用户名: 密码: 验证码:
低渗透煤层气开采的热—流—固耦合作用机理及应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
我国煤层气资源储量丰富,但绝大部分储层具有“高储低渗”的特点,严重制约我国煤层气工业的发展。如何提高低渗透煤层的渗透率从而提高开采煤层气经济效益,是煤层气开采研究中的热点和难点。本文基于多孔介质弹性力学、渗流力学、热力学等理论,系统研究了温度影响下煤层中气体赋存运移变化规律,建立了包含煤层变形、气体扩散渗流、气体吸附以及温度效应的热-流-固多场耦合数学模型,并将模型应用到注热强化和注气驱替开采煤层气工程实践中,主要得到以下研究成果:
     (1)研究得到了气体吸附常数与温度之间的关系,建立了温度与气体压力共同作用下的吸附方程。针对煤的裂隙-孔隙结构特征,建立了包含温度效应的双重孔隙渗透率动态变化方程。在此基础上分别建立了煤体变形控制方程、气体运移控制方程、温度场控制方程。联立上述方程得到了包含煤层变形、气体渗流、气体吸附以及温度效应的热-流-固多场耦合数学模型。
     (2)以煤层气开采为背景,利用COMSOL Multiphysics对热-流-固耦合数学模型进行了数值求解。结果表明:煤层的温度直接影响煤层气的产出速率,温度越高,煤层气开采效率越高;煤层地应力越大,其渗透率越低,煤层气开采效率越低;煤的弹性模量越小,煤层气开采效率越高;煤层中裂隙间距越小,煤层气开采效率越高;煤的弹性模量衰减率Rm越小,煤层的渗透率越大,煤层气开采效率越高。
     (3)将热-流-固耦合数学模型应用到注热开采煤层气中,建立三维数值模型模拟和分析了注热对煤层气产出速率、孔隙压力分布、渗透率变化的影响。研究发现提高煤层温度,可以促进气体解吸作用的进行、提高煤层的渗透率,从而提高煤层气开采效率。
     (4)研究了二元气体竞争吸附下煤层渗透率的动态变化规律,建立了在煤层中注CO2驱替CH4的热-流-固耦合数学模型,并对该模型进行了数值求解。通过将求解结果与实验结果对比,证明了该耦合模型的正确性。
     (5)以沁水盆地煤层气增产试验为工程背景,利用所建的热-流-固耦合数学模型对CO2驱替CH4进行了模拟研究。模拟结果与现场试验数据吻合,表明在煤层中注入CO2能有效提高煤层气的产量。结果还显示若提高温度和注气压力可进一步增强CO2驱替CH4的效果。
     该论文有图116幅,表20个,参考文献140篇。
The storage of coal bed methane (CBM) is rich in our country. At present, the characteristics of "abundance CBM reservoir with low permeability" has restricted the development of Chinese CBM industry a lot. Therefore, aiming to improve the economic benefits of CBM exploitation, improving the permeability of coal bed becomes an important and difficult topic for CBM exploitation. According to theory of porous medium elasticity mechanics, seepage mechanics and thermodynamics, this dissertation systematically studied the occurrence migration law of CBM under temperature effects. The coupled thermal-hydrological-mechanical (THM) mathematical model including coal deformation, gas diffusion, gas seepage, gas adsorption and temperature effects has been established. The model has been used in the engineering practices of heat injection and enhances coal bed methane (ECBM), the following conclusions are obtained:
     (1) The relationship between temperature and adsorption constants can be obtained through the experimental data, thereby the adsorption equation under temperature and pressure is developed. Permeability model including the temperature effects is developed for the structural feature of fracture and matrix system.On that basis, the equations including coal deformation equation, seepage equation and temperature field governing equation are developed respectively for dual porosity media, Simultaneous above equations won the THM multiphysics coupled mathematical model.
     (2) The coupled THM control equations are solved by COMSOL Multiphysics, having CBM exploitation as the background. It can be found that the temperature of coal can influence the production rate of CBM directly. The higher temperature of coal seam the higher production rate of CBM. In-situ stress can lessen the production rate of CBM by lowering the permeability. The smaller elastics modulus of coal seams the higher production rate of CBM. The smaller space of coal fractures the higher CBM exploration efficiency. The smaller modulus reduction ratio the faster gas output rate since it can enhance the permeability.
     (3) Three-dimensional physical model has been established by appling the THM coupled mathematical model to CBM exploitation, and then the impacts on production rate, pressure and permeability have been analyzed since injecting heat to the coal seam. It can be found that improving injection temperature can promote process of gas desorption and permeability of coal bed, consequently improve production rate of CBM.
     (4) Dynamic permeability model of coal bed has been researched under systerm of dual gas with competition adsorption effect, the coupled THM equations for CO2-ECBM are developed and been numerically solved. Correctness and rationality of the coupled model has been verified compared with experiment results.
     (5) The coupled THM equations are used to simulate the processing of CO2-ECBM in Qinshui CBM field. The simulation results are consistent with in-situ test data, demonstrate that CO2 injection can improve the production of CH4. Studies indicate that increase the temperature and the injection pressure are all contributing to increase production of CH4.
引文
[1]孙茂远.中国煤层气产业现状与远景[J].中国煤层气,2005,2(3):3-5.
    [2]周世宁,林柏泉.煤层气赋存与流动理论[M].北京:煤炭工业出版社,1999.
    [3]联合国.《联合国气候变化框架公约》京都议定书[R].1998.
    [4]中国能源开发进入新阶段-访中联公司董事长陈明和[J].中国煤层气,1996,19(l):13-14.
    [5] Cao Yunxing, He Dingdong, Glick, D C. Coal and gas outbursts in footwalls of reverse faults [J]. International Journal of Coal Geology, 2001, 48(1):47-63.
    [6]赵庆波,陈刚,李贵中.中国煤层气富集高产规律、开采特点及勘探开发适用技术[J].天然气工业,2009,29(9):13-19.
    [7]中国煤田地质总局.中国煤层气资源[M].徐州:中国矿业大学出版社,1998.
    [8]孙培德.应用菲克方法研究煤层内瓦斯流动规律[J].瓦斯地质,1986,(1):36-45.
    [9]张亚蒲,杨正明,鲜保安.煤层气增产技术[J].特种油气藏,2006,13(1):95-98.
    [10]宋岩,张新民,柳少波.中国煤层气基础研究和勘探开发技术新进展[J].天然气工业,2005(01):1-7.
    [11]饶孟余,张遂安,商昌盛.提高我国煤层气采收率的主要技术分析[J].中国煤层气,2007, 4(2):12-16.
    [12]张洪涛,文冬光,李义连等.中国CO2地质埋存条件分析及有关建议[J].地质通报,2005,24(12):1107-1110.
    [13] Zhang, Y et al. System-level modeling for economic evolution of geological CO2 storage in gas reservoirs [J]. Energy Conversion and Management, 2007, 48:1827-1833.
    [14]叶建平,冯三利,范志强等.沁水盆地南部注CO2提高煤层气采收率微型先导性试验研究[J].石油学报,2007,28(4):77-80.
    [15]吴世跃,郭勇义.注气开采煤层气增产机制的研究[J].煤炭学报,2001,26(2):199-203.
    [16]周世宁,孙辑正.煤层气流动理论及其应用[J].煤炭学报, 1965, 2 (1):24-36.
    [17]郭勇义,周世宁.煤层气一维流场流动规律的完全解[J].中国矿业学院学报,1984,2(2) : 19-28.
    [18]孙培德.煤层气流动方程补正[J].煤田地质与勘探, 1993, 21(5):61-62.
    [19]余楚新,鲜学福,谭学术.煤层气流动理论及渗流控制方程研究[J].重庆大学学报,1989,12(5):1-9.
    [20]彼特罗祥.矿井沼气涌出[M].宋世钊译.北京:煤炭工业出版社,1983.
    [21]孙培德.煤层瓦斯流场流动规律的研究[J].煤炭学报,1987,12(4):74-82.
    [22]罗新荣.煤层气运移物理模拟与理论分析[J].中国矿业大学学报,1991,20(3):36-42.
    [23] Somerton, W. H., et al. Effect of stress on permeability of coal [J]. Int. J. Rock Mech. Min. Sci. & Geomech. Abstr. 1975, 12(2):151-158.
    [24] Harpalani S., Mopherson M. J. The effect of gas evacation on coal permeability test specimens [J]. Int. J. Rock Mech. Min. Sci. & Geomech. Abstr. 1984, 21(2):361-364.
    [25] Harpalani, S. Gas flow through stressed coal [D]. University of California Berkeley, 1985.
    [26] Gawuga, J. Flow of gas through stressed carboniferous strata [D]. University of Nottingham, 1979.
    [27]刘保县,鲜学福,徐龙君等.地球物理场对煤吸附瓦斯特性的影响[J].重庆大学学报,2000,23(5):78-81.
    [28]易俊,姜永东,鲜学福.应力场、温度场瓦斯渗流特性实验研究[J].中国矿业, 2007,16 (5):113-116.
    [29]王宏图,李晓红,鲜学福等.地电场作用下煤中甲烷气体渗流性质的实验研究[J].岩石力学与工程学报,2004,23(2):303-306.
    [30]王宏图,杜云贵,鲜学福等.地球物理场中的煤层瓦斯渗流方程[J].岩石力学与工程学报,2002,21(5):644-646.
    [31]王宏图,杜云贵,鲜学福等.受地应力、地温和地电效应影响的煤层瓦斯渗流方程[J].重庆大学学报,2000,23(增刊):47-49.
    [32]赵阳升,段康廉,胡耀青等.块裂介质岩石流体力学研究新进展[J].辽宁工程技术大学学报:自然科学版,1999,18(5):459-462.
    [33] Sawyer, W.K., G.W. Paul, and R.A. Schraufnagel, Development and Application of a 3D Coalbed Simulator [C]. paper CIM/SPE 90-119, presented at the 1990 International Technical Meeting hosted jointly by the Petroleum Society of CIM and the Society of Petroleum Engineers, Calgary, Alberta, Canada (10-13) June 1990.
    [34] Seidle, J.P., Huitt, L.G., 1995. Experimental measurements of coal matrix shrinkage due to gas desorption and implications for cleat permeability increases[C]. Paper SPE 30010. In: Presented at the 1995 International Meeting on Petroleum Engineering, Beijing, China, 14-17 November.
    [35] Palmer, I., Mansoori, J., 1998. How permeability depends on stress and pore pressure in coalbeds: a new model[C].Paper SPE 52607. SPE Reservoir Eval. Eng. (December), 539-544.
    [36] Shi, J.Q., Durucan S., 2003. Changes in Permeability of Coalbeds During Primary Recovery. Part 1. Model Formulation and Analysis. Paper 0341.[C]. In: Proceedings of the 2003 International Coalbed Methane Symposium, University of Alabama, Tuscaloosa, Alabama, May.
    [37] Cui, X., Bustin, R.M. Volumetric strain associated with methane desorption and its impact on coalbed gas production from deep coal seams [C]. AAPG Bull, 2005, 89:1181-1202.
    [38] Robertson, E.P., Christiansen, RL. Modeling permeability in coal using sorption-induced strain data [C]. In: Proceedings of the 2005 SPE annual technical conference and exhibition,Dallas, 9-12 October, paper SPE 97068.
    [39] Zhang, H.B., Liu J. and Elsworth D., How sorption-induced matrix deformation affects gas flow in coal seams: a new FE model [J].International Journal of Rock Mechanics and Mining Sciences, 2008, 45 (8): 1226-1236.
    [40] Wu, Y., Liu, J., Elsworth, D., Chen, Z., etal.Dual poroelastic response of a coal seam to CO2 injection[J].International Journal of Greenhouse Gas Control, 2010, 4 (4): 668-678.
    [41] Liu, J. Chen, Z. Elsworth, D., Miao X. and Mao, X. Linking gas-sorption induced changes in coal permeability to directional strains through a modulus reduction ratio [J]. Int. J. Coal Geol., 2010, 83 (1): 21-30.
    [42] Terzaghi, K. Principles of soil mechanics: IV settlement and consolidation of clay. Engineering News Record [M]. New York: McGraw-Hill, 1925.
    [43] Terzaghi, K. Theoretical soil mechanics [M]. NewYork:John Wiley and Sons Inc,1943.
    [44] Biot, M. A. General theory of three dimensional consolidation [J]. J.Appl.Phys, 1941, 12(5):155-164.
    [45] Biot, M A. General solution of the equation of elasticity and consolidation for a porous material [J]. J.Appl.Mech, 1956, 27 (3):91-96.
    [46] Biot, M. A. Theory of elasticity and consolidation for a porous anisotropic solid [J].J. Appl. Phys, 1955, 26(2):182-191.
    [47] Biot, M. A. Theory of stress strain relations in anisotropic viscoelasticity and relaxation phenomena [J]. Appl. Phys, 1954, 25 (11):1385-1391.
    [48] Litwiniszyn, J. A Model for the initiation of coal-gas outbursts [J]. Int.J.Rock Mech. Min. Geomech. Abstr., 1985, 22(1):39-46.
    [49] Valliappan, S., Zhang, W. H. Numerical modeling of methane gas migration in dry coal seams [J]. International Journal for Numerical and Analytical Methods in Geomechanics, 1996, 20(8):571-593.
    [50] Zhao, Y. S, Qing, H. Z, Bai, Q. Z. Mathematical model for solid-gas coupled problems on methane flowing in coal seam [J].Acta Mechanica Solida Sinica, 1993, 6(4): 459-466.
    [51]赵阳升.煤体-瓦斯耦合数学模型及数值解法[J].岩石力学与工程学报,1994,13(3):220-239.
    [52]梁冰,章梦涛,王泳嘉.煤层瓦斯渗流与煤体变形的耦合数学模型及数值解法[J].岩石力与工程学报,1996,15(2):135-142.
    [53]杨天鸿,徐涛,刘建新等.应力-损伤-渗流耦合模型及在深部煤层瓦斯卸压实践中的应用[J].岩石力学与工程学报,2005,24(16):2900-2905.
    [54] Bear, J., Corapcioglu, M.Y.A mathematical model for consolidation in thermoelastic require due to hot water injection or pumping [J].Water Resource Res.1981, (17):723-736.
    [55] Lewis R W,Sukirman Y. Finite element modeling of three-phase flow in deforming saturated oil reservoirs [J]. Int. J. Num. Anal. Methods Geomech., 1993, (17):577-598.
    [56] Lewis, R W. Finite element modeling of two phase heat and fluid flow in deforming porous media[J].Trans Porous Media, 1989, (4):319-334.
    [57] Gutierrez, M.and Makurat, A Coupled HTM modeling of cold-water injection in fractured hydrocarbon reservoirs [J]. Int.J.Rock Mech.Min.Sci. & Geomech.Abstr. 1997, 34 (3/4): 429-434.
    [58]王自明,杜志敏.弹性油藏中多相渗流的流-固-热耦合数学模型[J].大庆石油地质与开发,2003,22(1):29-31.
    [59]孔祥言,李道伦,徐献芝等.热-流-固耦合渗流的数学模型研究[J].水动力学研究与进展,2005,20(2):269-275.
    [60]盛金昌,廖秋林,刘继山,速宝玉.基于FEMLAB的钻井过程中流固热耦合响应分析[J].工程力学,2008,25(2): 219-223.
    [61]张群.煤层气储层数值模拟模型及应用研究[D].煤炭科学总院,2003.
    [62]刘建军,刘先贵.煤储层流固耦合渗流的数学模型[J].焦作工学院学报,1999,18(6): 397-401.
    [63]孙艳玲,桂祥友.煤矿热害及其治理[J].辽宁工程技术大学学报,2003,22(S):35-37.
    [64]梁冰,刘建军,王锦山.非等温情况下煤和瓦斯固流耦合作用的研究[J].辽宁工程技术大学学报,1999,18(5):483-486.
    [65]梁冰,刘建军,范厚彬等.非等温条件下煤层中瓦斯流动数学模型及数值解法[J] .岩石力学与工程学报,2000,19(1):1-5.
    [66]刘建军,梁冰,章梦涛.非等温条件下煤层瓦斯运移规律的研究[J].西安矿业学院学报,1999,19(4):302-308.
    [67]刘建军.煤层气热-流-固耦合渗流的数学模型[J].武汉工业学院学报,2002,(2):91-94.
    [68]郭永存,王仲勋,胡坤.煤层气两相流阶段的热-流-固耦合渗流数学模型[J].天然气工业,2008,28(7):73-74.
    [69]杨新乐,张永利.气固耦合作用下温度对煤瓦斯渗透率影响规律的实验研究[J].地质力学学报[J].2008,14(4):374-380.
    [70]杨新乐,张永利,李成全等.考虑温度影响下煤层气解吸渗流规律试验研究[J].岩土工程学报,2008,30(12):1811-1814.
    [71]李志强,鲜学福.煤体渗透率随温度和应力变化的实验研究[J].辽宁工程技术大学学报(自然科学版),2009,28(增):156-159.
    [72]陶云奇,许江,李树春等,煤层瓦斯渗流特性研究进展,煤田地质与勘探[J]. Vol. 37 No.2,2009,1-5
    [73]张琪.采油工程原理与设计[M].山东:石油大学出版社,2001,369-371
    [74]周世宁,林柏泉.煤层瓦斯赋存与流动理论[M].北京:煤炭工业出版社,1999
    [75]程瑞端,陈海焱,鲜学福,王国超.温度对煤样渗透系数影响的实验研究[J].煤炭工程师,1998,01: 13-15.
    [76]李志强,鲜学福,姜永东等.地球物理场中煤层气渗流控制方程及其数值解[J].岩石力学与工程学报2009,28 (S1):3226-3233.
    [77]胡耀青,赵阳升,杨栋等.温度对褐煤渗透特性影响的试验研究[J].岩石力学与工程学报,2010,29(8):1585-1594.
    [78]冯子军,万志军,赵阳升等.高温三轴应力下无烟煤、气煤煤体渗透特性的试验研究[J].岩石力学与工程学报,2010,29(4):696-670.
    [79]陶云奇,许江,程明俊等.含瓦斯煤渗透率理论分析与试验研究[J].岩石力学与工程学报,2009,28( S) 3363-3370.
    [80] Reeves, S.R., The coal-seq project: Key results from field, laboratory, and modeling studies[C].In: 7th International Conference on Greenhouse Gas Control Technologies, GHGT-7, Vancouver, BC, Canada, September 5-9, 2004.
    [81] Reeves, S.R., A. Taillefert, L. Pekot, C. Clarkson, The Allison unit CO2-ECBM pilot: A reservoir modeling study[C]. Topical Report, DOE Contract No. DE- FC26- 00NT40924, February 2003.
    [82] Reeves, S.R., Oudinot, A.Y., Erickson,D. The Tiffany unit N2-ECBM pilot: A reservoir modeling study[C]. Topical Report, DOE Contract No. DE-FC26- 00NT40924, May 2004.
    [83] Reeves, S.R. Identifying reservoir environments and pattern configurations for successful ECBM/sequestration projects[C].In: Presented at the Coal-Seq IV Forum, Denver, Colorado, November 2005.
    [84] Mavor, M., Gunter, W.D., Robinson, J.R. Alberta multi-well micro-pilot testing for CBM properties, enhanced recovery and CO2 storage potential[J].Paper SPE 90256 presented at the SPE annual conference and exhibition, Houston, Texas, 26-29, September 2004.
    [85]中联煤层气有限责任公司,艾伯塔研究理事会(Alberta Research Council).中国CO2注入提高煤层气采收率试验性先导技术[M].北京市:地质出版社,2008.
    [86] Van Bergen, F., et al, 2003: Development of a Field Experiment of ECBM in the Upper Silesian Coal Basin of Poland [C].Proceedings, 2003 International Coalbed Methane Symposium 2003, Tuscaloosa, Alabama.
    [87] Pagnier, H. J. M. Bergen, F. Kreft, E. et al. Field experiment of CO2 -ECBM in the Upper Silessian Basin of Poland [C]. Society of Petroleum Engineering.SPE Europec/EAGE Annual Conference, June 13-18, 2005. Madrid, Spain. SPE, 2005: 1-3.
    [88] Shi J.-Q., Durucan S. and Fujioka M., A reservoir simulation study of CO2 injection and N2 flooding at the Ishikari coalfield CO2 storage pilot project, Japan, [J].Int. J. Greenhouse GasControl, 2008, 2 (1): 47-57.
    [89]叶建平,冯三利,范志强.沁水盆地南部注CO2提高煤层气采收率微型先导性试验研究[J].石油学报,28(4):77-80.
    [90]李希建,蔡立勇,常浩.注气驱替煤层气作用机理的探讨[J].矿业快报,2007 (8): 20-22.
    [91] Stanton, R. Flores, R. Warwick, P.D. Gluskoter, H., Stricker, G.D. Coalbed sequestration of carbon dioxide[C]. In: 1st National Conference on Carbon Sequestration, Washington, USA (2001).
    [92]张庆玲,张群,崔永君等.煤对多组分气体吸附特征研究,天然气工业[J].2005,25(1):57-60.
    [93] Gruszkiewicz, M.S., Naney, M.T., Adsorption kinetics of CO2, CH4, and their equimolar mixture on coal from the Black Warrior Basin, West-Central Alabama [J]. International Journal of Coal Geology, 2009, 77(7): 23-33.
    [94]崔永君,张群,张泓,张庆玲.不同煤级煤对CH4、N2和CO2单组分气体的吸附[J].天然气工业,2005,25(1): 61-65.
    [95] Ozdemir, E. Modeling of coal bed methane (CBM) production and CO2 sequestration in coal seam [J].International Journal of Coal Geology, 2009, 77(7):145-152.
    [96] Ozdemir, E., Schroeder, K., Effect of moisture on adsorption isotherms and adsorption capacities of CO2 on coals [J]. Energy Fuels, 2009, 23:2821-2831.
    [97] Seto, C.J. Jessen, K., and Orr, F.M. Jr. Compositional Streamline Simulation of Field-Scale Condensate Vaporization by Gas Injection [J], paper SPE 79690 presented at the 2003 SPE reservoir Simulation Symposium, Houston, 2-5 February.
    [98]郑爱玲,王新海,刘德华.注气驱替煤层气数值模拟研究[J].石油钻探技术.2006,31(2):55-57.
    [99]孙可明.低渗透煤层气开采与注气增产流固耦合理论及其应用[D].辽宁工程技术大学,2004.
    [100]白冰.CO2煤层封存流动-力学理论及场地力学稳定性数值模拟方法[D].中国科学院武汉岩土力学研究所,2008.
    [101]杨宏民,魏晨慧,王兆丰,杨天鸿.基于多物理场耦合的井下注气驱替煤层甲烷的数值模拟[J].煤炭学报,2010, 35(S1):109-114.
    [102] Chen, Z.W., Liu, J.H, Elsworth D, Connell L, D., Pan Z.J. Impact of CO2 injection and differential deformation on CO2 injectivity under in-situ stress conditions[J]. Int. J. Coal Geol., 2010, 81: 97-108.
    [103] Barenblatt, I.P. Zheltov and Kochina, N. Basic concepts in the theory of seepage of homogeneous liquids in fissured rocks [J]. Prikl. Mat. Mekh. 1960, 24 (5): 852-864.
    [104] Warren, J.E. and Root, P.J. The behavior of naturally fractured reservoirs [J]. Society ofPetroleum Engineering, 1963, 3:245-255.
    [105] Kazemi, H., Seth, M.S.and Thomas, G.W. The interpretation of interference tests in naturally fractured reservoirs with uniform fracture distribution [J]. SPE Journal 1969 9 (4): 463-472 December. SPE 2156B.
    [106] De Swann, A. Analytical solutions for determining naturally fractured reservoir properties by well testing [J]. Soc. Petrol. Eng. J. 1977(16): 117–122.
    [107] Langmuir, I. The adsorption of gases on plane surfaces of glass, mica and platinum [J]. J. Am. Chem. Soc., 1918, 40: 1361-1403.
    [108]俞启香.矿井瓦斯防治[M].徐州:中国矿业大学出版社,1994.
    [109]В.В.Xодот.Внезапныевыбросыугольигаза,Государственноенаучно-техничеиздательстволитературыпогорномуделу[M].Москвa, 1961.
    [110]崔永君,张庆玲,杨锡禄.不同煤的吸附性能及等量吸附热的变化规律[J].天然气工业,2003,23(4):130-131.
    [111]张庆玲,崔永君,曹利戈.煤的等温吸附试验中各因素影响分析[J].煤田地质与勘探,2002,2:16-18.
    [112]赵志根,唐修义,张光明.较高温度下煤吸附甲烷实验及其意义[J].煤田地质与勘探,2001,29(4):29-31.
    [113]刘建军.非等温情况下煤层瓦斯流动规律的研究[D].阜新:辽宁工程技术大学,1998.
    [114]苏现波,林晓英,赵孟军等.储层条件下煤吸附甲烷能力预测[J].天然气工业,2006,26(8):1-3.
    [115]张群,崔永君,钟玲文等.煤吸附甲烷的温度-压力综合吸附模型[J].煤炭学报,2008,33 (11):1272-1278.
    [116]张天军,许鸿杰,李树刚,任树鑫.温度对煤吸附性能的影响[J] .煤炭学报,2009,34(6):802-805.
    [117] Saghafi, A. Faiz, M. Roberts, D. CO2 storage and gas diffusivity properties of coals from Sydney Basin, Australia [J]. Int. J. Coal Geol. 2007, 70: 240-254.
    [118]孔祥言,李道伦,徐献芝等.热-流-固耦合渗流的数学模型研究[J].水动力学研究与进展,2005,20(2):269-275.
    [119]傅雪海,秦勇,韦重韬.煤层气地质学[M].徐州:中国矿业大学出版社,2007.
    [120] Decker, A. D., Close, J. C., and McBane, R. A., The use of remote sensing, curvature analysis and coal etrology as indicators of higher coal reservoir permeability[C]. Proc. of the Coalbed Methane Symp., 1989, Univ. of Alabama, 1-16.
    [121] McKee, C R.Using permeability vs depth correlations to assess the potential for producing gas from coal seams [J].Quarterly Review of Methane from Coal Seams Technology, 1986, 4(1):15-26.
    [122] Hudson, J A, Fairhurst, C. Comprehensive rock engineering: principles, practice, and projects, Vol. II, Analysis and Design Method [M]. Oxford: Pergamon Press, 1993, 113-171.
    [123] George V. Chilingar, Relationship between Porosity, Permeability, and Grain Size Distribution of Sands and Sandstones [J]. Development in Sedimentology, Volume 1: 71-74Liu, J., Chen, Z. Elsworth, D., Miao, X., Mao, X. Evaluation of stress-controlled coal swelling processes [J]. International Journal of Coal Geology, 2010, 83(4):446-455.
    [124] Liu, J. and Elsworth, D. Evoluation of pore water pressure fluctuation around an advancing longwall panel [J]. Adv. Water Res., 1999, 22(6): 633-644.
    [125]中仿科技公司.有限元法多物理场建模与分析[M].北京:人民交通出版社,2006.
    [126] Ruthven, D.M. Principles of Adsorption and Adsorption Processes [M]. Wiley, New York. 1984.
    [127] Yang, R.T., Gas Separation by Adsorption Processes [M]. Butterworth, Boston, M A. 1987.
    [128] Butler J. A. V., Ockrent, C. Studies in Electrocapillarity. Part III. The Surface Tensions of Solutions Containing Two Surface-Active Solutes [J]. J. Phys. Chem. 1930, 34: 2841-2845.
    [129] Do, D., Adsorption Analysis: Equilibria and Kinetics [M]. Imperial College Press, London, 1998.
    [130]章梦涛,潘一山,梁冰等.煤岩流体力学[M].北京:科学出版社,1995.
    [131] Wolf, K.H., Hijman, R., Barzandij, O. H.,Bruining, J.Laboratory experiments and simulations on the environmentally friendly improvement of coalbed methane production by carbon-dioxide injection[C]//Proceedings of the Coalbed Methane Symposium,May 3–7,1999. Tuscaloosa, Alabama.1999, 279-290.
    [132] Mazumder, S., Wolf, K. H, Wolf, P. H. Laboratory experiments on environmental friendly means to improve coalbed methane production by carbon dioxide/flue gas injection [J]. Trans. Porous Med., 2008, 75(1):63-92.
    [133]李向东,冯启言,刘波等.注入CO2驱替煤层甲烷的试验研究[J].洁净煤技术,2009,16(2):101-102.
    [134]唐书恒,马彩霞,叶建平等.注CO2提高煤层甲烷采收率的试验模拟[J].中国矿业大学学报,2006,35(5):607-611.
    [135]梁卫国,吴迪,赵阳升.CO2驱替煤层CH4试验研究[J].岩石力学与工程学,2010,29(4): 665-673.
    [136] Mazumder, S. and Wolf, K.H., Differential swelling and permeability change of coal in response to CO2 injection for ECBM [J]. Int. J. Coal Geol., 2008, 74 (2): 123-138.
    [137] Wong, S. Law, D. Deng, X. et al. Enhanced coalbed methane and CO2 storage in anthracitic coals-Micro-pilot test at South Qinshui, Shanxi, China[J]. Int. J. Coal Geol., 2007 (1): 215-222.
    [138] Mazumder, S., Bruining, J. Anomalous diffusion behavior of CO2 in the macro- molecular network structure of coal and its significance for CO2 sequestration [J]. Society of Petroleum Engineers paper SPE 109506 presented at the 2007 SPE Asia Pacific Oil & Gas Conference, Jakarta, Indonesia.
    [139] Shi, J. Q., Mazumder, S. Wolf, K.H. Durucan, S. Competitive Methane Desorption by Supercritical CO2 Injection in Coal [J]. Trans. Porous Med, 2008, 75: 35-54.
    [140]冯三利,胡爱梅,叶建平.中国煤层气勘探开发技术研究[M].北京:石油工业出版社, 2007.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700