用户名: 密码: 验证码:
马尾松抑制消减文库的构建及抗病性相关基因的克隆
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
马尾松(Pinus massoniana)为我国南方最重要的用材树种,广泛用于建筑、家居和造纸业。松树萎蔫病已经给我国林业造成了巨大的破坏,它是由松材线虫(Bursaphelenchus xylophilus)引起的。由于该病的致病机理复杂性,至今尚未找到有效的防治方法。开展马尾松与松材线虫互作的分子机理研究,不但可以揭示病原物的致病机理和寄主植物的抗病机制,而且对马尾松抗松材线虫病选育及病害的可持续控制具有重要的理论和实际意义。本研究利用抑制消减杂交技术构建了松材线虫诱导的马尾松叶片cDNA文库,分析松材线虫诱导后马尾松基因的表达情况。深入研究和克隆相关抗病基因,对阐明马尾松的抗病机制有重要的意义。
     以马尾松为材料,在接种松材线虫后的24小时、48小时、72小时剪取叶片,构建了在松材线虫诱导马尾松叶片的抑制消减文库。随机挑取SSH文库的70个阳性克隆进行测序,共获得59条有效的序列。对59条序列进行BlastX分析,显示9个与未知功能序列相似,6个未找到同源序列。对获得的序列分析表明这些基因涉及新陈代谢、信号传导、胁迫应答、防御蛋白合成、转录调控等多种功能。含有锌指蛋白、苯丙氨酸解氨酶、4-coumarate:CoA ligase、SPI1B、伤害反应蛋白、ABA激素应答蛋白、GTP结合蛋白、Ca2+结合蛋白、细胞色素氧化酶、NBS-LRR蛋白等在抗病过程中发挥作用。文库中发现多个信号转导相关基因,说明在抗病过程中汇总信号转导起到一定作用。另外还发现一些未知功能的基因片段,还有待于进一步研究。
     利用RT-PCR和RACE技术分别对苯丙氨酸解氨酶、亲环素和叶绿素a/b捕光蛋白基因进行克隆,获得了cDNA全长。其中苯丙氨酸解氨酶基因全长为2700bp,含有2157bp的开放阅读框,编码718个氨基酸,分子量约为78.20kD,理论等电点为5.81,为亲水蛋白,GenBank登录号为GQ142010。其含有PAL的特征序列GTITASGDLVPLSYIAG,该蛋白无跨膜区。亲环素基因全长为1002bp,含有518bp的开放读码框,编码172个氨基酸,分子量约为18.212 kD,理论等电点为8.82,为亲水蛋白。GenBank登录号为GQ497815。对其编码的氨基酸分析表明:包含典型的亲环素型肽酰脯氨酸顺反异构酶蛋白功能域FKGSSFHRVIPGFMCQGG,含有信号肽,另外还有跨膜结构。对其开放读码框克隆到pET-24a(+)构建了原核表达载体,在大肠杆菌中获得成功表达。叶绿素a/b捕光蛋白基因全长为1062bp,含有825bp的开放读码框,编码274个氨基酸,分子量约为28.98 kD,理论等电点为5.24,为亲水蛋白。GenBank登录号为GQ073386。对其编码的氨基酸分析表明:包含典型的含典型的捕光叶绿素a/b结合蛋白功能域,无跨膜结构。对其开放读码框克隆到pET-24a(+)构建了原核表达载体,在大肠杆菌中获得成功表达。
Pinus massoniana, a kind of important tree species in Southern China, is widely used in construction, furniture and paper production。Pine wilt disease casued by Bursaphelenchus xylophilus has already caused serious damage to chinese forestry. Being of the complexity of pathogenic mechanism of the disease, there is no effective way to prevent and cure it so far. Therefore, studying on the interaction between p. massoniana and B.xylophilus can reveal the resistant mechanism of the host plant and the pathogenic mechanism, which provide further information for selection and reasonable use of resistant, In the paper, to elucidate the resistant mechanism at the molecular level.suppression subtractive hybridization(SSH)was adapted to construct a P. massoniana leaf cDNA library induced by B. xylophilus. Illustrating the resistant mechanism of the plant and cloning relative genes will be beneficial to improving the resistance of P.massoniana.
     After inoculating with Bursaphelenchus xylophilus, the leaves from Pinus massoniana were harvested at 24、48 and 72hours respectively. A suppression subtractive hybridization library of Pinus massoniana was constructed using above leaves based on SMART method and PCR-Select cDNA Subtraction Kit. Fifty nine effective sequences were obtained from seventy randomly picked positive colonies. BlastX alignment results revealed that nine fragments showed similarity to function-unkonwn sequences and 6 didn't find any similar genes. Resistance related genes obtained in the SSH library were analysed that signal transduction、stress response、defence protein synthesis、transcriptional and other vital process were involved in disease defence process. Zinc-finger protein, phenylalanine ammonia-lyase,4-coumarate:CoA ligase, SPI1B,wound responsive protein, ABA-responsive and embryogenesis-associated gene;LEA-like protein, Rac-like GTP binding protein, calcium binding protein, cytochrome oxidase, NBS-LRR protein had played an important role in main resistance process.Analysis results of signal transduction related gene may also take part in triggering resistance response. There still need to study some of unknown gene sequence in the cDNA SSH library.
     In this paper the gene encoding phenylalanine ammonia-lyase(PAL)、Cyclophilin and Chlorophyll a/b-Binding Protein(Cab) were amplified by RT-PCR and 5' rapid amplification of cDNA end(RACE) respectively. The cDNA of pal is 2700bp long,in which including 2157 open reading frame(ORF), encoding a protein of 718 amino acids residues.The predicted molecular mass is 78.20kD and theoretical isoelectric is 5.81. It shows as hydrophilic protein. The GenBank acession Number is GQ142010. And further analysis showed that it possess the PAL domain sequence GTITASGDLVPLSYIAG and no transmembrane regions. The cDNA of Cyclophilin is 1002bp, in which including 519bp ORF, encoding a protein of 172 amino acids residues. The predicted molecular mass is 18.212 kD and theoretical isoelectric is 8.82, It is a hydrophilic protein. The GenBank acession Number is GQ497815. And further analysis showed that it possess the Peptidyl-prolyl cis-trans isomerase domain FKGSSFHRVIPGFMCQGG、signal sonsensus sequence and transmembrane regions. The prokaryotic expression vector of cyp gene encoding protein was constructed by subcloning the fragment into pET-24a(+) and was expressed in Escherichia coli induced by IPTG. The cDNA of Cab is 1062bp, in which including 825bp ORF, encoding a protein of 274 amino acids residues. The predicted molecular mass is 28.98 kD and theoretical isoelectric is 5.24, It is a hydrophilic protein. The GenBank acession Number is GQ073386. And further analysis showed that it possess the chlorophyll a/b binding domain and no transmembrane regions. The prokaryotic expression vector of cab gene encoding protein was constructed by subcloning the fragment into pET-24a(+) and was expressed in Escherichia coli induced by IPTG.
引文
1. 王志坤,秦智伟,丁国华,等.植物抗病基因同源序列及其研究进展[J].生物技术,2004,14(4):80-82.
    2. 王金生.植物抗病性分子机制[J].植物病理学报,1995,25(4):289-295.
    3.刘胜毅,许泽永,何礼远.植物与病原菌互作和抗病性的分子机制[J].中国农业科学,1999,32(增刊):94-102.
    4. Dlip M S. Genetic enginerring for fungal and bacterial diseases[J].Curr Opin Biotech.1997 (8):208-284
    5. 李汝刚,范云六,植物抗菌物的遗传工程进展[J].生物上程进展,2000.20(2):9-12
    6. Flor H H. Current status of the gene for gene concept [J]. Ann Phytopathol,1971,9: 275-296.
    7. 卢志国,韩建民,董金皋.植物抗病基因研究现状[J].河北农业大学学报,2002,25(S1):160-163.
    8. 韩德俊,曹莉,陈耀锋,等.植物抗病基因与病原菌无毒基因互作的分子基础[J].遗传学报,2005,32(12):1319-1326.
    9. Johal G S, Briggs S P.Reductase activity encoded by the HM1 disease resistance gene in maize[J].Science,1992,258(6):985-987.
    10. Baker B,Zambryski P,Staskawicz B,Dinesh-KumarSP. Signaling in plant-microbe interactions[J]. Science,1997,276:726-733.
    11. Ryals JA,Lawton KA,Delaney TP,Friedrich L,Kessmann H,Neuenschwander U,Uknes S,Vernoou B,Weymann K.Signal transduction in systemic acquired resistance[J].Proc Natl Acad Sci USA,1995,92:4202-4205.
    12.王晓萍,温玉琴,郭东林等.植物抗病分子机制研究进展[J].黑龙江农业科学,2003,(5):32-34.
    13. Century KS, Shap iro AD, Repetti PP,et al.NDR 1,a pathogen induced component required for Arabidopsis disease resistance [J].Science,1997,278:1963-1965.
    14. Falk A, Feys BJ, Frost LN, et al. EDS 1, an essential component of R gene mediated disease resistance in Arabidopsis has homology to eukaryotic lipases [J].Proc Natl Acad Sci.USA,1999,96:3292-3297
    15. Jirage D,Tootle TL,Reuber TL,et al.Arabidopsis thaliana PAD 4 encodes a lipase like gene that is important for salicylicacid signaling [J].Proc NatlAcad SciUSA,1999,96: 13583-13588.
    16. Thomma B P H J,Eggermont K, Penninckx IA M A, et al.Separate jasmonate dependent and salicylic acid dependent defense response pathways in Arabidopsis are essential for resistance to distinct microbial pathogens [J]. Proc Natl Acad Sci, USA, 1998,95:15107-15111.
    17. LiX,Zhang YL, Joseph D, et al.Identification and cloning of a negative regulator of systemic acquired resistance, SNI 1, through a screen for suppressors of npr121[J]. Cell,1999,98:329-339.
    18. Austin MJ, Muskett P, Kahn K, et al.Regulatory role of SGT1 in early R gene mediated plant defenses[J]. Science,2002,295:2077-2080
    19. Aarts N, MetzM, Holub E, et al. Different requirements for EDS 1 and NDR 1 by disease resistance genes define at least two R gene mediated signaling pathways in Arabidopsis [J]. Proc NatlAcad SciUSA,1998,95:10306-10311
    20. Glazebrook J,Zook M,Mert F,et al.Phytoalexin deficient mutants of Arabidopsis reveal that PAD 4 encodes a regulatory factor and that four PAD genes contribute to downymildew resistance[J].Genetics,1997,146:381-392
    21. McDowell JM, Cuzick A, et al. Downymildew (Peronospora parasitica) resistance genes in Arabidopsis vary in functional requirements forNDR1, EDS1, NPR1, and salicylic acid accumulation[J].Plant,2000,22:523-529
    22. Cooley MB, Pathirana S, Wu HJ, et al. Members of the Arabidopsis HRT/RPP 8 family of resistance genes confer resistance to both viral and oomycete pathogens [J].Plant Cell,2000,12:663-676
    23. Kachroo P, Yoshioka K, Shah J,et al.Resistance to turnipcrinkle virus in Arabidopsis is regulated by two host genes and salicylic acid dependent but NPR 1, ethylene, and jasmonate independent [J].Plant Cell,2000,12:677-690
    24. Hammond-Kosack KE,Jones JD.Resistance gene-dependent plant defense response[J]. Plant Cell,1996.8:1773-1791
    25.王金生.1998.分子植物病理学[M].中国农业出版社,北京
    26. Yang T,Poovaiah BW.A calmodulin-binding/CGCG box DNA-binding protein family involve in multiple signaling pathways in plants[J].J Biol Chem.2002.277(47): 45049-45058
    27. Pandey S,Tiwari SB,Tyagi W,et al.A Ca2+/CaM-dependent kinase from pea is stress regulated and in vitro phosphorylates a protein that binds to AtCaM5 promoter[J].Eur J Biochem.2002.269(13):3194-3204
    28. Olmos E,Martinez-Solano JR,Piqueras A,et al.Early steps in the oxidative burst induced by cadmium in cultured tabacco cells(BY-2 line) [J].J Exp Bot.2003.54(381): 291-301
    29. Luan S,Kudla J,Rodriguez-Concepcion M,et al.Calmodulins and calcineurin B-like proteins:calcium sensors for specific signal response coupling in plants[J].Plant Cell.2002.14 Suppl:389-400
    30. Kim MC,Panstruga R,Elliott C,et al.Calmodulin interacts with MLO protein to regulate defense against mildew in barley[J].Nature.2002.416(6879):447-45
    31. Zhang L,Lu YT.Calmodulin-binding protein kinases in plants[J].Trends Plant Sci. 2003.8(3):123-127
    32.王伟.光敏色素信号传导研究的一项重要结果[J].生命科学,1997,9(2):55-57.
    33. Zaina S,Reggiani R,Bertani A et al.Preliminary evidence for GTP-binding protein(s)in auxinsignal transduction in rice(Oryza sativa L)[J].J Plant Physiol.,1990,136:653-658
    34. Legendre L,Heinstein P F,Low P S.Evidence for participation of GTP-binding proteins in elicitation of the rapid oxidative burst in cultured soybean cells[J].J Biol Chem.,1992,267:20140-20147
    35. Xing T,Higgins V J,Blumwald E.Identification of G proteins mediating fungal elicitor-induced dephosphorylation of host plasma membrane H+-ATPase[J].J Exp Bot,1997,48:229-237
    36. Haizel T,Merkie T,Pay A,et al.Related Articles,Protein,Nucleotide Characterization of proteins that interact with the GTP-bound form of the regulatory GTPase Ran in Arabidopsis[J].Plant J,1997,11(1):93-103
    37. Takai Y,Sasaki T,Matozaki T.Small GTP-binding proteins[J]. Physiol. Rev,2001, 81(1):153-208
    38. Van Wees SC,De Swart EA,Van Pelt JA,et al.Enhancement of induced disease resistance by simultaneous activation of salicylate and jasmonate dependent defense pathways in Arabidopsis thaliana[J].Proc Natl Acad Sci USA.2000.97(15):8711-8716
    39. Chaman ME,Copaja SV,Argandona VH.Relationships between salicylic acid content,phenylalanine ammonia-lyase(PAL)activity andresistance of Barley to aphid infestation[J].J Agric Food Chem,2003.51(8):2227-2231
    40.丁秀英,张军,苏宝林等.水杨酸在植物抗病中的作用[J].植物学通报.2001,18(2): 163-168
    41.欧阳光察,薛应龙.植物苯丙烷类代谢的生理意义及其调控[J].植物生理学通讯,1988,24(3):9-16
    42. Kouko l J, Conn E E. The metabo lism of aromat ic compounds in h igher plants. Ⅳ. Purification and propert ies of thephenylalanine deam inase of Herdeum vulagare [J]. Journal of Biology and Chemistry,1961,236:2692-2698
    43.欧阳光察,应初衍.植物苯丙氨酸解氨酶的研究.Ⅵ.水稻、小麦PAL的纯化及基本特性[J].植物生理学报,1985,11(2):204-214
    44. Tanaka Y, U ritani I. Purification and properties of phenylalanine ammonialyase in cut injured sweet potato [J].Journal of Biochemistry,1977,81 (4):963-970
    45. Whetten R W,Sederoff R R.Phenylalanine ammonialyase from loblolly pine. Purificat ion of the enzyme and isolationof comp lementary DNA clones [J].Plant Physiology, 1992,98(1):380-386
    46. Given N L, et al. Purification and properties of phenylalanine ammonialyase from straw berry fruit and its synthesis during ripening [J]. Journalof Plant Physiology, 1988,133(1):31-37
    47. Lim H W,et al.Purificat ion and properties of phenylalanine ammonialyase from leaf mustard [J].Molecules andCells,1997,7(6):715-720
    48. Havir E A. Phenylalanine ammonialyase:purificat ion and characterizat ion from soybean cell suspension cultures[J].A rchives of Biochemistry and Biophysics,1981, 211(2):556-563
    49. Iwasa K. Changes in activity of phenylalanine ammonialyase in tea leaves [J]. Journal of the Agricultural Chemical Society of Japan,1974,48(8):445-450
    50.刘鸿年,刘发敏.茶鲜叶苯酸氨酸解氨酶的提取及其活性测定[J].中国茶叶,1989(1):4-5
    51. Leslie A. Wanner, Guoqing Li, Doreen Ware, Imre E. Somssich and Keith R. Davis et al.The phenylalanine ammonia-lyase gene family in Arabidopsis thaliana[J]. Plant Molecular Biology,199527:327-338.
    52. Munn C B,Drysdale R B.Kievitone production and phenylalanine ammonialyase activity in cowpea[J].Phytochemistry,1975,14(5/6):1303-1307
    53. Rajagopal Subramaniam, et al.St ructure,inheritance,and expression of hybrid poplar (Populus trichocarpa XPopulusdeltoides)phenylalanine ammonialyase genes[J].Plant Phsiology,1993,(102):71-83
    54. Camm E L, Towers G H N. Phenylalanine ammonia lyase [J]. phytochemistry,1973, 12:961-973
    55. Hiroshi H, Takashi N. wound induced ethylene formation in Albedo Tissue of citrus Fruit [J]. Plant physiology,1981,67:421-423
    56. Darold L K, Hassan A M. Ethylene production and leaflet abscission of three peanut genotypes infected with cercospora arachidicola Hori [J]. Plant Physiology,1982, 69:789-792
    57. Joseph Riov, Eliahu Dagan, Raphael Goren, et al. Characterization of abscisic acid induced ethylene productionin citrus leaf and tomato fruit tissues[J]. Plant Physiology, 1990,92:48-53
    58. Riechmann J L,Heard J,Martin G et al.Arabidopsis transcription factors:genome-wide comparative analysis among eukaryotes[J].Science.2000.290:2105-2110
    59. Singh KB,Foley RC.Transcription factors in plant defense and stress responses[J].Curr Opin Plant Biol,2002.5:430-436
    60. Jakoby M,Weisshaar B,Drge-Laser W et al.bZip transcription factors in Arabidopsis[J]. Trends Plant Sci,2002.7:106-111
    61. Ecker J.R.The ethylene signal transduction pathway in plants[J]. Science.1995.268: 667-675
    62. Fushton PJ,Torres JT,Parniske M et al.Interaction of elicitor induced DNA-binding proteins with elicitor response elements in the promoters of parsley PR1 genes[J]. EMBOJ.1996.15:5690-5700
    63. Wang Z,Yang P,Fan B et al.An oligo selection procedure for identification of sequence specific DNA-binding activities associated with the plant defense response[J].Plant J. 1998.16:515-522
    64. Yu D,Chen C,Chen Z.Evidence for an important role of WRKY DNA binding proteins in the regulation of NPR1 gene expression[J].Plant Cell.2001.13:1527-1539
    65. Hinderhofer K,Zentgraf U.dentification of a transcription factor specifically expressed at the onset of leaf senescence[J].Planta.2001.213:469-473
    66. Robatzek S,Somssich IE.Targets of AtWRKY6 regulation during plant senescence and pathogen defense[J].Genes Dev.2002.16:1139-1149
    67. Pnueli L, Hallak-Herr E, Rozenber M et al.Molecular and biochemical mechanisms associated with dormancy and drought tolerance in the desert legume Retama raetam[J].Plant J,2002.31(3):319-330
    68. Huang T,Duman JG.Gloning and characterization of a thermal hysteresis(antifreeze) protein with DNA-binding activity from winter bitter sweet nightshade,Solanum dulcamera[J].Plant Mol Biol,2002.48(4):339-350
    69. Chen C,Chen Z.Isolation and characterization of two pathogen and salicylic acid induced genes encoding WRKY DNA-binding proteins from tobacco[J].Plant Mol Biol.2000.42:387-396
    70. Robatzek S,Somssich IE. A new member of the Arabidopsis WRKY transcription factor family,AtWRKY6,is associated with both senescence and defense related processes[J].Plant J.2001.28:123-133
    71. Frye C A,Tang D,Innes R W.Negative regulation of defense responses in plants by a conserved MAPKK kinase[J].Proc Natl Acad Sci USA,2001,98(1):373-378.
    72. Seo S,Okamoto M,Seoto H,Ishizuka K,et al.Tabacco MAP kinase:A possible mediator in woud signal transduction pathways[J].Science,1995,270:1988-1992
    73. Droge-Laser W,Kaiser A,Lindsay W P,et al.Rapid stimulation of a soybean protein-serine kinase which phsphorylates a novel bZIP DNA-binding protein,G/HBF-l,during the indution of early transcription-dependent defenses[J].EMBO J,1997,16:726-738
    74. Zhang S,Du H,Klessig D F. Activation of tobacco SIP kinase by both a cell wallderived carbohydrate elicitor and purified proteinaceous eliicitor and purified proteinaceous elicitins from Phytophtohora spp[J].Plant cell,1999,10:435-449
    75. Hammond K E,Jones J D G.Plant disease resistance genes[J].Plant Mol Biol,1997,48: 575-607.
    76. Michelmore R. Genomics approaches to plant disease resistance [J].Curr Opin Plant Biol,2000,3:125-131
    77.葛银林,李德葆.植物抗病的诱导、机制、分子生物学研究进展[J].中国生物防治,1995,11(3):134-141.
    78.秦跟基,李万隆,陈佩度.植物抗病基因结构特征及其类似序列的研究进展[J].南京农业大学学,1999,22(3):102-107.
    79.董敏,刘进元.植物抗病的信号转导途径[J].生命科学,1998:10(5):227-230
    80. Dewtt P.Pathogen avirulence and plant resistance:A key role for recognition[J].Trends in Plant Science,1997,2(12):452-458.
    81. Crute R.The elucidation and exploitation of gene-for-gene recognition[J].Plant Pathology,1998,47:107-113.
    82. Johal G.S.,and Briggs S.P, Reductase activity encoded by the HM1 disease resistance gene in maize[J], Science,1992,258(5084):985-987
    83. Bozkurto,Hakki E E,Akkayam S.Isolation and sequence analysis of wheat NBS-LRR type disease resistance gene analogs using degenerate PCR primers[J]. Biochemical Genetics,2007,45(5/6):469-486.
    84.王忠华,贾育林,夏英武.植物抗病分子机制研究进展[J].植物学通报,2004,21(5):521-530.
    85.袁亮,张伟彬.植物抗病基因作用机理及克隆研究进展[J].安徽农业科学.2009,37(4):1513-1515
    86.朱国峰,瞿礼嘉,顾红雅,等.植物抗病的分子生物学研究进展[J].植物学报,1997,39(6):561-569.
    87.董汉松.植物抗病防卫基因表达调控与诱导抗性遗传机制[J].植物病理学报,1996,26(4):289-293.
    88.赵中秋,郑海雷,张春光,等.植物抗病的分子生物学基础[J].生命科学,2001,13(3):136-140
    89.贺超英,张志永,陈受宜,等.大豆中NBS类抗病基因同源序列的分离与鉴定[J].科学通报,2001,46(12):1017
    90. JefferYL,Dang L,John M, et al.Twomodes of pathogen recognitionby plants [J]. Pans, 2006,23(103):8575-8576.
    91. Kuang H,Sun G,Sickwoo,Blake C,et al.Multiple genetic processes result in heterogeneous rates of evolution within themajor cluster disease resistance genes in lettuce[J]. The Plant Cell,2004,11(16):2870-2894
    92.郑建涛,张承英.丝氨酸/苏氨酸激酶15蛋白在结肠癌的表达[J].福建医科大学学报,2007,41(2):134-136.
    93.路子显,常团结,刘翔,等.植物碱性亮氨酸拉链(bZIP)蛋白的研究进展(一)——结构、分类、分布和同源性分析[J].遗传,2001,23(6):564-570.
    94.李志杰,刘靖华,姜勇,等Toll样受体的发现及其研究进展[J].中国危重病急救医学,2003,15(11):694-697.
    95.胡英考.转座子标签法克隆分离植物基因的研究进展[J].生物技术通报,2003,2(2):18-21
    96. Mehb O O,Burrahman,Maial I, Randnawa S A, et al. Isolate agene for velvet hairiness in cotton (Gossypiurn hirsuturn L.)by mapbased cloning[J],棉花学报,2002(Z1):25.
    97. Leister D,Ballvora A, Salaminf,etal.A PCR-based approach for isolating pathogen resistance genes from potato with potential for wide application in plants [J]. Nature Genet,1996,13:421-429.
    98. Ashfield T,Bocian A,Held D,et al.Genetic and physical localization of the soybean Rpglb disease resistance gene reveals a complex locus containing several tightly linked families of NBSLRR genes[J].Molecular PlantMicrobe Interactions,2003,16(9): 817-826.
    99. Radwan O, Bouzidim F, Nocolas P,et al.Development of PCR markers of the PI5/PI8 locus for resistance to plasmopara halstedii in sunflower,Helianthus annuus L. from complete CCNBSLRR sequences[J]. Theoretical and Applied Genetics,2004,109(1): 176-185.
    100.梁凤山,周春江,孔凡娜等.桃基因组中R类抗病基因同源序列的克隆与序列分析[J].河北农业大学学报,2005,28(1):44-48.
    101.杨明挚,陈小兰,尹梅等.黑子南瓜中STK类抗病基因同源序列的克隆及序列分析[J].云南大学学报(自然科学版),2005,27(2):176-179
    102.Cai D.,klenine M.,kifle D.,Harloff H.J.,SandaN,N.,MarckerK.A., Klein-lankhorst R,M., Salentijin E.M.,Lange W.,Stiemema WJ.,Wyss U.,Grundler F.M.,and jung c.,1997, postional cloning of a gene for nematode resistance in sugar beet[J], Science,275:832-834.
    103.Milligan S.b. The root knot nematode resistance gene Mi from tomato is a member of the leucine zipper,nucleotide binding,leucine-rich repeat family of plant genes [J],plant Cell,1998,10:1307-1277
    104.Vander Vossen E.A., vandervoort J.N., kanyuka K., Bendahmane A., Sandbri H., Homologues of a single resistance-gene cluster in potato confer resistance to distinct pathogens:a virus and a nematode[J], Plant J.,2000,23:567-576
    105.Leister D,Ballvora A, Salaminf,etal.A PCR-based approach for isolating pathogen resistance genes from potato with potential for wide application in plants [J].Nature Genet,1996,13:421-429.
    106.柳哲胜,刘庆昌,瞿红等.用改进的SSAP方法克隆抗甘薯茎线虫相关的RGA[J]分子植物育种,2005,3(3):369-374.
    107.吕蓓.大豆孢囊线虫与寄主植物的相互关系及抗性基因克隆策略[J].分子生物育种,2004,1(1):116-121
    108.王关林,方宏筠主编.植物基因工程[J].第二版.科学出版社.北京:2002,82-84
    109.Ren B Z. Biochemistry and Clinical medcine [M].Changsha, Hunan Sience and Technical Press,1993.
    110.李碧荣.国内cDNA文库及cDNA克隆的研究概况[J].生物工程进展,1992,12(4):53-57
    111.李海红,王秦秦cDNA文库的构建策略[J].昆明医学院学报 2003,(4):22-25
    112.Weissman S M. Molecular genetic techniques for mapping the human genome[J]. MolBiolMed,1987,4(3):133-143.
    113.Bonoldo M F, Lennon G, Soaresm B.Normalization and Subtraction:Two approaches to facilitate genediscovery[J].Genomo Pes,1996,6:791-806.
    114.储昭晖,彭开蔓,张利达,等.水稻全生育期均一化cDNA文库的构建和鉴定[J].科学通报,2002,47(21):1656-1662.
    115.骆蒙,龙秀英,贾继增.几种cDNA差减文库构建方法的比较[J].生物技术通报,2000,(6):14-17.
    116.Hara E, Kato T, Nakada S. Subtractive cDNA cloning using oligo (dT) 30latex and PCR [J].Nucleic Acids Research,1991,19(25):7079-7104.
    117.Diatchenko L, Lau Y C, Campbeu A P,Chenchik A, Moqadan F, Huang B, Lukyanov S , Lukyanov K, Gurskaya N, Scerdlov E D, Siebert P D. Suppression subtractive hybrid ization:a method for generating differentially regulated or tissue-specific cDNA probe s and libraries[J]. Proc Natl Acad Sci USA,1996,93(12):6025-6030
    118.Gurskaya, N., Diatchenko, L.,Chenchik, A.,et.al.Equalizing cDNA subtraction based on selective suppressionof polymerase chain reaction:cloning of jurkat cell transcripts induced by phytohemaglutinin and phorbol 12-myristate 13-acetate[J]. Analytical Biochemistry.240:90-97
    119. Wong BR, Rho J, Arron J, et al.TRANCE is a novel ligand of the tumor necrosis factor receptor family that activates c-jun N-terminal kinase in T cells[J].Biol Chem, 1997,272(40):25190-25194.
    120.Chu ZL, McKinsey TA, Liu L, et al.Suppression of tumor necrosis factor-induced cell death by inhibitor of apoptosis c-IAP2 is under NF-κB control [J]. Proc Natal Acad Sci USA,1997,94 (9):10057-10062
    121.刘军,袁自强,刘建东.应用抑制差减杂交技术分离水稻幼穗发育早期特异表达的基因[J].科学通报,2000,13:1392-1397.
    122.Chen X,Yuan H,Chen R.Isolatlon and characterization of triacontanol-regulated genes in rice(Oryza sativa L.):Possible role of triacontanol as a Plant growth stimulator[J].Plant Cell Physiol,2002,43(8):869-876.
    123.Chong H,Chan H l,Kyoung S J.Identification of rice genes induced in a rice blast resistant mutant.Mol.Cells,2004,17(3):462-468.
    124.Lu J P,Liu T B,Lin F C.Identification of mature appressorium enriched transcripts in Magnaporthe grisea,the rice blast fungus,using suppression subtractive hybridization [J]. FEMS Microbiol.Lett.,2005,245(1):131-137.
    125.王永胜,王景,李发强.SSH法获取水稻矮化突变体相关的cDNA片段[J].高技术通讯,2001,5:20-24
    126.Wang X,Wu P,Xia M. Identification of genes enriched in rice roots of the local nitrate treatment and their expression patterns in split-roo:treatment[J].Hereditas,2002, 297(122):93-102.
    127.Wang X L,Weng Q M,You A Q.Cloning and characterization of rice RH3 gene indueed by brown planthopper[J].Chinese Seience Bulletin,2003,48(18):1976-1981
    128.Xia M,Wang S F,Wang X B.Identification of phosphorus starvation induction genes in rice by suppression subtractive hybridization[J].Acta Botanica Sinica,2003,45(6): 736-741
    129.Mil P,Wei C,Huang J S.The cloning and expression of a novel rPCD5 gene from rice[J].Hereditas,2004,26(6):893-897.
    130.骆蒙,孔秀英,刘越.小麦抗病基因表达谱中的文库构建与筛选方法研究[J].遗传学报,2002,29(9):814-819.
    131.Wang Z,Zang Q W,Guo Z A.A preliminary study on gene expression profile induced by water stress in wheat(Triticum aestivumL.)seedling[J].Acta Genetica Siniea,2004, 31(8):842-849.
    132.Bassan I M,Neumann P M,Gepstein S.Differential expression profiles of growth-related genes in the elongation zone of maize primary roots [J].plant Mol.Biol., 2004,56(3):367-80.
    133.Zheng J,Zhao J,Tao Y.Isolation and ana]ysis of water stress induced genes inmaize seedlings by subtractive PCR and cDNA macroarray[J]. Plant Mol.Biol.,2004,55(6): 807-823
    134.Bahn S C,Bae M S,Park Y B.Molceular cloning and Characterization of a novel low temperature-induced gene,blti,from barley(Hordeum vulgare L.) [J].Biochim. BioPhys. Acta,2001,1522(2):134-137.
    135.Jang C S,Lee M S,Kim J Y.Molecular characterization of a cDNA encoding putative calcium binding Protein,HvCaBPI,induced during kenel development in barley (Hordeum vulgare L.) [J].Plant Cell ReP.,2003,22(1):64-70.
    136.Hinderhofer K,Zentgraf U.Identification of a transction factor specifically expressed at the onset of leaf senescence[J].Planta,2001,213(3):469-473.
    137.Faivre Ranlpant O,Cardle L,Marshall D. Changes in gene expression during meristem activation processes in Solanum tuberosum with a focus on the regulation of an auxin response factor gene[J].J.ExP.Bot.,2004,55(397):613-622.
    138.Brich P R J,Avrova A O,Duncan J M.Isolation of potato genes that are induced during an early stage of hypersensitive response to Phytophthora infestans[J]. Moceular Plant Microbe Interactions,1999,12(4):356-361.
    139.Wusirik A R,Deng Z P,Ding C K.A novel small heat shock protein gene, visl,eontribute To Pectin depolymerization and juice viscosity in tomato fruit[J]. Plant Physiol.,2003,131:725-735.
    140.Kirankumar S M,Mark D D,He X H.Over expression of the disease resistance gene pto in tomato induces gene expression changes similar to immune responses in human and fruitfly[J].Plan Physiology online,2003,132:1901-1912.
    141.Kloos D U,Oltmanns H,Dock C.Isolation and molceular analysis of six tap root expressd genes from sugar beet[J].J.ExP.Bot.,2002,53(373):1533-1534.
    142.Stahl D J,Kloos D U,Hehl R.A sugar beet chlorophyll a/b binding protein promoter voif of G-box like elements confers strong and leaf specific reporter gene expression in transgenic sugar beet[J]. BMC Biotechnol.,2004,4(1):31.
    143.Saiki R K,Scharf S,Faloona F,et al.Enzymatic amplification of beta-globin genomic sequences and restriction site analysis for diagnosis of sickle cell anemia[J]. Science,1985,230:1350-1354.
    144.Belyavsky A, Vinogradova T, Rajewsky K. PCR-based cDNA library construction: general cDNA libraries at the level of a few cells [J].Nucleic Acids Res 1989, 17(8):2919-2932
    145.Thomas Roeder. Solid phase cDNA libary construction, a versatile app roach [J]. Nucleic Acids Research,1998,26 (14):3451-3452
    146.李晶泉,袁晓东,汤敏谦.微量RNA的cDNA PCR文库构建[J].遗传,2001,23(2):147-150.
    147.晏慧君,黄兴奇,程在全cDNA文库构建策略及其分析研究进展[J].云南农业大学学报.2006年21(1):1-6
    148.Frohman MA, Dush MK, Martin GR. Rapid production of full length cDNAs from rare transcripts [J]. Proc Natl Acad Sci USA,1988,85 (23):8998-9002.
    149.Ohara O,Dofit R L,Gillber TW.Onesided polymerase chain reaction:the amplification of cDNA [J].Proc. Natl. Acad. Sci. USA,1989,86:5673-5677.
    150.刘建喜,林爱星,李雪辉,等.用PCR法从cDNA文库中快速克隆基因[J].农业生物技术学报,2001,9(3):279-281.
    151.翟礼嘉,顾红雅,胡苹,等.现代生物技术[M].北京:高等教育出版社,2004
    152.Richard A D, Nancy L P. Stress-Induced Phenylp ropanoid Metabolism[J]. The Plant Cell,1995,7:1085-1097
    153.Camm E L, Towers G H N. Phenylalanine ammonia lyase[J]. phytochemistry,1973, 12:961-973
    154.Hiroshi H, Takashi N. wound-induced ethylene formation in albedo tissue of citrus fruit [J]. Plant physiology,1981,67:421-423
    155.Darold L K, Hassan A M. Ethylene production and leaflet abscission of three peanut genotypes infected with cercospora arachidicola Hori [J]. Plant Physiology,1982, 69:789-792
    156.Kumar A, Ellis B. The phenylalanine ammonia-lyase gene family in raspberry. Structure, expression, and evolution [J].Plant Physiol,2001,127:230-239.
    157.Kostenyuk I A, Zon J, Burns J K. Phenylanine ammonia lyase gene expression during abscission in citrus[J]. Plant Physiol,2002,116:106-112.
    158.Lafuente M T, Zacarias L, Martinez-Tellez M A, et al. Phenylalanine ammonia-lyase and ethylene in relation to chilling injury as affected by fruit age in citrus [J]. Postharvest Biol Tech,2003,29:308-317.
    159.Whetten R.W, Sederoff R,R Phenylalanine ammonia-lyase from lobby pine[J]. Plant Physiol.1992,98:380-386
    160.程水源,杜何为,许峰,等.银杏苯丙氨酸解氨酶基因的克隆和序列分析[J].林业科学 研究.2005,18(5):573-577
    161 Johnson W. A simple and efficient method for isolating RNA from pine tree[J]. Plant Physiol.1997,113(1):176179
    162.WannerL A, LiG, Ware D,et al. The phenylalanine ammonia-lyase gene family in Arabidopsis thaliana[J]. Plant Mol Biol,1995,27(2):327-338
    163.Zhu Q, DabiT, BeecheA,etal. Cloning and properties of a ricegene encoding phenylalanine ammonia-lyase[J]. Plant Mol Biol,1995,29(3):535-550
    164.Galat A. Variations of sequences and amino acid compositions of proteins that sustain their biological functions:an analysis of the cyclophilin family of proteins[J]. Archives of Biochemistry and Biophysics,1999,371:149-162
    165.Handschumacher R E, Harding M W, Rice J, et al. Cyclophilin:a specific cytosolic binding protein for cyclosporin A[J]. Science,1984,226:544-547
    166.Freskgard PO, Bergenhem N, Jonsson BM,et al. Isomerase and chaperone activity of prolyl isomerase in the folding of carbonic anhydrase[J]. Science,1992,258(5081): 466-468
    167.Baker E K, Colley N J and Zuker C S. The cyclophilin homolog NinaA functions as a chaperone, forming a stable complex in vivo with its protein target rhodopsin[J]. Embo J,1994,13(20):4886-4895.
    168.Xu Q, Leiva MC, Fischkoff SA, et al. Leukocyte chemotactic activity of cyclophilin[J]. J Biol Chem,1992,267(17):11968-11971
    169.Marivet J, Margis-Pinheiro M, Frendo P, et al. Bean cyclophilin gene expression during plant development and stress conditions[J]. Plant Mol Biol,1994,26(4): 1181-1189.
    170.Lhoest G J, de-Jong A P, Meiring HD, et al. Isolation, identification and immuno suppressive activity of a new IMM-125 metabolite from human liver microsomes. Identification of its cyclophilin A-IMM-125 metabolite complex by nanospray tandem mass spectrometry[J]. J Mass Spectrom,1998,33(10):936-942.
    171.Gasser C S.Gunning D A.Budelier K A Structure and expression of cytosolic cyclophilin/peptidyl-prolyl cis-trans isomerase of higher plants and production of active tomato cyclophilin in Escherichia coli [J]. Proc Natl A cad Sci USA,1990,87:9519-9523
    172.Kullertz G,Liebau A,Rucknagel P,et al; Stress-induced expression of cyclophilins in proembryonic masses of Digitalis lanata does not protect against freezing/thawing stress [J]; Planta; 1999,208(4):599-605
    173.Oh K.Ivanchenko M G.White T J. The diageotropica gene of tomato encodes a cyclophilin:a novel player in auxin signaling[J]. Planta,2006,224(1):133-144
    174.Meyer B, Houlne G, Pozueta-Romomero J, et al. Fruit-specific expression for a defensin-type gene family bell pepper[J]. Plant Physiol,1996,112:615-622
    175.Romano P G N.Horton P.Gray J E The Arabidopsis cyclophilin gena family[J].Plant physiol,2004,134:1268-1282
    176.Chen A P.Wang G L.Qu Z L Ectopic expression of ThCYP1,a stress-responaive cyclophilin gene from Thellungiella halophila,confers salt tolerance in fission yeast and tobacco cells[J]. Plant Cell Rep,2007,26:237-245
    177.Godoy A V, Lazzaro A S, Casalongue C A, et al. Expression of a solanum tuberosum cyclophilin gene is regulated by fungal infection and abiotic stress conditions[J]. Plant Science,2000,152:123-134
    178.郁飞,唐崇钦,辛越勇,等.光系统I (PS I)的结构与功能研究进展[J].植物学通报,2001,18(3):266-275.
    179.Raghvendra A S. Photosythesis:a comprehensive treatise[M]. Cambridge:Cambridge Univ Press.1998,72-86
    180.陈伟,阳振乐,李良璧,等Triton X-100对70℃处理后光系统Ⅰ颗粒耗氧速率的影响[J].植物生理与分子生物学学报,2005,31(3):298-304.
    181.高志民,刘成,刘颖丽,等.毛竹捕光叶绿素a/b结合蛋白基因cab-PhE1的克隆与表达分析[J].林业科学,2009,45(3):145-149
    182.王猛.湿地松对松材线虫抗病性的主要理化指标影响的研究.2006,.中南林业科技大学硕士学位论文
    183.Allen J F, Nilss on A. Redox signaling and the structural basis of regulation of photosynthesis by protein phosphorylation[J]. Physiol Plant,1997,100:863-868
    184.Mukai Y, Yamamoto N, Koshiba T. Light-indepentent and tissue-specific accumulation of light-harvestion chlorophyll a/b binding protein and ribulose bisphosphace carboxylase in dark-grow pine seedlings[J]. Plant Cell physiol, 1991,32:1303.
    185.Mukai Y, Tazaki K, Fujii T et al. Light-independent expression of three photosynthetic genes,cab, rbsS and rbcL in coniferous plants[J]. Plant Cell physiol, 1992,33(7):859.
    186.Alberte R S, Thornber J P, Fiscus E L. Water stress effects on the content and organization of chlorophyll in mesphyll and bundle sheath chloroplasts of maize[J].Plant physiol,1977,59:351.
    187.Vapaavuori E, Nurmi A. Chlorophyll-protein complexes in Salix sp. Aquatica Gigantea under strong and weak light Ⅱ.effect of water stress on the chlorophyll protein complexes and chloroplast ultrastructure[J]. Plant cell physiol,1982,23:791
    188.Chur N Y, Adame, Nagy F, et al. Characterizati on of two Myb-like transcription factors binding to CAB promoters in wheat and barley[J]. Plant MolBiol,2003,52 (2): 447-462
    189.Gomber T J, Etienne P, Ourr Y A, et al. The expression patterns of SAG12/Cab genes reveal the spatial and temporal progression of leaf senescence in Brassicanapus L. with sensitivity to the environment[J]. J Exp Bot,2006,57(9):1949-1956.
    190.Kufryk G, Kieselbach T, Miradna H, et al. Association of small CAB-like proteins (SCPs) of Synechocystis sp.PCC 6803 with photosystem Ⅱ [J]. Photosynth Res, 2008,95(2-3):135-145

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700