
    [246]DIMOV I T. Monte Carlo methods for applied scientists [M]. New Jersey: World Scientific,2008.
    [247]吴禹.泊松白噪声激励下几类非线性系统的响应与可靠性[D].杭州:浙江大学航空航天学院,2008.
    [248]SIEGEL C L, MORSER J K. Lecture on celestical mechanics [M]. New York: Springer-Verlag,1971.
    [249]BINNEY J J, DOWRICK N J, FISHER A J, et al. The theory of critical phenomena, an introduction to the renormalization group [M]. Oxford, U.K.: Clarendon Press,1992.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700