用户名: 密码: 验证码:
新疆土屋—延东斑岩铜矿带多源信息成矿机制与成矿预测研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
新疆土屋-延东斑岩铜矿带是东天山地区具有较大远景的大型矿集区之一,应用基于GIS的成矿综合信息集成方法,开展新疆土屋-延东斑岩铜矿带成矿预测研究,将有助于东天山地区斑岩铜矿的勘探开发,并丰富大型-超大型斑岩铜矿的成矿理论与勘探技术。论文以野外地质、矿产、地球物理、地球化学及遥感等新资料为依据,以综合信息成矿预测理论、地质异常成矿预测理论及板块构造成矿理论等理论为指导,基于GIS的综合信息成矿预测研究方法及技术,探讨了土屋-延东斑岩铜矿带区域成矿多源信息地质背景、矿带成矿地质条件及矿床成矿地质特征,揭示了东天山成矿区、土屋-延东斑岩铜矿成矿带成矿规律,初步建立了土屋-延东斑岩铜矿带典型矿床成矿模式及综合信息找矿模型,开展了成矿预测研究,取得了研究区部分区域的局域性地质异常定量预测成果。论文研究取得以下主要创新性成果:
     1)获取了土屋-延东斑岩铜矿带地球物理、地球化学、遥感和野外地质调查的成矿多源新信息,进一步证实了斑岩铜矿带形成于岛弧环境、成矿岩体具有埃达克岩特征的观点。
     土屋-延东斑岩铜矿带形成于两大板块对接型边缘的岛弧带大地构造环境,与东西向断裂线状构造和环状岩浆成因机构密切相关,存在地球物理、地球化学和遥感背景异常;含矿岩体为企鹅山火山喷发旋回的次火山岩相,具有多源性和多期次成矿特点,易在埃达克岩体顶部富集成矿;受基底深大断裂—康古尔塔格深大断裂及韧性变形剪切带的影响,成矿物质条件为多来源多期次的中-酸性岩浆岩及其派生的浅成-超浅成次火山岩相岩枝状和岩脉状斑(玢)岩(斜长花岗斑岩与闪长玢岩)及企鹅山群中-基性火山-碎屑岩建造,斑岩铜矿是构造-岩浆-流体的耦合作用的产物。
     2)探索了土屋-延东斑岩铜矿成矿带成矿规律和典型矿床成矿机制,认为铜矿带形成于拼贴增生岛弧、构造岩浆和地层综合控制、以岩浆热液流体为主的成矿模式。
     东天山成矿区在成矿时空分布上表现为成矿演化的四个阶段及其分别对应的四个成矿带,从北到南依次为斑岩铜成矿带、金、铜镍硫化物成矿带、铁(铜)、银多金属成矿带和中天山地块铁、铅锌、银成矿带的分带规律性;斑岩铜矿带在空间上处于准噶尔板块与塔里木板块对接型活动边缘的拼贴增生岛弧,主要受康古尔塔格深大断裂及其衍生的次一级断裂或火山机构控制,而时间上具有多期次成矿的规律性,主要成矿与俯冲-碰撞阶段(早石炭晚期-晚石炭晚期)的构造-岩浆作用有关。成矿物质来源以上地幔物质和洋壳部分熔融为主,成矿流体来源为岩浆热液和大气降水,铜矿带形成于以岩浆热液流体为主的成矿模式。
     3)建立了土屋-延东斑岩铜矿带基于GIS的综合信息找矿模型,预测并确定了铜、金组合异常找矿有利地段和地质异常找矿靶区。综合信息找矿模型是基于GIS的地球物理、地球化学、矿床地质学成矿空间信息的集成,以区域性找矿标志、矿带标志、矿床标志等空间信息为核心内涵。通过对1:20万地质、矿产、化探和遥感资料的分析研究,应用地理信息系统MAPGIS软件,作出了大草滩幅下半幅的铜矿预测图(E92°00′—93°00′,N42°00′—42°20′),经过预测,圈出大小和面积不等的找矿可行地段共15处,圈出铜、金组合异常找矿有利地段13处,总面积342.67km2。地质异常找矿靶区的分布位置、范围与预测出的找矿可行地段和有利地段的位置、范围基本上一致。
     该论文有图51幅,表23个,参考文献148篇。
Tuwu-Yandong porphyry copper ore belt in Xinjiang is one of the large ore deposit cluster having larger prospect in East Tianshan area. Metallogenic prognosis research of Tuwu-Yandong porphyry copper ore belt in Xinjiang by using integrated approach of mineralization synthetic information supported by geographical information system (GIS) is conduces to exploratory development of porphyry copper in east Tianshan area and rich metallogenic theory and exploratory development of large scale and superhuge porphyry copper. In this paper, based on the new data of field geology, mineral, geophysics, geochemistry and remote sensing, under the direction of mineralization prognosis theory of synthetic information and geologic anomaly and mineralization theory of plate tectonics, by using mineralization prognosis research approach and technique of synthetic information supported by GIS, geologic setting, mine belt Metallogenic conditions and deposit Metallogenic features of regional metallogeny multiple information for Tuwu-Yandong porphyry copper belt were discuss, Metallogenic Regulation of East Tianshan metallogenic province and Tuwu-Yandong porphyry copper ore belt were revealed, metallogenic model of typical deposit and ore-prospecting model of synthetic information for Tuwu-Yandong porphyry copper ore belt were initially established, metallogenic prognosis research was developed and quantitative prediction results of locality geologic anomaly in some part of research area were gained. The chiefly innovative achievements obtained in this paper are as follows:
     1) New mineralization multi-source information of geophysics, geochemistry, remote sensing and field geology investigation for Tuwu-Yandong porphyry copper ore belt were obtained; the viewpoint that porphyry copper belt formed from island arc setting and metallogenic rock body having Adakite characteristics was further confirmed.
     Tuwu-Yandong porphyry copper ore belt was formed in island-arc belt tectonic setting in the butt joint fringes of two plates, was closely related to E-W direction linear fracture structure and cyclical magmatic origin organization, and has exceptional geophysics, geochemistry and remote sensing background; Ore-bearing rock which has Metallogenic features of multiple source and multiple phase and easily is subvolcanic lithofacies under Penguin Mountain volcanic-eruptive cycle enrichment mineralize on the top of Adakite rock; with the affections of basal discordogenic fault-Kangguertage discordogenic fault and ductile deformation shear belt, the Metallogenic conditions of porphyry copper are intermediate and acidic magmatic rock with multiple source and multiple phase, granite-porphyry and diorite-porphyrite as apophysal and dikes derived by intermediate and acidic magmatic rock with epizonal and super epizonal subvolcanic lithofacies and neutral and basic volcanic rock and clastic rock construction in Penguin Mountain group, in a word, porphyry copper is the coupling production of structure-magmatic-fluid
     2) The regularity of porphyry copper metallogenic belt and the typical deposit forming mechanism of Tuwu-Yandong were explored. The copper mine belt was formed from the metallogenic model that dominated by magmatic hydrothermal fluids, and controlled by an island arc of collage and proliferation, tectonic magma and formation.
     East Tianshan metallogenic area has four metallogenic belts in the space distribution and four stages of evolution correspondingly by time. The four metallogenic belts includes porphyry Cu-polymetallic metallogenic belt, Au-Cu-poly metal sulfide metallogenic belt, Fe(Cu)-Ag-ploymetallic metallogenic belt, and Fe-Pb-Zn-Ag-ploymetallic metallogenic belt in Zhongtianshan district form north to south. The porphyry Cu-polymetallic metallogenic belt is located at the island arc of collage and proliferation which is in the active edge of the butt type of the Junggar and Tarim plate. It is influenced by kangguertage discordogenic fault, its derived fractures, or volcanic apparatus. The metallogenic belt has regular multiple phase mineralizations in geologic period, which is concerned with tectonic-magmatic effects in the stage of subduction-collision, from the late Early Carboniferous to the late Late Carboniferous. The upper mantle and partial melting of oceanic crust were the main metallogenic material sources, and the magmatic hydrothermal fluids and atmospheric precipitation played a key roled in the source of ore-forming fluids. As a result, the porphyry Cu-polymetallic metallogenic belt has a mineralization model relying mainly on magmatic hydrothermal fluid.
     3) The ore-prospecting model of integrated information supported by GIS is created in the Tuwu-Yandong porphyry copper ore belt, the favorable parts for bonanza ores for Cu-Au anomaly and ore-prospecting targets for geological anomaly are forecasted and determined. This model is the integrated metallogenic space information of geophysics, geochemistry, geology of ore deposits supported by GIS system, and the kernel of it is a regional ore-prospecting, belt marks, deposits and other spatial information signs. The copper prognostic map (E92°00’-93°00’, N42°00’-42°20’), about the under half-size pieces of the Dacaotan chart, has been made by the MAPGIS by analyzing the geological, mineral, geochemical and remote sensing data (1:200000). A total of 15 possible sites of feasible ore-prospecting segments were given after prediction, 13 favorable areas for Cu-Au anomaly were obtained with a total area of 342.67 km2. The result shows that the distribution of geological anomaly ore-prospecting targets is consistent with the feasible and favorable prospecting segments by forecasting.
     This paper has 51figures, 23 tables, 148 references.
引文
[1]李景朝.中国大型、超大型铜矿成矿远景区综合信息潜力预测[R].北京,中国地质大学,2002.
    [2]王之田,泰克章,张守林.大型铜矿地质与找矿[M].北京,冶金工业出版社,1994,1-162.
    [3]芮宗瑶,黄崇轲,齐国民,等.中国斑岩铜(钼)矿床[M].北京,地质出版社,1984.1-350.
    [4]姚金炎.关于斑岩铜矿的找矿[J],矿产与地质. 1999,2: 65-69.
    [5]涂光炽.初议中亚成矿域[J].地质科学,1994,34(4):397-404.
    [6]李景朝,刘少华,严光生.大型超大型金属矿床综合信息成矿预测方法研究[J]. 2002,17(4):736-744.
    [7]秦克章,方同辉,王书来,等.东天山板块构造分区、演化与成矿地质背景研究[J].新疆地质,2002,20(4):302~308.
    [8]吴振褰.中国周边国家地质与矿产[M].北京:中国地质大学出版社,1993,1-268.
    [9]刘德权,唐延龄,周汝洪.新疆斑岩铜矿的成矿条件和远景[J.新疆地质,2001,19(1):43-48.
    [10]王庆明,赵仁夫,屈迅,等.东天山成矿带斑岩铜矿和其他类型矿床找矿勘查[J].西北地质,2006,39(2):57-77.
    [11]Kirkham R V and Sinclair W D. Porphyry opper,gold,molybdenum,tungsten,tin,silver[A].In:Eckstrand O R,Sinclair W D,Thorpe R I,ed.Geology of Canadian mineral deposit types[C].Ottawa:Geological Survey of Canada. 1995, 421~446.
    [12]涂光炽.从一个侧面看矿床事业的发展——若干重要矿床领域的新近展及找矿思维的开拓[J].矿床地质,2002,21(2):97-105.
    [13]Maksaev V and Zentilli M, Fission track thermochronology of the Domeyko Cordillera,northern Chile:implications for Andean tectonics and porphyry copper metallogenesis.Exploration and Mining Geology, 1999,8(1-2):65-89.
    [14]夏斌,涂光炽,陈根文,等.超大型斑岩铜矿床形成的全球地质背景[J].矿物岩石地球化学通报,2000,19(4):406-408.
    [15]Ishizuka O,Yuasa M and Uto K. ,Evidence of porphyry copper-type hydrothermal activity from a submerged remnant back-arc volcano of the Izu-Bonin Arc:implications for the volcanotectonic history of back-arc seamounts.Earth and Planetary Science Letters, 2002,198(3-4):381-399.
    [16]Ranjbar H, Roonwal G S, Ravindran K V, Babar S. Synergetic use of remote sensing and geophysical data for exploration of porphyry copper deposits,using GIS. Photonirvachak (Dehra Dun), 2000,28(2-3): 205-212.
    [17]Roy B and Clowes R M. Seismic and potential-field imaging of the Guichon Creek batholith,British Columbia,Canada,to delineate structures hosting porphyry copper deposits.Geophysics,2000,65(5):1418-1434.
    [18]Simon G,Kesler S E,Essene E J and Chryssoulis S L. ,Gold in porphyry copper deposits:experimental determination of the distribution of gold in the Cu-Fe-S system at 400 to 700℃.Economic Geology, 2000,95(2): 259-270.
    [19]Bouse R M, Ruiz J,Titley S R,Tosdal R M and Wooden J L. ,Lead isotope compositions of Late Cretaceous and early Tertiary igneous rocks and sulfide minerals in Arizona:implications for the sources of plutons and metals in porphyry copper deposits[J].Economic Geology, 1999, 94(2): 211-244.
    [20]Mathur R, Ruiz J, Munizaga F. Relationship between copper tonnage of Chilean base-metal porphyry deposits and Os isotope ratios.Geology, 2000,28(6): 555~558.
    [21]Kendrick M A,Burgess R,Pattrick R A D and Turner G..,Fluid inclusion noble gas and halogen evidence on the origin of Cu-porphyry mineralising fluids.Geochimica et Cosmochimica Acta, 2001,65(16):2651~2668
    [22]Mote T I,Brimhall G H,Tidy F E et al. Application of mass-balance modeling of sources pathways,and sinks of supergene enrichment to exploration and discovery of the Quebrada Turquesa exotic copper orebody,El Salvador District,Chile.Economic Geology, 2001,96(2):367~386
    [23]Gustafson L B,Orquera W,McWilliams M et al. ,Multiple centers of mineralization in the Indio Muerto District,El Salvador,Chile.Economic Geology, 2001,96(2): 325-350.
    [24]Richards J P,Boyce A J and Pringle M S.,Geologic evolution of the Escondida area,northern Chile:a model for spatial and temporal locazilation of porphyry Cu mineralization.Economic Geology, 2001,96(2):271-305.
    [25]Behn G,Camus F,Carraco P and Ware H. ,Aeromagnetic signature of porphyry copper systems in northem Chile and its geologic implications.Economic Geology, 2001,96(2): 239-248
    [26] Redmond P B, Einaudi M T, Inan E E, Landtwing M R and Heinrich C A. ,Copper deposition by fluid cooling in intrusion-centered systems: New insights from the Bingham porphyry ore deposit,Utah[J]. Geology, 2004,217-230.
    [27]Heinrich C A. ,The physical and chemical evolution of low-salinity magmatic fluids at the porphyry to epithermal transition: A thermodynamic study[J]. Mineralium Deposita, 2005, 39: 864-889.
    [28]Nagaseki Hand Hayashi K. ,Experimental study of the behavior of copper and zinc in a boiling hydrothermal system[J]. Geology, 2008,36:27-30.
    [29]Audétat A, Pettke T, Heinrich C A. and Bodnar R J.,The composition of magmatic-hydrothermal fluids in barren and mineralized intrusions[J]. Econ. Geol., 2008,103: 877-908.
    [30]Seedorf E, Dilles J H, Proffett J M Jr, Einaudi M R, Zurcher L, Stavast W J A, Johnson D A and Barto M D. ,Porphyry copper deposits: Characteristics and origin of hypogene features [ J ].Economic Geology 100th Anniversiry Volume, 2005,251-298.
    [31]Harris A C,Kamenetsky V S,White N C et al. ,Melt inclusions in veins:linking magmas and porphyry Cu deposits.Science, 2003, 302: 2109-2111.
    [32]Richards J P. ,Cumulative factors in the generation of giant calc-alkaline porphyry Cu deposits [A]. In: Porter T M, ed. Super-porphyry copper & gold deposits: A global perspective[M]. PGC Publisihng, Adelaide, 2005,7-25.
    [33]Hou Zengqian,Ma Hongwen,Khin Zaw et al.,The Himalayan Yulong porphyry copper belt;product of large-scale strike-slip faulting in eastern Tibet.Economic Geology, 2003, 98(1): 125-145.
    [34]侯增谦,曲晓明,王淑贤,等.西藏高原冈底斯斑岩铜矿带辉钼矿Re-Os年龄:成矿作用时限与动力学背景应用[J].中国科学(D辑),2003b.33(7):609-618.
    [35]芮宗瑶,侯增谦,曲晓明,等.冈底斯斑岩铜矿成矿时代及青藏高原隆升[J].矿床地质,2003,22(3):217-225.
    [36]Hou Z Q, Gao Y F, Meng X J, Qu X M and Huang W. ,Genesis of adakitic porphyry and tectonic controls on the Gangdese Miocene porphyry copper belt in the Tibetan orogen [J]. Acta Petrologica Sinica, 2004,20(2): 239~248(in Chinese with English abstract).
    [37]Hou Z Q, Zeng P S, Gao Y F and Dong F L.,The Himalayan Cu-Mo-Au Mineralization in the eastern Indo-Asian Collision Zon Constraints from Re-Os Dating of molybdenite[J]. Minerlium Deposita, 2006,41: 33~45.
    [38]Hou Z Q, Yang Z M, Qu X M, Meng X J, Li Z Q, Beaudoin G, Rui ZY and Gao Y F.,The Miocene Gangdese porphyry Cu belt:Generated during post-collisional extension in the Tibetan orogen[J]. Ore Geology Review, 2009,doi: 10.1016/j.oregeorev. 2008.09.006.
    [39]侯增谦,高永丰,孟祥金,等.西藏冈底斯中新世斑岩铜矿带:埃达克质斑岩成因与构造控制[J].岩石学报, 2004,20(2): 239-248.
    [40]芮宗瑶,李光明,张立生,等.西藏斑岩铜矿对重大地质事件的响应[J].地学前缘, 2004,11(1): 145~152.
    [41]芮宗瑶,侯增谦,李光明,等.冈底斯斑岩铜矿成矿模式[J].地质论评, 2006, 52:459~466.
    [42]孟祥金,侯增谦,李振清.西藏驱龙铜矿S、Pb同位素组成:对含矿斑岩与成矿物质来源的指示[J].地质学报, 2006,80(4):554~560.
    [43]Qu X M, Hou Z Q, Khin Zaw and Li Y G. Characteristics and genesis of Gangdese porphyry copper deposits in the southern Ti-betan Plateau: Preliminary geochemical and geochronological results[J],Ore Geology Review, 2007,31: 205-223.
    [44]侯增谦,潘小菲,杨志明,等.初论大陆环境斑岩铜矿[J].现代地质,2007,21(2):332-351.
    [45]杨志明,侯增谦.初论碰撞造山环境斑岩铜矿成矿模型[J].矿床地质,2009,28(5):515-538.
    [46]李晓峰,梁金城,冯佐海.斑岩铜矿研究最新进展[J]. 2009,29(2):216-222.
    [47]芮宗瑶,王福同,李恒海,等.新疆东天山斑岩铜矿带的新进展[J]中国地质,2001,28(2):16-23.
    [48]王福同,冯京,胡建卫,等.新疆土屋大型斑岩铜矿床特征及发现意义[J].中国地质,2001,28(1):36-39.
    [49]姬金生,陶洪祥,曾章仁,等.东天山康古尔塔格金矿带地质与成矿[M].北京:地质出版社, 1994: 1-20.
    [50]姬金生,杨兴科,苏生瑞.东天山康古尔塔格金矿带成矿条件分析[J].地质找矿论丛, 1994, 9 (4): 49~56.
    [51]Cole A. ,Gold mineralization in the southern Tien Shan, Central Asia: tectonic setting, characteristics, exploration criteria[A],In: Selt mann R, Jenchuraeva S J, eds. Paleozoic geodynamics and gold deposit in the Kyrgyz Tian Shan[C],2001: 71-81.
    [52]Chen C,LU H, JIA D, et al. Closing history of the southern Tianshan oceanic basin, western China: an oblique collisional orogeny[J].Tectonophysics, 1999, 302:23~40.
    [53]Dilles J H and Einauda M T. Wall-rock alteration and hydrothermal flow paths about the Ann-Mason porphyry copper deposit, Nevada:a 6km vertical reconstruction[J],Econ. Geol, 1992, 87: 1963-2001.
    [54]Grigore S, Stephn E K, Eric J E and Stephn L C.,Gold in porphyry copper deposit; experimental determination of distribution of gold in the Cu-Fe-S system at 4000C to 7000C[J].Eeon, 2000, 95: 1197-1213.
    [55]Huang Chongke, Zhu Yusheng. An Introduction to Copper Depper Depsitis in China[J]. Journal of China University of Geosciences, 1999,10(1):13-15.
    [56]芮宗瑶,刘玉林,王龙生,等,新疆东天山斑岩型铜矿带及其大地构造格局[J],地质学报,2002,76(1):83~92.
    [57]芮宗瑶,王龙生,王义天,等,东天山土屋和延东斑岩铜矿床时代讨论[J],矿床地质,2002,21(1):16~22
    [58]陈富文,李华芹,陈毓川,等,东天山土屋—延东斑岩铜矿田成岩时代精确测定及其地质意义[J],地质学报,2005,79(2):256~261
    [59]侯广顺,唐红峰,刘丛强,等.东天山土屋-延东斑岩铜矿围岩的同位素年代和地球化学研究[J].岩石学报,2005, 21(6):1729-1736.
    [60]毛景文,杨建民,韩春明,等.东天山铜多金属矿床成矿系统和成矿地球动力学模型[J].地球科学—中国地质大学学报,2002,27(4):413-423.
    [61]韩春明,毛景文,杨建民,等.东天山晚古生代内生金属矿床类型和成矿作用的动力学演化规律[J].地质学报,2002,76(2):223-234.
    [62]刘德权,唐延岭,周女洪.新疆斑岩铜矿的成矿条件和远景[J].新疆地质,2001,19(1):43-48.
    [63]龙保林,薛迎喜,冯京,等.新疆东天山斑岩铜矿的找矿模型试探[J],中国地质,2001,28(5):35-38.
    [64]王福同,庄道泽,胡建卫,等.物探在新疆土屋地区铜矿找矿中的应用[J].中国地质,2001,28(3):40-46.
    [65]李向民,夏林圻,夏祖春,等.东天山石炭纪企鹅山群火山岩岩石成因[J].吉林大学学报(地球科学版),2006,36(3):336-341.
    [66]冯京,李永军,王晓刚,等.东天山库姆塔格沙垄地区石炭纪化石新资料及地层厘定[J].中国地质,2007,34(5):942-949.
    [67]李永军,杜志刚,胡克亮,等.东天山库姆塔格沙垄地区企鹅山群的解体及岩石地层单位厘定[J],地球科学——中国地质大学学报,2008,33(4):458-464.
    [68]肖克炎,丁建华,娄德波.东天山斑岩铜矿资源潜力评价[J].地质与勘探,2009,45(6):637-644.
    [69]张洪瑞,魏刚锋,李永军,等.东天山大南湖岛弧带石炭纪岩石地层与构造演化[J].岩石矿物学杂志,2010,29(1):1-14.
    [70]木合塔尔·扎日,张晓帆,吴兆宁,等.东天山准噶尔—哈萨克斯坦板块与塔里木板块缝合线的再厘定及其意义[J].地学前缘,2009,16(3):138-148.
    [71]木合塔尔·扎日,张晓帆,陈斌,等.东天山造山带晚古生代构造演化与多金属矿产成矿规律[J].新疆大学学报(自然科学版),2010,27(1):5-12.
    [72]刘敏,王志良,张作衡,等.新疆东天山土屋斑岩铜矿床流体包裹体地球化学特征[J].岩石学报,2009,25(6):1446-1455.
    [73]叶天竺,肖克炎,严光生.矿床模型综合地质信息预测技术研究[J].地学前缘,2007,14(5):11-19.
    [74]陈毓川,王登红,朱裕生,等.中国成矿体系与区域成矿评价[M].北京:地质出版社, 2007: 152-175.
    [75]翟裕生,邓军,李晓波,等.区域成矿学[M].北京:地质出版社,1999: 60-120.
    [76]叶天竺,朱裕生,夏庆霖,等.固体矿床预测评价方法技术[M],北京:大地出版社,2004: 10~60,68~103,207-326.
    [77]于学政.藏东遥感地质与矿产资源[M].北京:地质出版社, 2003: 130-144.
    [78]木合塔尔·买买提,木合塔尔·扎日,桑树勋,等.土屋-延东斑岩铜矿田区域多元成矿信息分析[J],干旱区地理, 2010,33(6): 979-987.
    [79]陈毓川,裴荣富,王登红,等.三论矿床的成矿系列问题[J].地质学报, 2006,80(10): 1501-1508.
    [80]朱裕生,建立成矿模式的内容及工作方法[J].中国地质, 1992(2): 22~24.
    [81]朱裕生,论矿床成矿模式[J].地质论评, 1993(3): 216-222.
    [82]肖克炎,张晓华,朱裕生,等.矿产资源GIS评价系统[M].北京:地质出版社, 2000: 87-107.
    [83]夏庆霖.网络多“S”集成技术在地质异常矿体定位中的应用前景[J].地质论评, 2000,46(S): 97-100.
    [84]王世称,陈永良,夏立显,综合信息矿产预测理论与方法[M],北京:科学出版社,2000:1~343
    [85]夏庆霖,张寿庭,赵鹏大.幂律度与成矿预测[J].成都理工大学学报(自然科学版),2003, 30(5): 453-456.
    [86]赵鹏大.定量地学方法及应用[M].北京:高等教育出版社, 2004: 1-463.
    [87]朱创业.地理信息系统在矿产预测中的应用—以华蓥山锶矿带为例[J].成都大学学报, 1999,18(2): 36-38.
    [88]刘治国,池顺都,周顺平.成矿预测中应用GIS的主要步骤[J]. 2002,17(2):140-144.
    [89]Lesley Wyborn et al., Using GIS for mineral potential evalution in Areas with few know mineral occurences[J],The second forum on GIS in the geosciences, AGSO, 1995 , 199~211.
    [90]Lyle A. Burgess, Recent applications and research into mineral prospective mapping using GIS[J]. Proceedingof third national forum on GIS in the geosciences, AGSO, 1997, 121~129.
    [91] Knox R C M, Wyborn L A I. Towards a holistic: exploration strategy:Using geographic information systemsas a tool to enhance exploration[J], Australian Journal of Earth Sciences, 1997, 44: 453~463.
    [92]矫东风,吕新彪,胡光道,等.基于MORPAS平台的甘南Pb、Zn矿床远景区预测[J.地质与勘探,2005,41(3): 65-70.
    [93]池顺都,周顺平,吴新林. GIS支持下的地质异常分析及金属矿产经验预测[J.地球科学—中国地质大学学报,1997,22 (1): 99-103.
    [94]池顺都、赵鹏大、刘粤湘.应用GIS研究矿产资源潜力——以云南澜沧江流域为例[J].地球科学—中国地质大学学报,1999,24(5): 493-497.
    [95]向运川,任天祥,杨竹溪.开发利用地理信息系统(GIS)综合分析地学信息进行矿产预测[J].物探与化探,1996,20(1): 1-13.
    [96]肖克炎,张晓华,王四龙.矿产资源GIS评价系统[M].北京:地质出版社,2000: 1-142.
    [97]刘德权,唐延龄,周汝洪.中国新疆铜矿床和镍矿床[M].北京:地质出版社,2005,11-24.
    [98]陈毓川,刘德权,唐延龄,等.中国新疆战略性固体矿产大型矿集区研究[M].北京:地质出版社,2007,188-204.
    [99]邓振球,王欣观,谢德顺,新疆地球物理场特征[J],新疆地质,1992,10(3):233-243.
    [100]邓振球.东天山航空磁异常特征及地质解释[J].新疆地质,2002,20(4):320-324.
    [101]梁月明,黄旭钊,徐昆,等.新疆康古尔塔格断裂带地球物理场及深部地质特征[J]中国区域地质,2001,20(4):398-403.
    [102]庄道泽.新疆东天山地区土屋、延东铜矿地球化学特征与异常查证方法[J].地质与勘探,2003,39(5):67-71.
    [103]芮宗瑶,张立生,王龙生,等.斑岩铜矿与陆相火山活动[J].地震地质,2003,25(S):78-87.
    [104]吴涂国,董连慧,薛春纪,等.新疆北部主要斑岩铜矿带[M].北京:地质出版社,2008,178-186.
    [105]侯广顺,唐红峰,刘丛强.东天山觉罗塔格构造带晚古生代火山岩地球化学特征及意义[J].岩石学报,2006,022(05):1167-1177.
    [106]侯广顺,杨贺杰.东天山土屋斜长花岗斑岩的成因——来自围岩的证据[J],四川有色金属,2009.2: 5-8.
    [107]李锦轶,王克卓,孙桂华,等.东天山吐哈盆地南缘古生代活动陆缘残片:中亚地区古亚洲洋板块俯冲的地质记录[J],岩石学报,2006, 22(05):1087-1102.
    [108]刘德权,陈毓川,王登红,等.土屋_延东铜钼矿田与成矿有关问题的讨论[J].矿床地质,2003,22(4):334-344.
    [109]陈文明,曲晓明.论东天山土屋—延东(斑岩)铜矿的容矿[J].矿床地质, 2002, 21(4): 331-339.
    [110]任秉琛,杨兴科,李文明,等.东天山土屋特大型斑岩铜矿成矿地质特征与矿床对比[J].西北地质,2002, 35(3):67-75.
    [111]张连昌,秦克章,英基丰,等.东天山土屋-延东斑岩铜矿带埃达克岩及其与成矿作用的关系[J].岩石学报,2004, 20(2):259-268.
    [112]Defant M J,Drummond M S.Derivation of some modem arc magmas by melting of young subduction lithosphere[J].Nature.1990.347:662-665.
    [113]Martin H.Adakitie magmas: modem analogues of Archaean granitoids.Lithos,1999,46(3): 4ll-429.
    [114]芮宗瑶,张立生,陈振宇,等.斑岩铜矿的源岩或源区探讨[J].岩石学报,2004,20(2):229-236.
    [115]李文明,任秉琛,杨兴科,等.东天山中酸性侵入岩浆作用及其地球动力学意义[J].西北地质, 2002,35(4): 41~63.
    [116]吴华.东天山地壳演化及内生金属成矿作用[D].北京:中国地质大学(北京),2006,62-65.
    [117]周济元,茅燕石,黄志勋,等.东天山古大陆边缘火山地质[M].成都:成都科技大学出版社,1994.
    [118]木合塔尔·扎日.东天山造山带康古尔-阿其克库都克碰撞缝合带结构构造及与铜、金多金属矿床关系[D],武汉,中国地质大学,2004,1-77.
    [119]贺军慧,夏明,张兴龙.新疆东天山觉洛塔格地区梧桐窝子岩组构造环境探讨[J].新疆地质, 2005, 23(1): 23-27.
    [120]李锦轶,王克卓,李文铅,等.东天山晚古生代以来大地构造与矿产勘查[J].新疆地质, 2002,20(4): 295-301.
    [121]王瑜,李锦轶,李文铅.东天山造山带右行剪切变形及构造演化的40Ar-39Ar年代学证据[J].新疆地质, 2002,20(4): 315-319.
    [122]顾连兴,张遵忠,吴昌志,等.关于东天山花岗岩与陆壳垂向增生的若干认识[J].岩石学报, 2006,22(5): 1103-1120.
    [123]李锦轶,宋彪,王克卓,等.东天山吐哈盆地南缘二叠纪幔源岩浆杂岩:中亚地区陆壳垂向生长的地质记录[J].地球学报, 2006, 27(05): 424-446.
    [124]肖文交,韩春明,袁超,等.新疆北部石炭纪—二叠纪独特的构造-成矿作用:对古亚洲洋构造域南部大地构造演化的制约[J].岩石学报, 2006,22(5):1062-1076.
    [125]王京彬,王玉往,何志军.东天山大地构造演化的成矿示踪[J].中国地质,2006,33(3):461-469.
    [126]李华芹,谢才富,常海亮,等.新疆北部有色贵金属矿床成矿作用年代学[M].北京:地质出版社,1998:1-264.
    [127] Sillitoe RH. , A plate tectonic model for the origin of porphyry copper deposits[J]. Econ. Geol.,1972,67: 184-197.
    [128]Masterman G, Berry R, Cooke D R and Walshe J L., Fluid chemistry, structural setting, and emplacement history of the Rosario Cu-Mo porphyry and Cu-Ag-Au epithermal veins, Collahuasi district,northern Chile[J]. Econ. Geol., 2005,100: 835-862.
    [129]Solomon M. ,Subduction, arc reversal, and the origin of porphyry copper-gold deposits in island arcs[J]. Geology, 1990,18: 630-633.
    [130]Sillitoe R H. ,Characteristics and controls of the largest porphyry copper-gold and epithermal gold deposits in the circum-Pacific region[J]. Australian Journal of Earth Sciences, 1997,44: 373-388.
    [131] Kerrich R, Goldfarb R, Groves D and Garwin S. ,The geodynamics of world-class gold deposits: Characteristics, space-time distributions, and origins[J]. Reviews in Economic Geology, 2000, 13: 501-551.
    [132]Richards J P. ,Tectono-magmatic precursors for porphyry Cu-(Mo-Au) deposit formation [J]. Econ. Geol., 2003,98: 1515-1533.
    [133]Cooke D R, Hollings P and Walshe J L. ,Giant Porphyry Deposits:Characteristics, distribution, and tectonic controls[J]. Econ. Geol., 2005,100: 801-818.
    [134]James D E and Sacks I S.,Cenozoic formation of the Central Andes: a geophysical perspective [A]. In: Skinner B J, ed. Geology and ore deposits of the Central Andes [M]. Spec. Pub. Soc. Econ.Geol. 1999,7: 1-25.
    [135]Misra K C.,Understanding mineral deposits[M]. Kluwer Academic Publishers. 2000,353-413.
    [136]Singer D A, Berger V I, Menzie W D and Berger B R.,Porphyry copper deposit density[J],Econ. Geol., 2005,100: 491-514.
    [137]Yogodzinski G M, Lees J M, Churikova T G, Dorendorf F, Woeerner G and Volynets O N. Geochemical evidence for the melting of subducting oceanic lithosphere at plate edges[J]. Nature, 2001,409: 500-504.
    [138]Grove T L and Kinzler R J. Petrogenesis of andesites[J]. Annual Reviews of Earth and Planetary Science, 1986,14: 417-454.
    [139]Hildreth W and Moorbath S. Crustal contributions to arc magmatism in the Andes of central Chile[J]. Contributions to Mineralogy and Petrology, 1988,98: 455-489.
    [140]Richards J P.,Cumulative factors in the generation of giant calc-alkaline porphyry Cu deposits [A]. In: Porter T M, ed. Super-porphyry copper & gold deposits: A global perspective[M]. PGC Publisihng, Adelaide. 2005:7-25.
    [141]吴兆宁,黄建华,玉素甫艾力,等.新疆东天山土屋铜矿床形成和保存的古地理环境[J].干旱区地理,2007,30(2):189-195.
    [142]李兆麟,杨荣勇,孙晓明,等.地质作用中的流体形成演化及成矿作用[J],地学前缘,1996, 3(3-4):237-243.
    [143]李智明,赵仁夫,霍瑞平,等.新疆土屋-延东铜矿田地质特征[J].地质与勘探,2006,42(6):1-4.
    [144]木合塔尔·买买提,桑树勋,木合塔尔·扎日.新疆阿尔泰造山带南缘金矿构造-流体-成矿作用[J].新疆地质,2009,27(1):38-42.
    [145]吴涂国,董连慧,薛春纪,等.新疆北部主要斑岩铜矿带[M].北京:地质出版社,2008:178-186.
    [146]朱裕生,王福同,龙宝林,等.土屋-延东斑岩型铜(钼)矿床多源信息找矿模型[J].矿床地质,2003,22(3):287-294.
    [147]赵鹏大,陈永清,刘吉平,等.地质异常成矿预测理论与实践[M].武汉:中国地质大学出版社,1999:7-10.
    [148]薛顺荣,肖克炎,丁建华.基于GIS技术下思茅—景洪地区铜多金属矿综合信息成矿预测[J].地质学报,2008, 82(5):648-654.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700