用户名: 密码: 验证码:
选择性剪接顺式调控元件的位置效应
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
人类基因组容量非常有限,仅3万多的基因数远远不能满足生物多样性和复杂性的要求。通过转录后调控网络,特别是选择性剪接的调控网络,有限的基因容量产生了庞大的蛋白质组复杂的表型。
     对于选择性剪接调控的研究,一般着重于顺式作用元件的筛选和反式作用因子的筛选。本文的重点则于在讨论如下两个问题:
     1顺式作用元件的强弱不但和其一级序列有关,和其所处的序列背景以及位置也有很重要的关系,即其功能是位置依赖的而不是长期以来认为的独立发生作用。
     2mRNA在体内可能形成二级结构,并以此作为手段,对于位于其附近的顺式作用元件的功能进行调节。
     人类转录组分析表明大于90%的基因存在选择性剪接,这说明了选择性剪接在产生蛋白质结构和功能的多样性中的重要作用(Nilsen and Graveley 2010)。前人的研究证明,对选择性剪接的调控多是通过反式作用元件(蛋白)结合于顺式作用元件之上,对剪接体组成部分的蛋白进行招募或者抑制达到调控目的的。在经典剪接调控理论中,pre-mRNA被认为是被hnRNP蛋白所包裹,强制形成单链状态。各种调控元件的功能强弱只与其一级序列有关,是背景独立的元件(context independent),可以在不同的外显子中独立发挥作用。
     近年来,越来越多的例子证明,调控元件的独立性有相当大的相对性。元件和其所在的环境之间存在着精密的相互作用,这种相互作用对元件的功能调节作用非常大。有些元件甚至因为处于不同位置而发挥了完全相反的作用。但是对于这种被统称为位置效应(positional effect)的现象目前还没有进行比较系统的研究。单基因间的相关现象往往彼此矛盾,而造成这一效应的其机制更是众说纷纭。
     通过建立不同的检测系统,我们将位置效应拆分成为三个方面进行了分别的讨论。
     首先,我们发现各种剪接元件之间倾向于成簇协同发生作用。一旦远离了其他元件时,调控元件倾向于不发挥作用。结合不同蛋白的调控元件发生作用的位置略有不同,但大体上都是倾向集中于剪接位点附近。
     其次,当存在西个5'剪接位点,竞争同一个3'剪接位点时,强的剪接位点往往会被选择。但是,剪接位点和其他元件间的相对位置有时会比剪接位点本身的强弱更为重要。上游的3'剪接位点可能对于下游5'剪接位点的选择具有调节的作用。
     再次,mRNA上存在的二级结构可能对处于其内部或附近顺式作用元件的功能强弱具有决定性的调节作用。
There is a very limited number of genes in human genomic, thirty thousand genes. The large proteomic complexity is achieved by post-transcriptional mechanisms of gene regulation, especially by the network of alternative splicing.
     The classic study of alternative splicing focused on selecting cis- and trans- factors. Our points in this paper are focused on the two below
     1. The strength of the cis-elements is not only decided by the sequences of the elements but also interfered by the position and background it located
     2. mRNA can form secondary structure in vivo, and regulate the function of the cis-element near it.
     Over 90% of human gene was alternative spliced. In classic theory, pre-mRNA was transcribed and package with the hnRNPs to forced to be linear. Then the cis-elements on the mRNA were bound by the trans-factors and the components of splicesome were recruited to the splicing site and splice began. The strength of elements is context-independent, only related to the sequence of the elements itself.
     Recently, more and more examples implied that the independence of the elements is rather limited. Elements interact with the background they located in a very precise way. In some cases, these interaction is so strong that element functioned in a rather different way on different positions. But till now, there is no systemic study on this positional effect. Data about this phenomena is both complex and puzzled.
     Here we divided the phenomena into three parts, and studied them respectively.
     Firstly, we found out the splicing signals (including all elements) worked in a clustered way. When located apart from other elements, the element tends to show no function. Functional position of different elements is diverse, but they all tend to clustered near the splicing site.
     Secondly, when there are two competitive 5'splicing site, the stronger one will be chosen. But sometimes the distance between the splicing site and other splicing signals may be more important than the strength of the splicing site.
     Thirdly, secondary structure on the pre-mRNA play an important role in the function of the element near it or inside it.
引文
1. Black, D.L., Mechanisms of alternative pre-messenger RNA splicing. Annu Rev Biochem,2003.72: p.291-336.
    2. Moore, M.J. and N.J. Proudfoot, Pre-mRNA processing reaches back to transcription and ahead to translation. Cell,2009.136(4):p.688-700.
    3. Matlin, A.J., F. Clark, and C.W. Smith, Understanding alternative splicing:towards a cellular code. Nat Rev Mol Cell Biol,2005.6(5):p.386-98.
    4. Grabowski, P.J. and D.L. Black, Alternative RNA splicing in the nervous system. Prog Neurobiol, 2001.65(3):p.289-308.
    5. Cartegni, L., S.L. Chew, and A.R. Krainer, Listening to silence and understanding nonsense: exonic mutations that affect splicing. Nat Rev Genet,2002.3(4):p.285-98.
    6. Caceres, J.F. and A.R. Kornblihtt, Alternative splicing: multiple control mechanisms and involvement in human disease. Trends Genet,2002.18(4):p.186-93.
    7. Faustino, N.A. and T.A. Cooper, Pre-mRNA splicing and human disease. Genes Dev,2003.17(4):p. 419-37.
    8. Pagani, F. and F.E. Baralle, Genomic variants in exons and introns:identifying the splicing spoilers. Nat Rev Genet,2004.5(5):p.389-96.
    9. Kramer, A., The structure and function of proteins involved in mammalian pre-mRNA splicing. Annu Rev Biochem,1996.65:p.367-409.
    10. Wahl, M.C., C.L. Will, and R. Luhrmann, The spliceosome: design principles of a dynamic RNP machine. Cell,2009.136(4):p.701-18.
    11. Lim, S.R. and K.J. Hertel, Commitment to splice site pairing coincides with A complex formation. Mol Cell,2004.15(3):p.477-83.
    12. Matlin, A.J. and M.J. Moore, Spliceosome assembly and composition. Adv Exp Med Biol,2007.623: p.14-35.
    13. Smith, C.W. and J. Valcarcel, Alternative pre-mRNA splicing:the logic of combinatorial control. Trends Biochem Sci,2000.25(8):p.381-8.
    14. Goncalves, V., P. Matos, and P. Jordan, Antagonistic SR proteins regulate alternative splicing of tumor-related Rac1b downstream of the PI3-kinase and Wnt pathways. Hum Mol Genet,2009. 18(19):p.3696-707.
    15. Wu, J.Y. and T. Maniatis, Specific interactions between proteins implicated in splice site selection and regulated alternative splicing. Cell,1993.75(6):p.1061-70.
    16. Tian, M. and T. Maniatis, A splicing enhancer complex controls alternative splicing of doublesex pre-mRNA. Cell,1993.74(1):p.105-14.
    17. Bourgeois, C.F., et al., Identification of a bidirectional splicing enhancer: differential involvement of SR proteins in 5'or 3'splice site activation. Mol Cell Biol,1999.19(11):p.7347-56.
    18. Graveley, B.R., Sorting out the complexity of SR protein functions. RNA,2000.6(9):p.1197-211.
    19. Eldridge, A.G., et al., The SRm160/300 splicing coactivator is required for exon-enhancer function. Proc Natl Acad Sci U S A,1999.96(11):p.6125-30.
    20. Zhu, J., A. Mayeda, and A.R. Krainer, Exon identity established through differential antagonism between exonic splicing silencer-bound hnRNP A1 and enhancer-bound SR proteins. Mol Cell,2001. 8(6):p.1351-61.
    21. Wollerton, M.C., et al., Differential alternative splicing activity of isoforms of polypyrimidine tract binding protein (PTB). RNA,2001.7(6):p.819-32.
    22. Gil, A., et al., Characterization of cDNAs encoding the polypyrimidine tract-binding protein. Genes Dev,1991.5(7):p.1224-36.
    23. Oh, Y.L., et al., Determination of functional domains in polypyrimidine-tract-binding protein. Biochem J,1998.331(Pt 1):p.169-75.
    24. Sawicka, K., et al., Polypyrimidine-tract-binding protein: a multifunctional RNA-binding protein. Biochem Soc Trans,2008.36(Pt 4):p.641-7.
    25. Wagner, E.J., R.P. Carstens, and M.A. Garcia-Blanco, A novel isoform ratio switch of the polypyrimidine tract binding protein. Electrophoresis,1999.20(4-5):p.1082-6.
    26. Spellman, R. and C.W. Smith, Novel modes of splicing repression by PTB. Trends Biochem Sci,2006. 31(2):p.73-6.
    27. Auweter, S.D., F.C. Oberstrass, and F.H. Allain, Solving the structure of PTB in complex with pyrimidine tracts: an NMR study of protein-RNA complexes of weak affinities. J Mol Biol,2007. 367(1):p.174-86.
    28. Mitchell, S.A., et al., The Apaf-1 internal ribosome entry segment attains the correct structural conformation for function via interactions with PTB and unr. Mol Cell,2003.11(3):p.757-71.
    29. Petoukhov, M.V., et al., Conformation of polypyrimidine tract binding protein in solution. Structure, 2006.14(6):p.1021-7.
    30. Singh, R., J. Valcarcel, and M.R. Green, Distinct binding specificities and functions of higher eukaryotic polypyrimidine tract-binding proteins. Science,1995.268(5214):p.1173-6.
    31. Sharma, S., et al., Polypyrimidine tract binding protein controls the transition from exon definition to an intron defined spliceosome. Nat Struct Mol Biol,2008.15(2):p.183-91.
    32. Izquierdo, J.M., et al., Regulation of Fas alternative splicing by antagonistic effects of TIA-1 and PTB on exon definition. Mol Cell,2005.19(4):p.475-84.
    33. Xue, Y., et al., Genome-wide analysis of PTB-RNA interactions reveals a strategy used by the general splicing repressor to modulate exon inclusion or skipping. Mol Cell,2009.36(6):p. 996-1006.
    34. Wang, J., et al., Distribution of SR protein exonic splicing enhancer motifs in human protein-coding genes. Nucleic Acids Res,2005.33(16):p.5053-62.
    35. Goren, A., et al., Comparative analysis identifies exonic splicing regulatory sequences--The complex definition of enhancers and silencers. Mol Cell,2006.22(6):p.769-81.
    36. Ule, J., et al., An RNA map predicting Nova-dependent splicing regulation. Nature,2006. 444(7119):p.580-6.
    37. Yeo, G.W., et al., An RNA code for the FOX2 splicing regulator revealed by mapping RNA-protein interactions in stem cells. Nat Struct Mol Biol,2009.16(2):p.130-7.
    38. Stadler, M.B., et al., Inference of splicing regulatory activities by sequence neighborhood analysis. PLoS Genet,2006.2(11):p. e191.
    39. Solnick, D., Alternative splicing caused by RNA secondary structure. Cell,1985.43(3 Pt 2):p. 667-76.
    40. Clouet d'Orval, B., et al., Determination of an RNA structure involved in splicing inhibition of a muscle-specific exon. J Mol Biol,1991.221(3):p.837-56.
    41. Eperon, L.P., et al., Effects of RNA secondary structure on alternative splicing of pre-mRNA: is folding limited to a region behind the transcribing RNA polymerase? Cell,1988.54(3):p.393-401.
    42. Eveleth, D.D., et al., Sequence and structure of the dopa decarboxylase gene of Drosophila: evidence for novel RNA splicing variants. EMBO J,1986.5(10):p.2663-72.
    43. Libri, D., A. Piseri, and M.Y. Fiszman, Tissue-specific splicing in vivo of the beta-tropomyosin gene: dependence on an RNA secondary structure. Science,1991.252(5014):p.1842-5.
    44. Warf, M.B. and J.A. Berglund, Role of RNA structure in regulating pre-mRNA splicing. Trends Biochem Sci,2009.
    45. Singh, N.N., R.N. Singh, and E.J. Androphy, Modulating role of RNA structure in alternative splicing of a critical exon in the spinal muscular atrophy genes. Nucleic Acids Res,2007.35(2):p.371-89.
    46. Sirand-Pugnet, P., et al., beta-Tropomyosin pre-mRNA folding around a muscle-specific exon interferes with several steps of spliceosome assembly. J Mol Biol,1995.251(5):p.591-602.
    47. Blanchette, M. and B. Chabot, A highly stable duplex structure sequesters the 5'splice site region of hnRNP A1 alternative exon 7B. RNA,1997.3(4):p.405-19.
    48. Jiang, Z., et al., Aberrant splicing of tau pre-mRNA caused by intronic mutations associated with the inherited dementia frontotemporal dementia with parkinsonism linked to chromosome 17. Mol Cell Biol,2000.20(11):p.4036-48.
    49. Warf, M.B., et al., The protein factors MBNL1 and U2AF65 bind alternative RNA structures to regulate splicing. Proc Natl Acad Sci USA,2009.106(23):p.9203-8.
    50. Sickmier, E.A., et al., Structural basis for polypyrimidine tract recognition by the essential pre-mRNA splicing factor U2AF65. Mol Cell,2006.23(1):p.49-59.
    51. Libri, D., et al., RNA structural patterns and splicing:molecular basis for an RNA-based enhancer. RNA,1995.1(4):p.425-36.
    52. Goguel, V. and M. Rosbash, Splice site choice and splicing efficiency are positively influenced by pre-mRNA intramolecular base pairing in yeast. Cell,1993.72(6):p.893-901.
    53. Charpentier, B. and M. Rosbash, Intramolecular structure in yeast introns aids the early steps of in vitro spliceosome assembly. RNA,1996.2(6):p.509-22.
    54. Mougin, A., et al., Secondary structure of the yeast Saccharomyces cerevisiae pre-U3A snoRNA and its implication for splicing efficiency. RNA,1996.2(11):p.1079-93.
    55. Domenjoud, L., et al., Identification of a specific exon sequence that is a major determinant in the selection between a natural and a cryptic 5'splice site. Mol Cell Biol,1991.11(9):p.4581-90.
    56. Deshler, J.O. and J.J. Rossi, Unexpected point mutations activate cryptic 3'splice sites by perturbing a natural secondary structure within a yeast intron. Genes Dev,1991.5(7):p.1252-63.
    57. Buratti, E., et al., RNA folding affects the recruitment of SR proteins by mouse and human polypurinic enhancer elements in the fibronectin EDA exon. Mol Cell Biol,2004.24(3):p.1387-400.
    58. Muro, A.F., et al., Regulation of fibronectin EDA exon alternative splicing:possible role of RNA secondary structure for enhancer display. Mol Cell Biol,1999.19(4):p.2657-71.
    59. Hiller, M., et al., Pre-mRNA secondary structures influence exon recognition. PLoS Genet,2007. 3(11):p. e204.
    60. Gornemann, J., et al., Cotranscriptional spliceosome assembly occurs in a stepwise fashion and requires the cap binding complex. Mol Cell,2005.19(1):p.53-63.
    61. Glisovic, T., et al., RNA-binding proteins and post-transcriptional gene regulation. FEBS Lett,2008. 582(14):p.1977-86.
    62. Gralla, J. and D.M. Crothers, Free energy of imperfect nucleic acid helices. Ⅱ. Small hairpin loops. J Mol Biol,1973.73(4):p.497-511.
    63. Ravetch, J., J. Gralla, and D.M. Crothers, Thermodynamic and kinetic properties of short RNA helices: the oligomer sequence AnGCUn. Nucleic Acids Res,1974.1(1):p.109-27.
    64. Darzacq, X., et al., In vivo dynamics of RNA polymeraseⅡ transcription. Nat Struct Mol Biol,2007. 14(9):p.796-806.
    65. Vilardell, J. and J.R. Warner, Regulation of splicing at an intermediate step in the formation of the spliceosome. Genes Dev,1994.8(2):p.211-20.
    66. Oberstrass, F.C., et al., Structure of PTB bound to RNA:specific binding and implications for splicing regulation. Science,2005.309(5743):p.2054-7.
    67. Damgaard, C.K., T.O. Tange, and J. Kjems, hnRNP A1 controls HIV-1 mRNA splicing through cooperative binding to intron and exon splicing silencers in the context of a conserved secondary structure. RNA,2002.8(11):p.1401-15.
    68. Hertel, K.J., Combinatorial control of exon recognition. J Biol Chem,2008.283(3):p.1211-5.
    69. Roberts, D.F., J. Chavez, and S.D. Court, The genetic component in child mortality. Arch Dis Child, 1970.45(239):p.33-8.
    70. Lorson, C.L., et al., A single nucleotide in the SMN gene regulates splicing and is responsible for spinal muscular atrophy. Proc Natl Acad Sci U S A,1999.96(11):p.6307-11.
    71. Lefebvre, S., et al., Identification and characterization of a spinal muscular atrophy-determining gene. Cell,1995.80(1):p.155-65.
    72. Lorson, C.L., et al., SMN oligomerization defect correlates with spinal muscular atrophy severity. Nat Genet,1998.19(1):p.63-6.
    73. Pellizzoni, L., B. Charroux, and G. Dreyfuss, SMN mutants of spinal muscular atrophy patients are defective in binding to snRNP proteins. Proc Natl Acad Sci U S A,1999.96(20):p.11167-72.
    74. Cartegni, L. and A.R. Krainer, Disruption of an SF2/ASF-dependent exonic splicing enhancer in SMN2 causes spinal muscular atrophy in the absence of SMNl. Nat Genet,2002.30(4):p.377-84.
    75. Kashima, T. and J.L. Manley, A negative element in SMN2 exon 7 inhibits splicing in spinal muscular atrophy. Nat Genet,2003.34(4):p.460-3.
    76. Lorson, C.L. and E.J. Androphy, An exonic enhancer is required for inclusion of an essential exon in the SMA-determining gene SMN. Hum Mol Genet,2000.9(2):p.259-65.
    77. Singh, NX, et al.. Splicing of a critical exon of human Survival Motor Neuron is regulated by a unique silencer element located in the last intron. Mol Cell Biol,2006.26(4):p.1333-46.
    78. Hua, Y., et al., Enhancement of SMN2 exon 7 inclusion by antisense oligonucleotides targeting the exon. PLoS Biol,2007.5(4):p. e73.
    79. Singh, R.N., Evolving concepts on human SMN pre-mRNA splicing. RNA Biol,2007.4(1):p.7-10.
    80. Hofmann, Y., et al., Htra2-beta 1 stimulates an exonic splicing enhancer and can restore full-length SMN expression to survival motor neuron 2 (SMN2). Proc Natl Acad Sci USA,2000.97(17):p. 9618-23.
    81. Hofmann, Y. and B. Wirth, hnRNP-G promotes exon 7 inclusion of survival motor neuron (SMN) via direct interaction with Htra2-betal. Hum Mol Genet,2002.11(17):p.2037-49.
    82. Young, P.J., et al., SRp30c-dependent stimulation of survival motor neuron (SMN) exon 7 inclusion is facilitated by a direct interaction with hTra2 beta 1. Hum Mol Genet,2002.11(5):p.577-87.
    83. Fairbrother, W.G., et al., Predictive identification of exonic splicing enhancers in human genes. Science,2002.297(5583):p.1007-13.
    84. Lou, H., G.J. Cote, and R.F. Gagel, The calcitonin exon and its flanking intronic sequences are sufficient for the regulation of human caicitonin/calcitonin gene-related peptide alternative RNA splicing. Mol Endocrinol,1994.8(12):p.1618-26.
    85. Lou, H., et al., An intron enhancer containing a 5'splice site sequence in the human calcitonin/calcitonin gene-related peptide gene. Mol Cell Biol,1995.15(12):p.7135-42.
    86. Keith, I.M., et al., Three-week neonatal hypoxia reduces blood CGRP and causes persistent pulmonary hypertension in rats. Am J Physiol Heart Circ Physiol,2000.279(4):p. H1571-8.
    87. Lou, H. and R.F. Gagel, Alternative RNA processing--its role in regulating expression of calcitonin/calcitonin gene-related peptide. J Endocrinol,1998.156(3):p.401-5.
    88. Shepard, P.J. and K.J. Hertel, Conserved RNA secondary structures promote alternative splicing. RNA,2008.14(8):p.1463-9.
    89. Shen, L.X., Z. Cai, and I. Tinoco, Jr., RNA structure at high resolution. FASEB J,1995.9(11):p. 1023-33.
    90. Westhof, E., P. Dumas, and D. Moras, Loop stereochemistry and dynamics in transfer RNA. J Biomol Struct Dyn,1983.1(2):p.337-55.
    91. Yang, G., et al., An erythroid differentiation-specific splicing switch in protein 4.1R mediated by the interaction of SF2/ASF with an exonic splicing enhancer. Blood,2005.105(5):p.2146-53.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700