用户名: 密码: 验证码:
高采样率GPS数据非差精密处理方法及其在地震学中的应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
2008年5月12日,我国四川汶川发生了Ms8.0级地震,造成了巨大的人员伤亡和财产损失,因此地震学研究是科技工作者面临的艰巨使命。GNSS技术作为现代大地测量的主要观测手段之一,能获取地震时期高精度的地壳形变信息,特别是利用高采样率GNSS数据能获得地震时期瞬时同震地壳形变,从而得到地震波信号,为进一步研究地震震源破裂过程、地震波特性、地震震中反演等地震学问题提供一种新的数据源。利用高采样率GNSS技术研究地震已成为GNSS应用领域最热门的研究课题之一。
     高采样率GNSS技术研究地震有许多地震仪无法比拟的优势,例如:1)GNSS技术可直接获得瞬时动态形变位移,而地震仪需要积分后才能获得位移形变结果,积分的过程会造成信号扭曲和噪声放大现象;2)GNSS技术不存在饱和问题,而速度型地震仪在近场强震的情况容易出现饱和现象,即观测的数据由于超过仪器记录的最大值而被削减;3)GNSS技术能获得地面倾斜位移量,而地震仪是依靠重力的原理工作,地面倾斜会造成地震仪产生加速度系统偏差,无法准确的恢复地面倾斜位移量。
     随着我国重大科学工程“中国大陆构造环境监测网络(CMONOC)"的建成,覆盖我国大陆构造板块体和主要地震带的GNSS跟踪站的数据采样率最高可达50Hz。另外,我国许多省市陆续建成的CORS网也能接收高采样率的GNSS数据。它们将为地震研究提供大范围、高采样率的GNSS观测数据。
     然而,高采样率GNSS技术研究地震还存在许多问题。首先是高精度GNSS数据处理方法及软件还不能完全满足cm级甚至mm级的动态形变分析的要求。目前动态定位处理主要采用两种模式,即网解模式和精密单点定位(PPP)模式。网解模式的动态定位需要选择一个或者多个静止的测站作为参考站,然而当强震发生时,地震波波及范围达到几百甚至上千公里,在震中附近通常很难找到静止的测站作为参考站,若从远处选取不受地震影响的参考站,会导致解算基线过长而使网解动态定位精度严重降低。PPP模式采用单站进行作业,定位方式灵活,不受基线长度影响,但是,PPP模式无法采用双差的方法消除系统误差,使PPP的动态定位精度通常低于短基线双差定位精度。如何进一步提高高采样率GNSS动态定位精度,以满足高精度的动态形变分析需求,是一个难点问题。其次,由于GNSS技术与地震仪工作原理完全不同,导致GNSS技术获得的地震瞬时动态形变有其自己的特点,如何充分利用和挖掘GNSS技术获取的瞬时动态形变信息和地震波信号,反演地震学中的有关问题,也是目前研究的难点。
     本文上述两个问题展开研究,提出了一套采用高采样率GPS数据获取高精度的瞬时地壳形变的动态数据处理方法。该方法基于非差处理模式,固定PPP网解模糊度,并结合恒星日滤波及S-变换方法后处理去噪,可获得高精度的动态形变结果。以此为基础,处理了地震时期实测GPS数据,并利用获得的结果反演震中位置和发震时刻等地震学问题。其主要研究内容和成果包括:
     1)归纳分析了高采样率GPS技术在地震学研究中的优势,从高采样率GPS观测网的布设情况、高采样率GPS数据处理方法和软件的发展现状以及高采样率GPS技术在地震学中的应用三个方面总结了高采样率GPS技术在国内外的研究现状。从高采样率GPS技术对高精度GPS数据处理方法和软件的需求出发,阐明了如何进一步提高GPS动态定位精度是目前亟待解决的问题。
     2)介绍了目前两种主要的非差精密定位方法,PPP方法和非差网解方法。并比较了PPP方法和非差网解方法的动态定位精度。
     3)深入研究了PPP中的动态定位模糊度固定问题,实现了PPP的动态定位模糊度固定。实例分析表明,模糊度固定可以提高测站E方向定位精度,但是,当浮点解精度RMS优于1cm时,模糊度固定的效果不太明显。对于N方向,模糊度固定后定位精度的提高并不明显。
     4)深入分析了恒星日滤波方法消除与测站环境和卫星几何结构有关的GPS连续观测数据处理系统误差(多路径误差、卫星轨道误差)的关键问题所在,通过恒星日滤波周期的选择改进恒星日滤波法。实验分析表明,与直接采用恒星日周期进行恒星日滤波相比,采用实际计算的平均卫星轨道重复周期进行恒星日滤波能提高约10%的定位精度。
     5)深入研究并实现了S-变换去噪方法,并将该方法运用于GPS地震波的去噪处理,从而使地震波到达时间的确定更加准确。针对GPS地震波信号存在长周期误差项的特点,提出了S-变换加趋势项改正的去除长周期的GPS定位噪声的方法,从而有利于GPS地震波信号应用于进一步的地震学分析。
     6)为了验证高采样率GPS技术的定位精度,利用设计的GPS地震仪模拟平台进行了实验分析,实验结果表明,采用GPS获得的震动结果与采用地震仪获得的震动结果具有很好的一致性。
     7)提出了基于高采样率GPS数据动态处理结果的地震震中反演方法,并推导了由GPS数据反演震中和发震时刻的数学模型。基于该方法,利用汶川地震时期GPS数据反演得到的震中位置和发震时刻与中国地震局公布的结果比较,反演震中误差为12.5km,发震时刻误差为7s。利用Chile地震GPS数据反演的震中和发震时刻与美国地质调查局(USGS)结果比较,反演震中误差为27.4km,发震时刻误差为5s。
The 12 May 2008 Ms 8.0 Wenchuan earthquake caused a large amount of casualties and property losses. Global Navigation Satellite Systems (GNSS), as a primary technique of modern geodetic observation, can obtain the accurate crustal deformation. Futhermore, with the high-rate GNSS data, we can obtain the transient crustal deformation and seismic wave. The high-rate GNSS provides a new tool to study the earthquake rupture process, seismic wave characteristics, the position of earthquake epicenter inversion etc. Therefore GNSS seismology has become the forefront topic in the present research field of GNSS applications.
     Compared with traditional seismic measurements, High-rate GNSS have a lot of advantages.1) when recovery of displacements is desired, GNSS directly estimates them, but seismic data must be integrated once or twice in order to recover displacement. Integration is an often error-prone process and has the potential to amplify noise and distort the true signal.2) Seismic instruments can saturate or clip with sufficiently large ground motions so that the instrument does not record the full amplitude of local velocity or acceleration. GNSS observations will not saturate in amplitude because, unlike seismometers, no instrument response limits the observation capability of the receiver.3) Seismometers operate based on the theory of gravity, and tilt of the instrument can produce artificial horizontal acceleration, but GNSS instruments are not affected in this way.
     The Crustal Movement Observation Network of China (CMONOC) is a network of large scale and high precision that covers over the whole China mainland, the sampling rate of GNSS can be up to 50Hz. In addition, many provinces in China have built the Continuously Operating Reference Station (CORS) network, which can also provide high-rate GNSS data. All of them will provide a large scale and high-rate GNSS data for researching GNSS seismology.
     However, there are many shortcomings while using the high-rate GNSS technology for GNSS seismology. Firstly, the approaches and software of high-rate GNSS data processing are not fully meet the high precision application requirements of the dynamic deformation analysis. To date, there are two approaches in estimating station positions with high-rate GPS data: network solution and Precise Point Positioning (PPP) technique. In the former approach, at least one station must be fixed or tightly constrained to its known values, although it is normally also displaced by the seismic motions. Therefore, the displacements estimated for the other stations are biased by the displacement of the fixed station. In order to obtain displacement with respect to a reference frame, stations which are not affected by the earthquake should be included as reference stations into the data processing. As the position accuracy in the relative positioning degrades usually along with the baseline length, the inter-station distance is limited to several tens to hundreds kilometers. In the PPP approach where satellite clocks and orbits are fixed to pre-estimated precise values, and the coordinates can be estimated station by station in the reference frame defined by the orbits and clocks. However, PPP approach induces systematic errors such as multipath error, unmodeled antenna phase center varitions, and errors of the satellite orbit, so the position are significantly influenced by these errors. Secondly, the seismic waves obtained by high-rate GNSS positioning are different from that obtained by seismograph, how to make full use of GNSS seismic wave for seismology research is a critical topic.
     The paper aims at the improvement of high-rate GPS non-difference dynamic positioning acurracy and application to seismology, and focuses on the following research: A method to obtain the high precision transient crustal deformation by non-difference positioning with high-rate GPS data is proposed. It is based on network solutions PPP ambiguity fixing, sidereal filtering, and S-transform denosing. After getting the GPS seismic wave, some inversions are researched in seismology. Main constents and results in this paper include the follow parts:
     1) The paper first summarized the development trends of high-rate GPS technology, the construction of GPS observation network in global area, and the GPS data processing software. According to the application requirements of high-rate GPS positioning approach and software, it clarified that the method to obtain the high precision transient crustal deformation by non-difference positioning with high-rate GPS data need to be developed urgently.
     2) Two major non-difference GPS positioning methods are introduced, PPP and non-difference network solution. And two critical issues of GPS dynamic positioning are investigated. Finally, the positioning accuracy of the PPP and non-difference network solution method are compared.
     3) The problem of ambiguity fixing in dynamic positioning with PPP is further studied and realized. Analysis with examples illustrates that ambiguity fixing is able to enhance positioning precision in East direction, but the effects will not be so obvious when the precision of float solution higer than lcm. With regard to North direction, there is no significant improvement in positioning precision even after ambiguity fixing.
     4) Sidereal filtering technique is used to eliminate systematic errors (such as multipath error) related to station environment and geometric structure of satellites. Meanwhile, effects of different period on sidereal filtering are analyzed. Results show that compared with directly using sidereal period, actually-calculated mean satellite orbit repetition period can improve about 10% in positioning precision,
     5) S-transform denoising method is studied, realized and applied to denoising processing of GPS seismic wave, which leads to more accurate seismic wave arrival time. Considering the existence of longer-period error terms in GPS seismic signals, S-transform plus trend correction approach is proposed, which helps GPS seismic signals contribute in seismic analysis.
     6) To verify the positioning precision of high sampling rate GPS technology, experimental analysis is conducted with auto-designed GPS-Seismometer simulation platform. It is illustrated that sound consistence exists between vibrations recovered from GPS and that from seismometer.
     7) Epicenter inversion method based on dynamic processing result of high sampling rate GPS observables, and mathematic model for inversion of epicenter and original time with GPS data is deduced. Based on this method, GPS data during Wenchuan earthquake is used to inverse the epicenter and earthquake time. Compared with the results issued by China Seismological Bureau, inversed epicenter and earthquake time have errors of 12.5km and 7s, respectively. GPS data during Chile earthquake is used to inverse the epicenter and earthquake time, the inversion errors are 27.4km and 5s compared with the results provided by United States Geological Survey (USGS).
引文
[1]Agnew, D. C., and K. M. Larson (2007), Finding the repeat times of the GPS constellation, GPS Solutions,11(1),71-76.
    [2]Amiri-Simkooei, A. R., and C. C. J. M. Tiberius (2007), Assessing receiver noise using GPS short baseline time series, GPS Solutions,11,21-35.
    [3]Axelrad, P. (1996), SNR-Based Multipath Error Correction for GPS Differential Phase, IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS,32(2),650-660.
    [4]Axelrad, P., et al. (2005), Use of the Correct Satellite Repeat Period to Characterize and Reduce Site-Specific Multipath Errors, paper presented at ION GNSS 2005, Long Beach, CA,13-16 September.
    [5]Banyai, L. (2005), Investigation of GPS antenna mean phase centre offsets using a full roving observation strategy, Journal of Geodesy,79,222-230.
    [6]Beyerle, G. (2009), Carrier phase wind-up in GPS reflectometry, GPS Solutions,13,191-198.
    [7]Bilich, A., et al. (2007), Scientific Utility of the Signal-to-Noise Ratio(SNR) Reported by Geodetic GPS Receivers, paper presented at ION GNSS 2007.
    [8]Bilich, A., and K. M. Larson (2007), Mapping the GPS multipath environment using the signal-to-noise ratio (SNR), RADIO SCIENCE,42,1-16.
    [9]Bilich, A., et al. (2008a), GPS Seismology:Application to the 2002 Mw 7.9 Denali Fault Earthquake, Bulletin of the Seismological Society of America,98(2),593-606.
    [10]Bilich, A., et al. (2008b), Modeling GPS phase multipath with SNR:Case study from the Salar de Uyuni, Boliva, Journal of Geophysical Research,113, B04401.
    I11] Bilich, A. L. (2006), Improving the precision and accuracy of geodetic GPS:applications to multipath and seismology, Ph.D thesis, University of Colorado.
    [12]Blewitt, G. (1989), Carrier phase ambiguity resolution for the global positioning system applied to geodetic baselines up to 2,000 km, J Geophysical Res,94(B8),10187-10203.
    [13]Blewitt G.(1990), An automatic editing algorithm for GPS data[J].Geophys. Res. Lett.,17(3), 199-202.
    [14]Blewitt, G, et al. (2006), Rapid determination of earthquake magnitude using GPS for tsunami warning systems, GEOPHYSICAL RESEARCH LETTERS,33, L11309.
    [15]Blewitt, G (2008), Fixed point theorems of GPS carrier phase ambiguity resolution and their application to massive network processing:Ambizap, Journal of Geophysical Research, 113(B12410).
    [16]Blewitt, G., et al. (2009), GPS for real-time earthquake source determination and tsunami warning systems, Journal of Geodesy,83,335-343.
    [17]Bock, Y., et al. (2000), Instantaneous geodetic positioning at medium distances with the Global Positioning System, Journal of Geophysical Res,105(B12),28223-28253.
    [18]Bock, Y., and L. Prawirodirdjo (2004), Detection of arbitrarily large dynamic ground motions with a dense high-rate GPS network, Geophys. Res. Lett.,31, L06604.
    [19]Chen, Y, and X. He (2008), Contribution of Pseudolite Observations to GPS Precise Surveys, KSCE Journal of Civil Engineering 12(1),31-36.
    [20]Choi, K., et al. (2004), Modified sidereal filtering:Implications for high-rate GPS positioning, Geophysical Research Letters,31(22), L22608, DOI:10.1029/2004GL021621.
    [21]Choi, K. (2007), Improvements in GPS Precision:10 Hz to One Day, University of Colorado.
    [22]COMP, C. J., and P. AXELRAD (1998), Adaptive SNR-Based Carrier Phase Multipath Mitigat ion Technique, IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS, 34(1),264-276.
    [23]Dai, Z., et al. (2008), Real-Time Cycle-Slip Detection and Determination for Multiple Frequency GNSS, paper presented at PROCEEDINGS OF THE 5th WORKSHOP ON POSITIONING, NAVIGATION AND COMMUNICATION 2008 (WPNC'08).
    [24]Dickman, J., et al. (2009), Carrier phase multipath error characterization and reduction in single aircraft relative positioning, GPS Solutions, DOI:10.1007/s10291-009-0126-3.
    [25]Elosegui, P., et al. (2006), Accuracy of high-rate GPS for seismology, Geophys. Res. Lett.,33, L11308.
    [26]Emore, G. L., et al. (2007), Recovering Seismic Displacements through Combined Use of 1-Hz GPS and Strong-Motion Accelerometers, Bulletin of the Seismological Society of America,97(2), 357-378.
    [27]ESTEY, L. H., and C. M. MEERTENS (1999), TEQC:The Multi-Purpose Toolkit for GPS/GLONASS Data, GPS Solutions,3(1),42-49.
    [28]Fan, K. K., and X. L. Ding (2006), Estimation of GPS Carrier Phase Multipath Signals Based on Site Environment, Journal of Global Positioning Systems,5(1-2),22-28.
    [29]Feng, Y. (2008), GNSS three carrier ambiguity resolution using ionosphere-reduced virtual signals, Journal of Geodesy,82,847-862.
    [30]Gao, Y. (2004), Performance Analysis of Precise Point Positioning Using Rea-Time Orbit and Clock Products, Journal of Global Positioning Systems,3(1-2),95-100.
    [31]Ge, L. (1999a), GPS Seismometer and its Signal Extraction, paper presented at The Satellite Division of the Institute of Navigation 12th International Technical Meeting (ION GPS'99), Nashville, Tennessee.
    [32]Ge, L., et al. (1999b), GPS-RTK applications for assisting the engineering design of large structures, paper presented at The Metrology Society of Australia 1999 Conference, Sydney, Australia,22-24 September.
    [33]Ge, L., et al. (2000a), GPS Seismometers:the Implementing Issues, paper presented at 13th Int. Tech. Meeting of the Satellite Division of the U.S. Inst. of Navigation(ION 2000), Salt Lake City, Utah.
    [34]Ge, L., et al. (2000b), Multipath Mitigation of Continuous GPS Measurements Using an Adaptive Filter, GPS Solutions,4(2),19-30.
    [35]Ge, L., et al. (2000c), GPS Multipath Change Detection in Permanent GPS Stations, Survey Review,36(283),306-322.
    [36]Ge, L., et al. (2000d), GPS Seismometers with up to 20Hz Sampling Rate, Earth Planets Space, 52(10),881-884.
    [37]Ge M, GGendt, G.Dick,F.P.Zhang,M.Rothacher (2006), A new data processing strategy for huge GNSS global networks, Journal of Geodesy,80(4):199-203
    [38]Ge M., G. Gendt, G. Dick, F. P. Zhang, and Ch. Reigber (2005a), Impact of GPS satellite antenna offsets on scale changes in global network solutions, Geophysical Research Letter, Vol.32 L06310, doi:10.1029/2004GL022224
    [39]Ge M., G Gendt, G Dick and F.P. Zhang (2005b), Improving carrier-phase ambiguity resolution in global GPS network solutions, Journal of Geodesy, Vol.79, pp 103-110mDIU 20.2007/s00290-005-0447-0,
    [40]Ge, M., et al. (2008), Resolution of GPS carrier-phase ambiguities in Precise Point Positioning (PPP) with daily observations, Journal of Geodesy,82,389-399.
    [41]Geng, J. (2009), Ambiguity resolution in precise point positioning with hourly data, GPS Solutions, DOI:10.1007/sl0291-009-0119-2.
    [42]Genrich, J. F., and Y. Bock (2006), Instantaneous geodetic positioning with 10-50 Hz GPS measurements:Noise characteristics and implications for monitoring networks, Journal of Geophysical Research,111.B03403.
    [43]Gomberg, J., et al. (2004), Earthquake nucleation by transient deformations caused by the M 7.9 Denali Alaska earthquake, Nature,427,621-624.
    [44]Hardebeck, J. L., et al. (2004), Preliminary Report on the 22 December 2003 M6.5 San Simeon, California Earthquake, Seism Res Lett,75(2),155-172.
    [45]Hatanaka, Y, et al. (2001a), Calibration of antenna-radome and monument-multipath effect of GEONET—Part 1:Measurement of phase characteristics, Earth Planets Space,53,13-21.
    [46]Hatanaka, Y, et al. (2001b), Calibration of antenna-radome and monument-multipath effect of GEONET—Part 2:Evaluation of the phase map by GEONET data, Earth Planets Space,53, 23-30.
    [47]Hauschild, A., and O. Montenbruck (2009), Kalman-filter-based GPS clock estimation for near real-time positioning, GPS Solutions,13,173-182.
    [48]Hilla, S. (2004), Plotting pseudorange multipath with respect to satellite azimuth and elevation, GPS Solutions,8,44-48.
    [49]Hirahara, K., et al.,1994. An experiment for GPS strain seismometer. Japanese Symposium on GPS (1994),15-16 Dec., Tokyo, Japan,67-75.
    [50]Irwan, M., et al. (2004), Measuring ground deformations with 1-Hz GPS data:the 2003 Tokachi-oki earthquake (preliminary report), Earth Planets Space,55,389-393.
    [51]Ji, C., et al. (2004), Slip history of the 2003 San Simeon earthquake constrained by combining 1-Hz GPS, strong motion, and teleseismic data, Geophys. Res. Lett.,31(17), L17608.
    [52]Kobayashi, R., et al. (2006), Source processes of the 2005West Off Fukuoka Prefecture earthquake and its largest aftershock inferred from strong motion and 1-Hz GPS data, Earth Planets Space,58,57-62.
    [53]Kouba, J., and P. Heroux (2001), Precise Point Positioning using IGS Orbit and Clock Products, GPS Solutions,5,12-28.
    [54]Kouba, J. (2003), Measuring Seismic Waves Induced by Large Earthquakes with GPS Studia Geophysica et Geodaetica,47(4),741-755.
    [55]Kreemer, C., et al. (2006), Co-and postseismic deformation of the 28 March 2005 Nias Mw 8.7 earthquake from continuous GPS data, Geophys. Res. Lett.,33, L07307.
    [56]Lacy, M. C. d., et al. (2008), The Bayesian detection of discontinuities in a polynomial regression and its application to the cycle-slip problem, Journal of Geodesy,82,525-542.
    [57]Larson, K. M., et al. (2003), Using 1-Hz GPS Data to Measure Deformations Caused by the Denali Fault Earthquake, science,300,1421-1424.
    [58]Larson, K. M., et al. (2007), Improving the precision of high-rate GPS, Journal of Geophysical Research,112,B05422,DOI:10.1029/2006JB004367.
    [59]Larson, K. M. (2009), GPS seismology, Journal of Geodesy,83,227-233.
    [60]Lau, L. (2005a), Phase Multipath Modelling and Mitigation in Multiple Frequency GPS and Galileo Positioning, PH.D thesis, University of London.
    [61]Lau, L., and P. Cross (2005b), Use of Signal-to-Noise Ratios for Real-Time GNSS Phase Multipath Mitigation, paper presented at NAV 05, The Royal Institute of Navigation, London.,1-3 November 2005.
    [62]Lau, L., and P. Cross (2007), Development and testing of a new ray-tracing approach to GNSS carrier-phase multipath modelling, Journal of Geodesy,81,713-732.
    [63]Lysaker, D. I., et al. (2008), The gravitational effect of ocean tide loading at high latitude coastal stations in Norway, Journal of Geodesy,82,569-583.
    [64]Milne, G. A., J. X. Mitrovica, H.-G. Scherneck, J. L. Davis, J. M. Johansson, H. Koivula, and M. Vermeer (2004), Continuous GPS measurements of postglacial adjustment in Fennoscandia:2. Modeling results, J.Geophys.Res.,109,B02412, doi:10.1029/2003JB002619.
    [65]Miyazaki, S. i., et al. (2004), Modeling the rupture process of the 2003 September 25 Tokachi-Oki earthquake using 1-Hz GPS data, Geophys. Res. Lett.,31(21), L21603.
    [66]Montenbruck, O., et al. (2008), Antenna phase center calibration for precise positioning of LEO satellites, GPS Solutions,13(1),23-34.
    [67]Nikolaidis, R. M., et al. (2001), Seismic wave observations with the Global Positioning System, Journal of Geophysical Research,106,21897-21916.
    [68]Ogaja, C., and J. Hedfors (2007), TEQC multipath metrics in MATLAB, GPS Solutions,11, 215-222.
    [69]Ogaja, C., and C. Satirapod (2007), Analysis of high-frequency multipath in 1-Hz GPS kinematic solutions, GPS Solutions,11,269-280.
    [70]Ohta, Y., et al. (2006), Large surface wave of the 2004 Sumatra-Andaman earthquake captured by the very long baseline kinematic analysis of 1-Hz GPS data, Earth Planets Space,58,153-157.
    [71]Ootaki, O., and S. Fujiwara (1998), Measurement of ice sheet movement at S16, East Antartica using GPS, Polar Geoscience,11 (10),9-13.
    [72]Park, K.-D., et al. (2002a), Multipath characteristics of GPS signals as determined from the Antenna and Multipath Calibration System, paper presented at ION GNSS 2002.
    [73]Park, K.-D., et al. (2004a), Development of an antenna and multipath calibration system for Global Positioning System sites, RADIO SCIENCE,39, RS5002.
    [74]Park, K.-D., et al. (2004b), Site-specific multipath characteristics of global IGS and CORS GPS sites, Journal of Geodesy,77,799-803.
    [75]Parolai, S. (2009), Denoising of Seismograms Using the S Transform, Bulletin of the Seismological Society of America,99(1),226-234.
    [76]Pasetti, A., and L. Giulicchi (1999), Experimental Results on Three Multipath Compensation Techniques for GPS-based Attitude Determination, ANNUAL AAS GUIDANCE AND CONTROL CONFERENCE.
    [77]Penna, N. T., et al. (2008), Assessing the accuracy of predicted ocean tide loading displacement values, Journal of Geodesy,82,893-907.
    [78]Pan, M., and L. E. Sjobeg (1993), Baltic sea level project with GPS, Journal of Geodesy,67 (1), 51{59.
    [79]Radovanovic, R. S. (2000), High Accuracy Deformation Monitoring Via Multipath Mitigation by Day-To-Day Correlation Analysis, paper presented at ION GPS 2000, Salt Lake City, September 19-22
    [80]Radovanovic, R. S. (2002), Adjustment of Satellite-Based Ranging Observations for Precise Positioning and Deformation Monitoring, University of Calgary.
    [81]Ragheb, A. E., et al. (2007), GPS sidereal filtering:coordinate-and carrier-phase-level strategies, Journal of Geodesy,81,325-335.
    [82]Ray, J. K., and M. E. Cannon (1998), Mitigation of Static Carrier Phase Multipath Effects Using Multiple Closely-Spaced Antennas, paper presented at ION GPS 98.
    [83]Ray, J. K., and M. E. Cannon (1999), Code Range and Carrier Phase Multipath Mitigation Using SNR, Range and Phase Measurements in a Multi-Antenna System, paper presented at ION GPS 99.
    [84]Ray, J. K. (2000), Mitigation of GPS code and carrier phase multipath effects using a multi-antenna system, University of Calgary.
    [85]Rothacher, m. (2001), Comparison of Absolute and Relative Antenna Phase Center Variations, GPS Solutions,4(4),55-60.
    [86]Santos, M. C. (2001), Detection and Mitigation of Static Multipath in L1 Carrier Phase Measurements Using a Dual-Antenna Approach, paper presented at IAG 2001 Proceedings.
    [87]Satirapod, C., et al. (2003), Multipath Mitigation of Permanent GPS Stations Using Wavelets, paper presented at 2003 Int. Symp. on GPS/GNSS, Tokyo, Japan,15-18 November.
    [88]Satirapod, C., and C. Rizos (2004), Multipath mitigation by wavelet analysis for GPS base station applications, Surv Rev,38(295),2-10.
    [89]SATO, K. (2007), Development of a Monitoring Technique of Anomalous Crustal Deformations by the Application of Kinematic GPS, Annuals of Disas.Prev.Res.Inst,50.
    [90]Scappuzzo, F. S. (1997), Phase Multipath Estimation for Global Positioning System(GPS) Using Signal-to-Noise-Ratio(SNR) Data, University of Catania Italy.
    [91]Schimmel, M., and J. Gallart (2005), The Inverse S-Transform in Filters With Time-Frequency Localization, IEEE TRANSACTIONS ON SIGNAL PROCESSING(11),4417-4422.
    [92]Schimmel, M., and J. Gallart (2007), Frequency-dependent phase coherence for noise suppression in seismic array data, Journal of Geophysical Research,112, B04303.
    [93]Schmid, R., and M. Rothacher (2003), Estimation of elevation-dependent satellite antenna phase center variations of GPS satellites, Journal of Geodesy,77,440-446.
    [94]Schmid, R., et al. (2005), Absolute phase center corrections of satellite and receiver antennasantennas:impact on global GPS solutions and estimation of azimuthal phase center variations of the satellite antenna. GPS Solutions 9(4),283-293.
    [95]Schmid, R., et al. (2007), Generation of a consistent absolute phase center correction model for GPS receiver and satellite antennas, Journal of Geodesy,81,781-798.
    [96]Seeber G, Menge F, Volksen C, Wubbena G, Schmitz M (1998), Precise GPS positioning improvements by reducing antenna and site dependent effects. In:Brunner FK (ed) Advances in positioning and reference frames:IAG symposium, vol.118. Springer, Berlin Heidelberg New York, pp.237-244.
    [97]Segall, P., and J. L. Davis (1997), GPS applications for geodynamics and earthquake studies, Annual Review of Earth and Planetary Sciences,25,301-336.
    [98]Shi, C., et al. Seismic deformation of the Mw 8.0 Wenchuan earthquake from high-rate GPS observations (2010). J.Adv. Space Res.,46(228-235),doi:10.1016/j.asr.2010.03.006
    [99]Simon, C., et al. (2007), The S-Transform and Its Inverses:Side Effects of Discretizing and Filtering, IEEE TRANSACTIONS ON SIGNAL PROCESSING,55(10).
    [100]Sobolev, S. V., et al. (2007), Tsunami early warning using GPS-Shield arrays, Journal of Geophysical Research,112, B08415.
    [101]Stockwell, R. G., et al. (1996), Localization of the Complex Spectrum:The S Transform, IEEE TRANSACTIONS ON SIGNAL PROCESSING,44(4),998-1001.
    [102]Takasu, T. (2006), High-rate precise point positioning:observation of crustal deformation by using 1-Hz GPS data.
    [103]Wubbena, G. (1996), A New Approach for Field Calibration of Absolute Antenna Phase Center Variations, paper presented at ION GPS 96, Kansas City, Missouri.
    [104]Wang Qi, Zhang Peizhen, Freymueller J T et,al(2001). Present-day crustal deformation in China constrained by Global Positioning System,Science,294 (5542):574-577
    [105]Wang, G., et al. (2007), Comparisons of Ground Motions from Colocated and Closely Spaced One-Sample-per-Second Global Positioning System and Accelerograph Recordings of the 2003 M 6.5 San Simeon, California.Earthquake in the Parkfield Region, Bulletin of the Seismological Society of America,97(1B),76-90.
    [106]Wdowinski, S., et al. (1997), Southern California Permanent GPS Geodetic Array:Spetial filtering of daily positions for estimating coseismic and postseismic displacements induced by the 1992 Landers earthquake, Journal of Geophysical Research,102(B8),18057-18070.
    [107]Williams, S. D. P. (2008), CATS:GPS coordinate time series analysis software, GPS Solutions,12, 147-153.
    [108]Yoon, B.-J., and P. P. Vaidyanathan (2004), Wavelet-based denoising by customized thresholding, paper presented at IEEE int. Conf. On Acoustic Speech and signal processing(ICASSP), Montreal, MAY 2004.
    [109]Zhang, J., et al. (1997), Southern California Permanent GPS Geodetic Array:Error analysis of daily position estimates and site velocities, Journal of Geophysical Research,102(B8), 18035-18055.
    [110]Zheng, D. W., et al. (2005), Filtering GPS time-series using aVondrak filter and cross-validation, Journal of Geodesy,79,363-369.
    [111]Zhong, P., et al. (2008), Adaptive wavelet transform based on cross-validation method and its application to GPS multipath mitigation, GPS Solutions,12,109-117.
    [112]Zhu, S. Y., et al. (2003), Satellite antenna phase center offsets and scale errors in GPS solutions, Journal of Geodesy,76,668-672.
    [113]Zumberge, J. F., et al. (1997), Precise point positioning for the efficient and robust analysis of GPS data from large networks, Journal of Geophysical Research,102(B3),5005-5017.
    [114]陈俊勇,文汉江(2001),中国大地测量学发展的若干问题[J],武汉大学学报信息科学版,26(06):475-482.
    [115]方荣新,施闯,魏娜,赵齐乐(2009).GPS数据质量控制中实时周跳探测研究[J].武汉大学学报信息科学版,34(9),1094-1097.
    [116]方荣新,施闯,辜声峰(2009).基于PPP动态定位技术的同震地表形变分析[J].武汉大学学报信息科学版,34(11),1340-1343.
    [117]葛茂荣,李毓麟(1992), ROCK光压模型中的几个问题[J],清华大学青年科技论文集,北京:清华大学出版杜.
    [118]葛茂荣(1995),GPS卫星精密定轨理论及软件研究[D],武汉:武汉测绘科技大学测绘学院.
    [119]耿江辉,施闯,赵齐乐,刘经南(2007).联合地面和星载数据精密确定GPS卫星轨道[J],武汉大学学报(信息科学版).32(10):906-909.
    [120]顾国华,王武星(2009),GPS测得的汶川大地震同震位移,地震,29(1),92-98.
    [121]郭华东,许健民等(2001),对地观测系统与应用[M],北京:科学出版社.
    [122]郭金运(2004),由星载GPS数据进行CHAMP卫星定轨和地球重力场模型解算[D],山东:山东科技大学地球信息科学与工程学院.
    [123]耿涛(2009),基于区域基准站的导航卫星实时精密定轨理论及试验应用[D],武汉:武汉大学.
    [124]韩保民(2003),基于星载GPS的低轨卫星几何法定轨理论研究[D],武汉:中国科学院测量与地球物理研究所.
    [125]胡国荣(1999),星载GPS低轨卫星定轨理论研究[D],武汉:中国科学院测量与地球物理研究所.
    [126]胡明城(2003),现代大地测量学的理论及其应用[M],北京:测绘出版社.
    [127]胡小工(1999),空间测量技术的数据处理精度评估和残差统计分析[D],上海:中国科学院上海天文台.
    [128]胡松杰,陈力,刘林(2002),双星定位系统在中低轨卫星定轨中的应用[J],天文学报,43(3):293-301.
    [129]黄立人,易长荣(2008),等.GPS观测得到的汶川地震远场地面运动[J].工程地球物理学 报,5(6):657-663.
    [130]黄声享(2005),GPS动态监测中多路径效应的规律性研究[J],武汉大学学报信息科学版,30(10):877-880.
    [131]姜卫平(2001),卫星测高技术在大地测量学中的应用[D],武汉:武汉大学测绘学院.
    [132]李毓麟等(1996),高精度静态GPS定位技术研究论文集,北京:测绘出版社.
    [133]李济生(1992),人造卫星精密轨道确定[M],郑州:解放军出版社.
    [134]李陶(2004),重复轨道星载SAR差分干涉测量监测地表形变研究[D],武汉:武汉大学测绘学院.
    [135]李征航,黄劲松(2005),GPS测量与数据处理[M],武汉:武汉大学出版社.
    [136]柳东升(1991),GPS在卫星精密测轨中的应用[J],中国空间科学技术,11(05):34-40.
    [137]刘承志(2002),人卫运动方程的数值解法及激光测距技术在精密定轨中的应用研究[D],上海:中国科学院上海天文台.
    [138]刘红新(2006),CHAMP卫星定轨方法研究[D],上海:上海同济大学土木工程学院.
    [139]刘基余(1993),GPS信号测定低轨卫星的实时位置[J],导航,(3):39-49.
    [140]刘基余(2003),GPS卫星导航定位原理与方法[M],北京:科学出版社.
    [141]刘基余(2005),海洋二号卫星厘米级定轨的实施建议[J],海洋测绘,25(6):1-3.
    [142]刘经南,陈俊勇,张燕平(1999),广域差分GPS原理和方法[M],北京:测绘出版社.
    [143]刘经南,罗志才,李建成(2000),从第22届IUGG大会看现代大地测量的进展[J],武汉测绘科技大学学报,25(1):12-17
    [144]刘经南,叶世榕(2002),GPS非差相位精密单点定位技术探讨[J],武汉大学学报(信息科学版),27(3):234-240.
    [145]刘经南,赵齐乐,张小红(2004),CHAMP卫星的纯几何定轨及动力平滑中的动力模型补偿研究[J],武汉大学学报信息科学版,29(1):1-6.
    [146]罗佳(2003),利用卫星跟踪卫星确定地球重力场的理论和方法[D],武汉:武汉大学测绘学院.
    [147]罗佳,宁津生(2004),CHAMP星载加速度计数据(0.1 Hz)处理与分析[J],武汉大学学报(信息科学版),29(5):380-384.
    [148]吕从民(2004),星载GPS实时定轨方法研究[D],北京:中国科学院研究生院空间科学与应用研究中心.
    [149]吕从民,顾逸东,林宝军,郭炯(2004),神舟四号飞船综合精密定轨[J],中国科学E辑,34(09):1061-1068.
    [150]楼益栋(2008).导航卫星实时精密轨道与钟差确定[D].武汉:武汉大学
    [151]孟国杰,任金卫,金红林,等(2007).GPS高频数据处理方法及其在地震学中的应用研究进展[J].国际地震动态,243(7):26-31.
    [152]宁津生(2001),跟踪世界发展动态致力地球重力场研究[J],武汉大学学报信息科学版,26(06):471-474.
    [153]宁津生(2002),卫星重力探测技术与地球重力场研究[J],地球动力学与大地测量,22(01):1-5.
    [154]牛之俊,王敏,孙汉荣等.中国大陆现今地壳运动速度场的最新观测结果.科学通报2005(08)
    [155]欧吉坤,胡国荣(2001),星载GPS低轨卫星几何法精密定轨研究[J]空间科学学报,01:23-27
    [156]沈云中,(2000),应用CHAMP卫星星历精化地球重力场模型的研究[D],武汉:中国科学院测量与地球物理研究所
    [157]施闯(1999).大规模、高精度GPS网平差处理与分析理论及其应用[D]武汉大学
    [158]苏小宁,孟国杰(2009),等.基于TRACK进行GPS单历元定位[J].大地测量与地球动力学,29(3):100-103.
    [159]唐卫明(2006),大范围长距离GNSS网络RTK技术研究及软件实现[D],武汉:武汉大学测绘学院.
    [160]许才军,刘洋,温扬茂2009.利用GPS资料反演汶川Mw7.9级地震滑动分布.测绘学报,(3):195-202.
    [161]王解先(1997),GPS精密定轨定位[M],上海:同济大学出版社.
    [162]王甫红,刘基余.星载GPS载波相位测量的周跳探测方法研究[J].武汉大学学报·信息科学版,2004,29(9):772-774.
    [163]王甫红(2006),星载GPS自主定轨理论及其软件研究[D],武汉:武汉大学测绘学院.
    [164]王敏,沈正康,牛之俊等(2003).现今中国大陆地壳运动与活动块体模型.中国科学D辑:地球科学,33(S1),21-32
    [165]魏子卿,葛茂荣(1998),GPS相对定位的数学模型[M],北京:测绘出版社.
    [166]夏林元.GPS观测值中的多路径效应理论研究及数值结果[D],博士论文,武汉测绘科技大学,2001.
    [167]叶世榕(2002),GPS非差相位精密单点定位理论与实现[D],武汉:武汉大学测绘学院.
    [168]殷海涛,甘卫军,肖根如等.利用高频GPS技术进行强震地面运动监测的研究进展[J].地球物理学进展,2009,6(12):2012-2019
    [169]赵齐乐(2004),GPS导航星座及其低轨卫星的精密定轨理论和软件研究[D],武汉:武汉大学.
    [170]张培震 等(2008),GPS测定的2008年汶川Ms8.0级地震的同震位移场,中国科学D辑:地球科学,38(10):1195-1206

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700