用户名: 密码: 验证码:
南黄海DLC70-3孔晚更新世以来的沉积记录与环境响应
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
南黄海是西太平洋典型的半封闭型陆架海,沉积环境十分复杂,黄海陆架在冰期旋回中反复出没,保存在沉积物中的有关过去全球变化的信息丰富,是研究东亚地区古环境演变和古陆—海相互作用的理想场所和关键地区。本研究以南黄海中部泥质区北缘的DLC70-3孔为研究对象,通过多种沉积与地球化学指标,包括粒度、元素地球化学、有机地球化学(生物标志物)等来讨论钻孔陆源沉积物质来源及其记录的古环境和古气候变化。
     通过AMS~(14)C以及光释光测年,结合浅地层声学剖面特征,建立了钻孔的年代地层,表明其为末次间冰期以来的沉积,包括MIS5、4、3期,上部大部分地层缺失。稀土元素(REE)化学性质稳定,常常用来作为物源示踪的指标,通过对DLC70-3孔REE分布模式以及分异参数、判别函数FD的研究,并结合微量元素指标分析,表明DLC70-3孔沉积物来源主要为黄河沉积物。
     地层中微体古生物特别是有孔虫和介形虫的分布规律是追索与黄海暖流伴生的冷涡沉积的重要依据。选取了冷水面颊虫(Buccella frigida)、具瘤先希望虫(Protelphidium tuberculatum)作为典型的冷水种指标来指示黄海冷水团的形成。DLC70-3孔底栖有孔虫冷水种Buccella frigida和Protelphidium tuberculatum丰度在20~26.4 m和55~71.2 m层位出现高值,而这两个层位对应的时期是MIS 5和MIS 3早期的温暖期,因此冷水种显示的低温环境不是古气候的反映,而是受古冷水团控制,指示了黄海暖流和古冷水团在MIS 5和MIS 3早期高海平面时期的存在。对CaCO_3(%)、MnO(%)和FeO/Fe_2O_3这些对氧化还原条件变化敏感的元素地球化学指标研究表明,黄海暖流及冷水团形成使得钻孔所在区域的氧化还原条件出现了较大的变化,氧化条件明显增强。
     XRF Core Scanner是近年来出现的地球化学分析仪器,具有速度快、分辨率高、对样品无损等优点,在黄海地区还没有过柱状样的应用,本研究通过对比XRF Core Scanner扫描数据与XRF测试数据,发现多数数据可靠可信,仅Si和Ba元素的误差较大。
     研究发现粒度的敏感粒级5.5~11μm(%)、Na/Fe、CIA和Rb/Zr比值受到化学风化作用所控制,可以做为夏季风的代用指标,这些指标表明在MIS3早期中国北部地区出现超强季风降雨过程,强度相当于MIS5.5期,与全球其他季风记录对比,发现此次季风降雨的增强具有全球性。
     对DLC70-3孔陆源生物标志物长链正构烷烃、正构醇的分析显示:长链正构烷烃和正构醇含量都具有间冰期高、冰期低的特征,在MIS3期达到最高值,推测含量变化的主要控制因素是季风降雨造成的河流输送量变化,次要因素是海平面的变化,最有利于烷烃输送的环境条件是低海平面时的潮湿时期。DLC70-3孔正构烷烃主要来源于黄河上中游黄土高原地区,烷烃参数能反映黄土高原地区的植被演化,绝大多数正构烷烃的碳数分布以C31为主峰,样品中的C_(31)/C_(27)基本都大于1,指示源区植被一直以草本植物为优势,与同钻孔中孢粉资料以及黄土高原地区的其他植被记录对应良好。
     DLC70-3孔生物标志物指示的浮游植物生产力以及TOC含量指示的海水表层生产力都具有明显的间冰期高、冰期低;暖期高、冷期低的特点。本区的浮游植物群落在晚更新世以来主要为硅藻和甲藻,尽管浮游植物生产力发生大的变化,但是群落结构相对稳定,没有明显变化。初级生产主要控制因素为营养盐的变化,河流输送的营养盐对本区海洋初级生产力的影响较大,陆源物质的输送是南黄海初级生产力变化的主要控制因素。此外,黄海暖流引起的上升流和垂直混合搅拌驱动的底层补充所输入的营养盐也对生产力的高值起到一定的增强作用。
The South Yellow Sea is a typical semi-enclosed epicontinental sea with complicated depositional history. It had submerged by the sea for many times in the history as a response to glacial cycles. It is an ideal place and key area for the research of paleoenvironmental evolution and paleo-land/sea interaction at the margin of East Asia, since there preserved plenty of information of past global changes in the sediments. This study took the DLC70-3 core from the northern central muddy area of South Yellow Sea as the research object, and the provenance of terrigenous materials and the records of paleoenvironmental and paleoclimatic changes were discussed based on the analysis of various depositional and geochemical indexes including granularity, element geochemistry, organic geochemistry (biomakers) etc.
     The core was dated with AMS~(14)C and OSL methods and a chronostratigraphy was then established with reference to the sub-bottom acoustic profile. Results show that the sequence was deposited since the last interglaciation, and consisted of MIS5, 4, 3, with most of upper part missing. REE is usually considered as provenance tracer for its stable chemical property. Based on the study of REE distribution mode, its differentiation parameters and discrimination function(FD), combined with microelements index analysis, a conclusion was drew that the sediments of DLC70-3 core were mainly from the Yellow River.
     The distribution pattern of micropaleobios especially foraminifer and ostracode is one of important proofs to trace the cold eddy associated with the Yellow Sea Warm Current. Buccella frigida and Protelphidium tuberculatum, as typical cold water species, were used as ndicators of the Cold Water Mass. The high abundances of the two species appeared in the layer of 20~26.4m and 55~71.2 m, responding to the warm periods of MIS5 and early MIS3 respectively. Therefore, the low temperature environment indicated by the cold water species was not caused by the paleoclimate at the time, but a response to the paleo-Cold Water Mass, suggesting the co-existence of the Yellow Sea Warm Current and paleo-Cold Water Mass during the high sea level period of MIS5 and early MIS3. Research on the element geochemistry indexes sensitive to the changes in oxidation-reduction condition , such as CaCO_3(%)、MnO(%) and FeO/Fe_2O_3 , indicated that the formation of Yellow Sea Warm Current and Cold Water Mass also changed the oxidation -reduction condition of the study area and the effect of oxidation was obviously increased.
     XRF Core Scanner, as an geochemical analysis instrument appeared in recent years, has many advantages such as quick testing, high resolution, nondestructive testing etc.. It has never been applied to columnar samples in Yellow Sea areas. The comparison between XRF Core Scanner continuous scanning data and XRF testing data in the this study provided the evidence that most scanning data are reliable. Relatively large errors only occur in two elements, namely Si and Ba.
     The sensitive grain size of 5.5~11μm(%), Na/Fe, CIA and Rb/Zr were controlled by chemical weathering, and could be considered as the proxies of summer monsoon, suggesting the appearance of a heavy monsoon and rainfall process in the northern part of China during early MIS3, which was comparable with that in MIS5.5, and with the monsoon records from other parts around the world. It is believed as a global event.
     The analysis of long chain n-Alkanes and n-AlcohoIs reveals that both of the contents of n-Alkanes and n-AlcohoIs were high in interglacial and low in glacial stages. They reached the maximum values in MIS3. It is supposed that the content variation was primarily controlled by the change in fluvial input caused by monsoon rainfall, with sea level change as the secondary factor. Most of the alkane was transpored in the wet period during low sea level. Long chain n-Alkanes of DLC70-3 core were mainly from the Loess Plateau at the middle and upper reaches of the Yellow River. The alkane index(AI) may reflect the plant evolution of the Loess Plateau. In this study, C_(31) is the main peak of most of the carbon distribution of the long chain n-Alkanes and C_(31)/C_(27) values of the samples are all higher than 1, indicating that herb vegetation dominated in the source area, which coincide with the pollen data in the same core and other vegetation records of the Loess Plateau.
     The phytoplankton productivity induced from biomarkers and the seawater surface productivity indicated by TOC content in DLC70-3 core have the same characteristics: high in interglaciations and low in glaciations; high in warm periods and low in cold periods. The phytoplankton in the study area is mainly diatoms and dinoflagellates since the late Pleistocene. Although phytoplankton productivity changed a lot, the community structure remained rather stable, and no significant changes haves been observed. The main controlling factor of primary productivity was the nutrients variation. The nutrients transported by rivers influenced greatly the marine primary productivity of the study area. The input of terrigenous materials is the main controlling factor of the primary productivity in the South Yellow Sea. In addition, the bottom nutrients from upwelling and vertical mixing caused by Yellow Sea Warm Current also played a certain role in enhancing the productivity.
引文
[1]Milliman J, Syvitski J. Geomorphic/tectonic control of sediment discharge to the ocean: the importance of small mountainous rivers[J]. The Journal of Geology, 1992,100(5): 525-544.
    [2]秦蕴珊.黄海地质[M].海洋出版社, 1989.
    [3]秦蕴珊.渤海地质[M].北京:科学出版社. 1985.
    [4]秦蕴珊.东海地质[M].科学出版社, 1987.
    [5]杨子赓.南黄海陆架晚更新世以来的沉积及环境[J].海洋地质与第四纪地质, 1985,5(4): 1-9.
    [6]杨子赓. Olduvai亚时以来南黄海沉积层序及古地理变迁[J].地质学报, 1993,67(004): 357-366.
    [7]杨子赓.中国与邻区第四纪地层对比[J].海洋地质与第四纪地质, 1993,13(003): 1-14.
    [8]刘敏厚.黄海晚第四纪沉积[M].北京:海洋出版社, 1987.
    [9]郑光膺.南黄海QC_2孔第四纪地层划分[J].海洋地质与第四纪地质, 1988,4.
    [10]郑光膺.南黄海第四纪层型地层对比[M].科学出版社, 1989.
    [11]郑光膺.论黄海地区第四系划分的若干标志[J].海洋地质与第四纪地质, 1990,10(001): 61-69.
    [12]郑光膺.黄海第四纪地质[M].科学出版社, 1991.
    [13]许东禹.中国近海地质[M].地质出版社, 1997.
    [14]Liu J, Milliman J, Gao S. The Shandong mud wedge and post-glacial sediment accumulation in the Yellow Sea[J]. Geo-Marine Letters, 2002,21(4): 212-218.
    [15]Liu J, Milliman J, Gao S, et al. Holocene development of the Yellow River's subaqueous delta, North Yellow Sea[J]. Marine Geology, 2004,209(1-4): 45-67.
    [16]Yang Z, Liu J. A unique Yellow River-derived distal subaqueous delta in the Yellow Sea[J]. Marine Geology, 2007,240(1-4): 169-176.
    [17]Liu J, Saito Y, Wang H, et al. Sedimentary evolution of the Holocene subaqueous clinoform off the Shandong Peninsula in the Yellow Sea[J]. Marine Geology, 2007,236(3-4): 165-187.
    [18]Liu J, Saito Y, Kong X, et al. Geochemical characteristics of sediment as indicators of post-glacial environmental changes off the Shandong Peninsula in the Yellow Sea[J]. Continental Shelf Research, 2009,29(7): 846-855.
    [19]Liu J, Saito Y, Kong X, et al. Delta development and channel incision during marine isotope stages 3 and 2 in the western South Yellow Sea[J]. Marine Geology, 2010,278(1-4):54-76.
    [20]Liu K, Chao S, Lee H, et al. Seasonal variation of primary productivity in the East China Sea: A numerical study based on coupled physical-biogeochemical model[J]. Deep Sea Research Part II: Topical Studies in Oceanography, 2010.57(19-20):1762-1782.
    [21]王昆山.黄海,东海沉积物颜色反射率分布及其地质意义[D]:中国科学院研究生院(海洋研究所),2003.
    [22]臧家业,汤毓祥,邹娥梅.黄海环流的分析[J].科学通报,2001,46(增刊)(0S1):7-15.
    [23]李凤岐,苏育篙.海洋水团分析[M].青岛海洋大学出版社, 2000.
    [24]金翔龙.东海海洋地质[M].海洋出版社,1992.
    [25]Nitani,H.Beginning of the Kuroshio,H.Stommel and K.Yoshida.Kuroshio,Its Physical Aspects,Tokyo:Tokyo University Press,1972:129-163.
    [26]Guan B.Patterns and structures of the currents in Bohai,Huanghai and East China Seas[J].Oceanology of China Seas,1994.1,17–26.
    [27]Beardsley R, Limeburner R, Yu H, et al. Discharge of the Changjiang (Yangtze River) into the East China Sea[J]. Continental Shelf Research, 1985,4(1-2): 57-76.
    [28]Teague W, Jacobs G. Current observations on the development of the Yellow Sea Warm Current[J]. Journal of Geophysical Research, 2000,105(C2): 3401-3411.
    [29]Lie H, Cho C, Lee J, et al. Does the Yellow Sea Warm Current really exist as a persistent mean flow?[J].Journal of Geophysical Research,2001,106(C10):22199-22210.
    [30]石学法,申顺喜,Y Hi-il,等.南黄海现代沉积环境及动力沉积体系[J].科学通报, 2001,46(0S1):1-6.
    [31]Milliman J, Yun-Shan Q, Mei-e R, et al. Man's influence on the erosion and transport of sediment by Asian rivers: the Yellow River (Huanghe) example[J]. The Journal of Geology, 1987,95(6): 751-762.
    [32]Yang S, Jung H, Lim D, et al. A review on the provenance discrimination of sediments in the Yellow Sea[J]. Earth-Science Reviews, 2003,63(1-2): 93-120.
    [33]Mask A, O'Brien J, Preller R. Wind-driven effects on the Yellow Sea warm current[J]. Journal of Geophysical Research, 1998,103(C13): 30,713-30,729.
    [34]Xia C, Qiao F, Yang Y, et al. Three-dimensional structure of the summertime circulation in the Yellow Sea from a wave-tide-circulation coupled model[J]. Journal of Geophysical Research, 2006,111(C11): C11S03.
    [35]Zhang S, Wang Q, Li Y,et al. Observation of the seasonal evolution of the Yellow Sea Cold Water Mass in 1996-1998[J]. Continental Shelf Research, 2008,28(3): 442-457.
    [36]傅明珠,王宗灵,孙萍,等.南黄海浮游植物初级生产力粒级结构与碳流途径分析[J].海洋学报, 2009,(006): 100-109.
    [37]宋书群.黄,东海浮游植物功能群研究[D]:中国科学院研究生院(海洋研究所), 2010.
    [38]Wintle A. Luminescence dating: laboratory procedures and protocols[J]. Radiation Measurements, 1997,27(5-6): 769-817.
    [39]葛淑兰,石学法,朱日祥,等.南黄海EY02-2孔磁性地层及古环境意义[J].科学通报, 2005,50(022): 2531-2540.
    [40]蓝先洪,张宪军,王红霞,等.南黄海NT2孔沉积地球化学及其物源[J].海洋地质与第四纪地质, 2008,28(001): 51-60.
    [41]蓝先洪,张宪军,赵广涛,等.南黄海NT1孔沉积物稀土元素组成与物源判别[J].地球化学, 2009,38(002): 123-132.
    [42]Chough S, Lee H, Chun S, et al. Depositional processes of late Quaternary sediments in the Yellow Sea: a review[J]. Geosciences Journal, 2004,8(2): 211-264.
    [43]Fairbanks RG, Mortlock RA, Chiu TC, et al. Radiocarbon calibration curve spanning 0 to 50,000 years BP based on paired 230Th/234U/238U and 14C dates on pristine corals[J]. Quaternary Science Reviews, 2005,24(16-17): 1781-1796.
    [44]Reimer PJ, Baillie MGL, Bard E, et al. IntCal09 and Marine09 radiocarbon age calibration curves, 0-50,000 yeats cal BP[J]. Radiocarbon,2009,51(4):1111-1150..
    [45]Southon J, Kashgarian M, Fontugne M, et al. Marine reservoir corrections for the Indian Ocean and Southeast Asia= Rservoir de corrections marin pour l' Ocean Indien et l'Asie du Sud-est[J]. Radiocarbon, 2002,44(1): 167-180.
    [46]Kong G S,Lee, C W. Marine reservoir corrections (ΔR) for southern coastal waters of Korea[J]. The Sea, Journal of the Korean Society of Oceanography, 2005,10(2): 124-128.
    [47]Cao L, Fairbanks RG, Mortlock RA, et al. Radiocarbon reservoir age of high latitude North Atlantic surface water during the last deglacial[J]. Quaternary Science Reviews, 2007,26(5-6): 732-742.
    [48] Sarnthein M, Grootes P M, Kennettt J P et al, 2007. 14C reservoir ages show deglacial changes in ocean currents and carbon cycle. In: Ocean Circulation: Mechanisms and Impacts - Past and Future Changes of the Meridional Overturning. Schmittner A, Chiang J C H and Hemming S (eds.), AGU Geophysical Monograph 173, pp 175-196.
    [49]Beck JW, Richards DA, Edwards RL, et al. Extremely large variations of atmospheric 14C concentration during the last glacial period[J]. Science, 2001,292(5526): 2453.
    [50]Hughen K, Lehman S, Southon J, et al. 14C activity and global carbon cycle changes over the past 50,000years[J]. Science, 2004,303(5655): 202.
    [51]Muscheler R, Beer J, Kubik PW, et al. Geomagnetic field intensity during the last 60,000 years based on 10Be and 36Cl from the Summit ice cores and 14C[J]. Quaternary Science Reviews, 2005,24(16-17): 1849-1860.
    [52]Chiu TC, Fairbanks RG, Cao L, et al. Analysis of the atmospheric 14C record spanning the past 50,000 years derived from high-precision 230Th/234U/238U, 231Pa/235U and 14C dates on fossil corals[J]. Quaternary Science Reviews, 2007,26(1-2): 18-36.
    [53]Stokes S, Thomas DSG, Washington R. Multiple episodes of aridity in southern Africa since the last interglacial period[J]. Nature, 1997,388(6638): 154-157.
    [54]Fuchs M, Lang A, Wagner G. The history of Holocene soil erosion in the Phlious Basin, NE Peloponnese, Greece, based on optical dating[J]. The Holocene, 2004,14(3): 334.
    [55]Barreto AMF, Bezerra FHR, Suguio K, et al. Late Pleistocene marine terrace deposits in northeastern Brazil: sea-level change and tectonic implications[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2002,179(1-2): 57-69.
    [56]Van Heteren S, Huntley DJ, Van De Plassche O, et al. Optical dating of dune sand for the study of sea-level change[J]. Geology, 2000,28(5): 411.
    [57]Stokes S, Ingram S, Aitken M, et al. Alternative chronologies for Late Quaternary (Last Interglacial-Holocene) deep sea sediments via optical dating of silt-sized quartz[J]. Quaternary Science Reviews, 2003,22(8-9): 925-941.
    [58]Olley J, De Deckker P, Roberts R, et al. Optical dating of deep-sea sediments using single grains of quartz: a comparison with radiocarbon[J]. Sedimentary Geology, 2004,169(3-4): 175-189.
    [59]鹿化煜, Stevens T,弋双文,等.高密度光释光测年揭示的距今约15-10ka黄土高原侵蚀事件[J].科学通报, 2006,51(023): 2767-2772.
    [60]赖忠平.基于光释光测年的中国黄土中氧同位素阶段2/1和3/2界限位置及年代的确定[J].第四纪研究, 2008,28(005): 883-891.
    [61]周亚利,鹿化煜, A. Mason J, et al.浑善达克沙地的光释光年代序列与全新世气候变化[J].中国科学: D辑, 2008,38(004): 452-462.
    [62]范育新,陈发虎,范天来,等.乌兰布和北部地区沙漠景观形成的沉积学和光释光年代学证据[J].中国科学: D辑, 2010,40(007): 903-910.
    [63]汪品先,阎秋宝,卞云华.南黄海西北部底质中有孔虫,介形虫分布规律及其地质意义[J].微体古生物论文集,北京:海洋出版社, 1980: 61-83.
    [64]刘健,王红,李绍全,等.南黄海北部泥质沉积区冰后期海侵沉积记录[J].海洋地质与第四纪地质, 2004,24(003): 1-10.
    [65]李铁刚,常凤鸣,于心科. Younger Dryas事件与北黄海泥炭层的形成[J].地学前缘, 2010,(001): 322-329.
    [66]业渝光,高钧成.南黄海QC2孔的ESR年代学[J].海洋地质与第四纪地质, 1996,16(001): 95-102.
    [67]杨子赓,林和茂.对末次间冰期南黄海古冷水团沉积的探讨[J].海洋地质与第四纪地质, 1998,18(001): 47-58.
    [68]Lambeck K, Esat TM, Potter EK. Links between climate and sea levels for the past three million years[J]. Nature, 2002,419(6903): 199-206.
    [69]Chappell J. Sea level changes forced ice breakouts in the Last Glacial cycle: new results from coral terraces[J]. Quaternary Science Reviews, 2002,21(10): 1229-1240.
    [70]Siddall M, Rohling EJ, Almogi-Labin A, et al. Sea-level fluctuations during the last glacial cycle[J]. Nature, 2003,423(6942): 853-858.
    [71]Chappell J, Omura A, Esat T, et al. Reconciliaion of late Quaternary sea levels derived from coral terraces at Huon Peninsula with deep sea oxygen isotope records[J]. Earth and Planetary Science Letters, 1996,141(1-4): 227-236.
    [72]McLennan S. Rare earth elements in sedimentary rocks; influence of provenance and sedimentary processes[J]. Reviews in Mineralogy and Geochemistry, 1989,21(1): 169.
    [73]McLennan S, Taylor S. Sedimentary rocks and crustal evolution: tectonic setting and secular trends[J]. The Journal of Geology, 1991,99(1): 1-21.
    [74]Murray RW. Chemical criteria to identify the depositional environment of chert: general principles and applications[J]. Sedimentary Geology, 1994,90(3-4): 213-232.
    [75]Murray RW, Buchholtzten Brink MR, Brumsack HJ, et al. Rare earth elements in Japan Sea sediments and diagenetic behavior of Ce/Ce*: Results from ODP Leg 127[J]. Geochimica et Cosmochimica Acta, 1991,55(9): 2453-2466.
    [76]Cho YG, Lee CB, Choi MS. Geochemistry of surface sediments off the southern and western coasts of Korea[J]. Marine Geology, 1999,159(1-4): 111-129.
    [77]Kim G, Yang HS, Kodama Y. Distributions of transition elements in the surface sediments of the Yellow Sea[J]. Continental Shelf Research, 1998,18(12): 1531-1542.
    [78]Kim G, Yang HS, Church TM. Geochemistry of alkaline earth elements (Mg, Ca, Sr, Ba) in the surface sediments of the Yellow Sea[J]. Chemical geology, 1999,153(1-4): 1-10.
    [79]Yang SY, Jung HS, Lim DI, et al. A review on the provenance discrimination of sediments in the Yellow Sea[J]. Earth Science Reviews, 2003,63(1-2): 93-120.
    [80]Yang S, Youn JS. Geochemical compositions and provenance discrimination of the central south Yellow Sea sediments[J]. Marine Geology, 2007,243(1-4): 229-241.
    [81]Xu Z, Lim D, Choi J, et al. Rare earth elements in bottom sediments of major rivers around the Yellow Sea: implications for sediment provenance[J]. Geo-Marine Letters, 2009,29(5): 291-300.
    [82]蒋富清,周晓静,李安春,等. EuN-ΣREEs图解定量区分长江和黄河沉积物[J].中国科学D辑, 2008,38(11): 1460-1468.
    [83]Park YA, Khim BK. Origin and dispersal of recent clay minerals in the Yellow Sea[J]. Marine Geology, 1992,104(1-4): 205-213.
    [84]Park SC, Lee HH, Han HS, et al. Evolution of late Quaternary mud deposits and recent sediment budget in the southeastern Yellow Sea[J]. Marine Geology, 2000,170(3-4): 271-288.
    [85]Yang ZS, Liu JP. A unique Yellow River-derived distal subaqueous delta in the Yellow Sea[J]. Marine Geology, 2007,240(1-4): 169-176.
    [86]Yiyang Z, Zhaoyang Q, Fengye L, et al. On the source and genesis of the mud in the central area of the South Yellow Sea[J]. Chinese Journal of Oceanology and Limnology, 1990,8(1): 66-73.
    [87]Taylor SR, McLennan SM. The continental crust: its composition and evolution[J]. Blackwell Scientific Publications, Oxford, 1985. 117-142.
    [88]Nesbitt HW, Markovics G. Chemical processes affecting alkalis and alkaline earths during continental weathering[J]. Geochimica et Cosmochimica Acta, 1980,44(11): 1659-1666.
    [89]Norman MD, De Deckker P. Trace metals in lacustrine and marine sediments: a case study from the Gulf of Carpentaria, northern Australia[J]. Chemical Geology, 1990,82: 299-318.
    [90]韦刚健,陈木宏. NS93—5钻孔沉积物高分辨率过渡金属元素变化及其古海洋记录[J].地球化学, 2001,30(005): 450-458.
    [91]Rosenthal Y, Lam P, Boyle EA, et al. Authigenic cadmium enrichments in suboxic sediments: Precipitation and postdepositional mobility[J]. Earth and Planetary Science Letters, 1995,132(1-4): 99-111.
    [92]Dean WE, Gardner JV, Piper DZ. Inorganic geochemical indicators of glacial-interglacial changes in productivity and anoxia on the California continental margin[J]. Geochimica et Cosmochimica Acta, 1997,61(21): 4507-4518.
    [93]Roy P, Smykatz-Kloss W. REE geochemistry of the recent playa sediments from the Thar desert, India: An implication to playa sediment provenance[J]. Chemie der Erde-Geochemistry, 2007,67(1): 55-68.
    [94]杨競红,王颖,张振克,等.宝应钻孔沉积物的微量元素地球化学特征及沉积环境探讨[J].第四纪研究, 2007,27(005): 735-749.
    [95]赵一阳,鄢明才.中国浅海沉积物地球化学[M].科学出版社, 1994.
    [96]肖尚斌,李安春,蒋富清,等.近2ka来东海内陆架泥质沉积物地球化学特征[J].地球化学, 2005,34(006): 595-604.
    [97]刘建国,李安春,陈木宏,等.全新世渤海泥质沉积物地球化学特征[J].地球化学, 2007,36(006): 559-568.
    [98]杜德文,石学法,孟宪伟,等.黄海沉积物地球化学的粒度效应[J].海洋科学进展, 2003,21(001): 78-82.
    [99]徐方建,李安春,万世明,等.东海内陆架陆源物质矿物组成对粒度和地球化学成分的制约[J].地球科学:中国地质大学学报, 2009: 613-622.
    [100]万世明.近2千万年以来东亚季风演化的南海沉积矿物学记录[D]:中国科学院研究生院(海洋研究所), 2006.
    [101]杨守业,李从先, Lee CB,等.黄海周边河流的稀土元素地球化学及沉积物物源示踪[J].科学通报, 2003,48(11): 1233-1236.
    [102] Condie KC. Another look at rare earth elements in shales[J]. Geochimica et Cosmochimica Acta, 1991,55(9): 2527-2531.
    [103] Holser WT. Evaluation of the application of rare-earth elements to paleoceanography[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 1997,132(1-4): 309-323.
    [104] Nesbitt HW. Mobility and fractionation of rare earth elements during weathering of a granodiorite[J]. 1979.
    [105] Nesbitt H, MacRae N, Kronberg B. Amazon deep-sea fan muds: light REE enriched products of extreme chemical weathering[J]. Earth and Planetary Science Letters, 1990,100(1-3): 118-123.
    [106] Yang SY, Jung HS, Choi MS, et al. The rare earth element compositions of the Changjiang (Yangtze) and Huanghe (Yellow) river sediments[J]. Earth and Planetary Science Letters, 2002,201(2): 407-419.
    [107] Zhu W, Kennedy M, De Leer E, et al. Distribution and modelling of rare earth elements in Chinese river sediments[J]. Science of the Total Environment, 1997,204(3): 233-243.
    [108]李双林,李绍全.黄海YA01孔沉积物稀土元素组成与源区示踪[J].海洋地质与第四纪地质, 2001,21(003): 51-56.
    [109] Yang SY, Lim DI, Jung HS, et al. Geochemical composition and provenance discrimination of coastal sediments around Cheju Island in the southeastern Yellow Sea[J]. Marine Geology, 2004,206(1-4): 41-53.
    [110] Gallet S, Jahn B, Torii M. Geochemical characterization of the Luochuan loess-paleosol sequence, China, and paleoclimatic implications[J]. Chemical Geology, 1996,133(1-4): 67-88.
    [111]杨守业,李从先,张家强.苏北滨海平原冰后期古地理演化与沉积物物源研究[J].古地理学报, 2000,2(002): 65-72.
    [112]杨守业, Y S.长江口冰后期沉积物的元素组成特征[J].同济大学学报:自然科学版, 2000,28(005): 532-536.
    [113]杨守业,李从先, Soo J, et al.黄河沉积物中REE制约与示踪意义再认识[J].自然科学进展, 2003,13(004): 365-371.
    [114]杨守业,李从先, Soo J,等.中韩河流沉积物微量元素地球化学研究[J].海洋地质与第四纪地质, 2003,23(002): 19-24.
    [115]黄成敏,王成善.风化成土过程中稀土元素地球化学特征[J].稀土, 2002,23(005): 46-49.
    [116] Elderfield H, Greaves MJ. The rare earth elements in seawater[J]. Nature, 1982,296: 214-219.
    [117]付淑清,朱照宇,欧阳婷萍,等.南海南部陆坡晚第四纪沉积物稀土元素及环境意义[J].热带地理,2010,(001): 24-29.
    [118]张虎才,张文翔,常凤琴,等.稀土元素在湖相沉积中的地球化学分异——以柴达木盆地贝壳堤剖面为例[J].中国科学: D辑, 2009: 1160-1168.
    [119] McLennan SM. Weathering and global denudation[J]. The Journal of Geology, 1993,101(2): 295-303.
    [120] Fralick P, Kronberg B. Geochemical discrimination of clastic sedimentary rock sources[J]. Sedimentary Geology, 1997,113(1-2): 111-124.
    [121] Johnsson M. The system controlling the composition of clastic sediments[J]. Special papers-geological society of America, 1993: 1-1.
    [122] Zhang C, Wang L, Li G, et al. Grain size effect on multi-element concentrations in sediments from the intertidal flats of Bohai Bay, China[J]. Applied Geochemistry, 2002,17(1): 59-68.
    [123]杨守业,韦刚健,夏小平,等.长江口晚新生代沉积物的物源研究: REE和Nd同位素制约[J].第四纪研究, 2007,27(003): 339-346.
    [124] Goldstein SJ, Jacobsen SB. Rare earth elements in river waters[J]. Earth and Planetary Science Letters, 1988,89(1): 35-47.
    [125] Uda M. The results of simultaneous oceanographical investigations in the Japan Sea and its adjacent waters in May and June, 1932[J]. J Imp Fish Exp Sta, 1934,5: 57-90.
    [126] Guan B. Patterns and structures of the currents in Bohai, Huanghai and East China Seas[J]. Oceanology of China Seas, 1994,1: 17-26.
    [127] Hsueh Y, Pang IC. Coastally trapped long waves in the Yellow Sea[J]. Journal of Physical Oceanography, 1989,19(5): 612-625.
    [128] Lie HJ. Summertime hydrographic features in the southeastern Hwanghae[J]. Progress in Oceanography, 1986,17(3-4): 229-242.
    [129] Park YH. Water characteristics and movements of the Yellow Sea Warm Current in summer[J]. Progress in Oceanography, 1986,17(3-4): 243-254.
    [130]马超.黑潮对东中国海主要流系的影响[D]:中国海洋大学, 2009.
    [131]于非,张志欣,刁新源,等.黄海冷水团演变过程及其与邻近水团关系的分析[J].海洋学报, 2006,28(005): 26-34.
    [132]刘健, Chang J.末次冰消期以来黄海海平面变化与黄海暖流的形成[J].海洋地质与第四纪地质, 1999,19(001): 13-24.
    [133]李铁刚,江波,孙荣涛,等.末次冰消期以来东黄海暖流系统的演化[J].第四纪研究, 2007,27(006): 945-954.
    [134]李铁刚,李绍全. YSDP102钻孔有孔虫动物群与南黄海东南部古水文重建[J].海洋与湖沼, 2000,31(006): 588-595.
    [135]王利波,杨作升,赵晓辉,等.南黄海中部泥质区YE-2孔8.4 kaBP来的沉积特征[J].海洋地质与第四纪地质, 2009,(005): 1-11.
    [136]申顺喜,陈丽蓉,高良,等.南黄海冷涡沉积和通道沉积的发现[J].海洋与湖沼, 1993,24(006): 563-570.
    [137] Ma J, Qiao F, Xia C, et al. Effects of the Yellow Sea Warm Current on the winter temperature distribution in a numerical model[J]. Journal of Geophysical Research, 2006,111(C11): C11S04.
    [138]王荣,高尚武,王克,等.冬季黄海暖流的浮游动物指示[J].水产学报, 2003,27(B09): 39-48.
    [139]王红霞.南黄海晚更新世以来环境演变的矿物—地球化学记录[D]:中国海洋大学, 2008.
    [140]汪品先,阎秋宝,卞云华.黄海有孔虫,介形虫组合的初步研究[A][J].海洋微体古生物论文集,北京:海洋出版社, 1984: 84-100.
    [141]汪品先,章纪军,赵泉鸿.东海底质中的有孔虫和介形虫[M].海洋出版社,北京, 1988.
    [142]李铁刚,孙荣涛,张德玉,等.晚第四纪对马暖流的演化和变动:浮游有孔虫和氧碳同位素证据[J].中国科学: D辑, 2007,37(005): 660-669.
    [143] Lambeck K, Chappell J. Sea level change through the last glacial cycle[J]. Science, 2001,292(5517): 679.
    [144] Chappell J, Shackleton N. Oxygen isotopes and sea level[J]. Nature,1986,324(13):137-140.
    [145]王靖泰,汪品先.中国东部晚更新世以来海面升降与气候变化的关系[J].地理学报, 1980,35(4): 300-310.
    [146]吴标云,李从先.长江三角洲第四纪地质[J].北京,海洋出版杜, 1987.
    [147] Lin J, Zhang S, Qiu J, et al. Quaternary marine transgressions and paleoclimate in the Yangtze River delta region[J]. Quaternary Research, 1989,32(3): 296-306.
    [148] Wang Y, Cheng H, Edwards RL, et al. Millennial-and orbital-scale changes in the East Asian monsoon over the past 224,000 years[J]. Nature, 2008,451(7182): 1090-1093.
    [149]施雅风,刘晓东.距今40—30ka青藏高原特强夏季风事件及其与岁差周期关系[J].科学通报, 1999,44(014): 1475-1480.
    [150]施雅风,贾玉连. 40—30kaBP青藏高原及邻区高温大降水事件的特征,影响及原因探讨[J].湖泊科学, 2002,14(001): 1-11.
    [151] Weldeab S, Lea DW, Schneider RR, et al. 155,000 years of West African monsoon and ocean thermal evolution[J]. Science, 2007,316(5829): 1303.
    [152] Bar-Matthews M, Ayalon A, Kaufman A. Timing and hydrological conditions of Sapropel events in the Eastern Mediterranean, as evident from speleothems, Soreq cave, Israel[J]. Chemical Geology, 2000,169(1-2): 145-156.
    [153] Bar-Matthews M, Ayalon A, Gilmour M, et al. Sea-land oxygen isotopic relationships from planktonic foraminifera and speleothems in the Eastern Mediterranean region and their implication for paleorainfall during interglacial intervals[J]. Geochimica et Cosmochimica Acta, 2003,67(17): 3181-3199.
    [154] Linsley BK. Oxygen-isotope record of sea level and climate variations in the Sulu Sea over the past 150,000 years[J]. Nature,1996,380:234-237.
    [155] Cabioch G, Ayliffe LK. Raised coral terraces at Malakula, Vanuatu, Southwest Pacific, indicate high sea level during marine isotope stage 3[J]. Quaternary Research, 2001,56(3): 357-365.
    [156] Rodriguez AB, Anderson JB, Banfield LA, et al. Identification of a-15 m Wisconsin shoreline on the Texas inner continental shelf[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2000,158(1-2): 25-43.
    [157] Mauz B, Hassler U. Luminescence chronology of Late Pleistocene raised beaches in southern Italy: new data of relative sea-level changes[J]. Marine Geology, 2000,170(1-2): 187-203.
    [158] Cann JH, Belperio AP, Gostin VA, et al. Sea-level history, 45,000 to 30,000 yr BP, inferred from Benthic foraminifera, Gulf St. Vincent, South Australia[J]. Quaternary Research, 1988,29(2): 153-175.
    [159] Cann JH, Belperio AP, Murray-Wallace CV. Late Quaternary paleosealevels and paleoenvironments inferred from foraminifera, northern Spencer Gulf, South Australia[J]. The Journal of Foraminiferal Research, 2000,30(1): 29.
    [160] Hanebuth TJJ, Saito Y, Tanabe S, et al. Sea levels during late marine isotope stage 3 (or older?) reported from the Red River delta (northern Vietnam) and adjacent regions[J]. Quaternary International, 2006,145: 119-134.
    [161] Liu J, Saito Y, Wang H, et al. Stratigraphic development during the Late Pleistocene and Holocene offshore of the Yellow River delta, Bohai Sea[J]. Journal of Asian Earth Sciences, 2009,36(4-5): 318-331.
    [162]杨达源,陈可锋,舒肖明.深海氧同位素第3阶段晚期长江三角洲古环境初步研究[J].第四纪研究, 2004,24(005): 525-530.
    [163] Zhao B, Wang Z, Chen J, et al. Marine sediment records and relative sea level change during late Pleistocene in the Changjiang delta area and adjacent continental shelf[J]. Quaternary International, 2008,186(1): 164-172.
    [164] Liu JP, Milliman JD, Gao S, et al. Holocene development of the Yellow River's subaqueous delta, North Yellow Sea[J]. Marine Geology, 2004,209(1-4): 45-67.
    [165] Dansgaard W, White J, Johnsen S. The abrupt termination of the Younger Dryas climate event[J]. 1989.
    [166] Kim JM, Kucera M. Benthic foraminifer record of environmental changes in the Yellow Sea (Hwanghae) during the last 15,000 years[J]. Quaternary Science Reviews, 2000,19(11): 1067-1085.
    [167]石学法,陈春峰,刘焱光,等.南黄海中部沉积物粒径趋势分析及搬运作用[J].科学通报, 2002,47(006): 452-456.
    [168]郭炳火,李兴宰.夏季对马暖流区黑潮水与陆架水的相互作用——兼论对马暖流的起源[J].海洋学报, 1998,20(005): 1-12.
    [169]宋金明,李延. Eh和海洋沉积物氧化还原环境的关系[J].海洋通报, 1990,9(004): 33-39.
    [170]王保栋,刘峰.南黄海溶解氧的平面分布及其季节变化[J].海洋学报, 1999,21(004): 47-53.
    [171]刘健,朱日样,李绍全,等.南黄海东南部冰后期泥质沉积物中磁性矿物的成岩变化及其对环境变化的响应[J].中国科学: D辑, 2003,33(006): 583-592.
    [172] Landing WM, Bruland KW. The contrasting biogeochemistry of iron and manganese in the Pacific Ocean[J]. Geochimica et Cosmochimica Acta, 1987,51(1): 29-43.
    [173] Mangini A, Eisenhauer A, Walter P. Response of manganese in the ocean to the climatic cycles in the Quaternary[J]. Paleoceanography, 1990,5(5): 811-821.
    [174]李学刚,吕晓霞.渤海沉积物中的―活性铁‖与其氧化还原环境的关系[J].海洋环境科学, 2003,22(001): 20-24.
    [175] Calvert S, Pedersen T. Geochemistry of recent oxic and anoxic marine sediments: Implications for the geological record[J]. Marine Geology, 1993,113(1-2): 67-88.
    [176] Zhang Q, Hartmann H, Becker S, et al. Paleoclimate of the Yangtze River's Lower Reaches for the Past 14,000 Years[J]. Asian Journal of Water, Environment and Pollution, 2005,2(2): 31-38.
    [177]金秉福,林振宏.沉积矿物学在陆缘海环境分析中的应用[J].海洋地质与第四纪地质, 2002,22(003): 113-118.
    [178]郭育廷,何惠真.台湾海峡西部海域表层沉积物氧化—还原环境探讨[J].海洋与湖沼, 1992,23(004): 396-406.
    [179] Bauluz B, Mayayo MJ, Fernandez-Nieto C, et al. Geochemistry of Precambrian and Paleozoic siliciclastic rocks from the Iberian Range (NE Spain): implications for source-area weathering, sorting, provenance, and tectonic setting[J]. Chemical Geology, 2000,168(1-2): 135-150.
    [180] Nesbitt H, Young G. Early Proterozoic climates and plate motions inferred from major element chemistry of lutites[J]. Nature, 1982,299(5885): 715-717.
    [181]任美锷,史运良.黄河输沙及其对渤海,黄海沉积作用的影响[J].地理科学, 1986,6(1):1-12.
    [182] Guo Z, Liu T, Fedoroff N, et al. Climate extremes in loess of China coupled with the strength of deep-water formation in the North Atlantic[J]. Global and Planetary Change, 1998,18(3-4): 113-128.
    [183] Porter SC, Zhisheng A. Correlation between climate events in the North Atlantic and China during the last glaciation[J]. Nature,1995,375:305-308.
    [184] Ding Z, Yu Z, Yang S, et al. Coeval changes in grain size and sedimentation rate of eolian loess, the Chinese Loess Plateau[J]. Geophysical Research Letters, 2001,28(10): 2097-2100.
    [185] Sun Y, Lu H, An Z. Grain size of loess, palaeosol and Red Clay deposits on the Chinese Loess Plateau: Significance for understanding pedogenic alteration and palaeomonsoon evolution[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2006,241(1): 129-138.
    [186] Gr ger M, Henrich R, Bickert T. Glacial-interglacial variability in lower North Atlantic deep water: inference from silt grain-size analysis and carbonate preservation in the western equatorial Atlantic[J]. Marine Geology,2003,201(4): 321-332.
    [187] Rea DK, Hovan SA. Grain size distribution and depositional processes of the mineral component of abyssal sediments: Lessons from the North Pacific[J]. Paleoceanography, 1995,10(2): 251-258.
    [188] Prins M, Postma G, Cleveringa J, et al. Controls on terrigenous sediment supply to the Arabian Sea during the late Quaternary: the Indus Fan[J]. Marine Geology, 2000,169(3-4): 327-349.
    [189] Stuut JBW, Prins MA, Schneider RR, et al. A 300-kyr record of aridity and wind strength in southwestern Africa: inferences from grain-size distributions of sediments on Walvis Ridge, SE Atlantic[J]. Marine Geology, 2002,180(1-4): 221-233.
    [190] Xiao S, Li A, Liu JP, et al. Coherence between solar activity and the East Asian winter monsoon variability in the past 8000 years from Yangtze River-derived mud in the East China Sea[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2006,237(2-4): 293-304.
    [191] Boulay S, Colin C, Trentesaux A, et al. Sediment sources and East Asian monsoon intensity over the last 450 ky. Mineralogical and geochemical investigations on South China Sea sediments[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2005,228(3-4): 260-277.
    [192] Sun D, Bloemendal J, Rea D, et al. Grain-size distribution function of polymodal sediments in hydraulic and aeolian environments, and numerical partitioning of the sedimentary components[J]. Sedimentary Geology, 2002,152(3-4): 263-277.
    [193] Boulay S, Colin C, Trentesaux A, et al. Mineralogy and sedimentology of Pleistocene sediment in the South China Sea (ODP Site 1144): Proc. ODP, Sci. Results, 184: College Station, TX., 2004[C].
    [194]陈隆勋,朱乾根.东亚季风[M].气象出版社, 1991.
    [195]刘志飞.青藏高原东部和湄公河盆地晚第四纪风化剥蚀与东亚季风演化在南海中的记录[J].矿物岩石地球化学通报, 2005,24(001): 30-38.
    [196] Liu Z, Colin C, Trentesaux A, et al. Late Quaternary climatic control on erosion and weathering in the eastern Tibetan Plateau and the Mekong Basin[J]. Quaternary Research, 2005,63(3): 316-328.
    [197]万世明,李安春, Berend W. Stuut J,等.南海北部ODP1146站粒度揭示的近20Ma以来东亚季风演化[J].中国科学: D辑, 2007,37(006): 761-770.
    [198]叶芳,刘志飞,拓守廷,等.南海北部中更新世0.78~ 1.0 Ma期间的陆源碎屑粒度记录[J].海洋地质与第四纪地质, 2007,27(002): 77-83.
    [199]杨文光,郑洪波,王可,等.南海东北部MD05-2905站36ka BP以来的陆源碎屑沉积特征与东亚季风的演化[J].地球科学进展, 2007,22(010): 1012-1018.
    [200]梅西,郑洪波,黄恩清,等.南海南部近50万年来沉积物特点及古环境意义[J].海洋地质与第四纪地质, 2007,27(004): 77-84.
    [201] Wang L, Sarnthein M, Erlenkeuser H, et al. East Asian monsoon climate during the Late Pleistocene: high-resolution sediment records from the South China Sea[J]. Marine Geology, 1999,156(1): 243-282.
    [202]肖尚斌,李安春,蒋富清,等.近2ka来东海内陆架的泥质沉积记录及其气候意义[J].科学通报, 2004,49(021): 2233-2238.
    [203]徐方建,李安春,万世明,等.东海内陆架泥质区中全新世环境敏感粒度组分的地质意义[J].海洋学报, 2009,(003): 95-102.
    [204]孙晓燕,李广雪,刘勇,等.东海北部泥质区敏感粒度组分对东亚季风演变的响应[J].海洋地质与第四纪地质研究, 2008,28(4):11-17.
    [205]王利波.黄海北部泥质沉积体的沉积特征[D]:中国海洋大学, 2009.
    [206]王可,郑洪波, Prins M,等.东海内陆架泥质沉积反映的古环境演化[J].海洋地质与第四纪地质, 2008,28(004): 1-10.
    [207] Liu Z, Trentesaux A, Clemens SC, et al. Clay mineral assemblages in the northern South China Sea:implications for East Asian monsoon evolution over the past 2 million years[J]. Marine Geology, 2003,201(1-3): 133-146.
    [208]孙效功,方明,黄伟.等,东海陆架区悬浮体输运的时空变化规律[J].海洋与湖沼, 2000,31(6): 581-587.
    [209] Jansen J, Van der Gaast S, Koster B, et al. CORTEX, a shipboard XRF-scanner for element analyses in split sediment cores[J]. Marine Geology, 1998,151(1-4): 143-153.
    [210] R hl U, Abrams L. High-resolution, downhole, and nondestructive core measurements from Sites 999 and 1001 in the Caribbean Sea: application to the Late Paleocene Thermal Maximum: Proceedings of the Ocean Drilling Program, Scientific Results, Vol. 165, 2000[C].
    [211] Janssens K, Vittiglio G, Deraedt I, et al. Use of microscopic XRF for non-destructive analysis in art and archaeometry[J]. X-ray Spectrometry, 2000,29(1): 73-91.
    [212]梅西,张训华,郑洪波,等.南海南部120 ka以来元素地球化学记录的东亚夏季风变迁[J].矿物岩石地球化学通报, 2010,29(2):131-141.
    [213] Schneider R, Price B, M¨1ller P, et al. Monsoon related variations in Zaire (Congo) sediment load and influence of fluvial silicate supply on marine productivity in the east equatorial Atlantic during the last 200,000 years[J]. Paleoceanography, 1997,12(3): 463-481.
    [214] Wehausen R, Brumsack HJ. Cyclic variations in the chemical composition of eastern Mediterranean Pliocene sediments: a key for understanding sapropel formation[J]. Marine Geology, 1999,153(1-4): 161-176.
    [215] Zabel M, Bickert T, Dittert L, et al. Significance of the sedimentary Al/Ti ratio as an indicator for variations in the circulation patterns of the equatorial North Atlantic[J]. Paleoceanography, 1999,14(6): 789-799.
    [216] Yarincik K, Murray R, Peterson L. Climatically sensitive eolian and hemipelagic deposition in the Cariaco Basin, Venezuela, over the past 578,000 years: Results from Al/Ti and K/Al[J]. Paleoceanography, 2000,15(2): 210-228.
    [217] Shimmield G, Mowbray S. The inorganic geochemical record of the northwest Arabian Sea: a history of productivity variation over the last 400 ky from Sites 722 and 724. Proceedings of the Ocean Drilling Program, Scientific Results(W Prell, and N Niitsuma, Eds), 1991: 409-420.
    [218]季峻峰,鹿化煜.陕西洛川黄土中伊利石成因的透射电镜证据[J].科学通报, 1998,43(019): 2095-2098.
    [219]陈晹,陈骏,刘连文,等.最近13万年来黄土高原Rb/Sr记录与夏季风时空变迁[J].中国科学(D辑), 2003,33(6):513-519.
    [220] Shi Y, Y Ge, Liu X. Reconstruction of the 40-30 kaBP enhanced India Monsoon climate based on geological records from the Tibetan Plateau[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2001,169(2): 69-83.
    [221]施雅风,于革. 40—30ka BP中国暖湿气候和海侵的特征与成因探讨[J].第四纪研究, 2003,23(001): 1-11.
    [222] Yang B, Shi Y, Braeuning A, et al. Evidence for a warm-humid climate in arid northwestern China during 40-30 ka BP[J]. Quaternary Science Reviews, 2004,23(23-24): 2537-2548.
    [223] An Z, Kukla GJ, Porter SC, et al. Magnetic susceptibility evidence of monsoon variation on the Loess Plateau of central China during the last 130,000 years[J]. Quaternary Research, 1991,36(1): 29-36.
    [224] Yang J, Chen J, An Z, et al. Variations in 87Sr/86Sr ratios of calcites in Chinese loess: a proxy for chemical weathering associated with the East Asian summer monsoon[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2000,157(1-2): 151-159.
    [225] Lu HY, Wu NQ, Liu KB, et al. Phytoliths as quantitative indicators for the reconstruction of past environmental conditions in China II: palaeoenvironmental reconstruction in the Loess Plateau[J]. Quaternary Science Reviews, 2007,26(5-6): 759-772.
    [226]聂高众,刘嘉麒,郭正堂.渭南黄土剖面十五万年以来的主要地层界线和气候事件──年代学方面的证据[J].第四纪研究, 1996,3: 221-231.
    [227] Cruz FW, Burns SJ, Karmann I, et al. Insolation-driven changes in atmospheric circulation over the past 116,000 years in subtropical Brazil[J]. Nature, 2005,434(7029): 63-66.
    [228]黄恩清.晚第四纪南沙热带海区千年尺度的气候波动[D].同济大学,2009.
    [229] Clemens SC, Prell WL. A 350,000 year summer-monsoon multi-proxy stack from the Owen Ridge, Northern Arabian Sea[J]. Marine Geology, 2003,201(1-3): 35-51.
    [230] Leuschner DC, Sirocko F. The low-latitude monsoon climate during Dansgaard-Oeschger cycles and Heinrich Events[J]. Quaternary Science Reviews, 2000,19(1-5): 243-254.
    [231] Wang Y, Cheng H, Edwards R, et al. A high-resolution absolute-dated late Pleistocene monsoon record from Hulu Cave, China[J]. Science, 2001,294(5550): 2345.
    [232] Yuan D, Cheng H, Edwards RL, et al. Timing, duration, and transitions of the last interglacial Asian monsoon[J]. Science, 2004,304(5670): 575.
    [233] Johnson B, Miller G, Fogel M, et al. 65,000 years of vegetation change in central Australia and the Australian summer monsoon[J]. Science, 1999,284(5417): 1150.
    [234] Partridge T, Demenocal P, Lorentz S, et al. Orbital forcing of climate over South Africa: a 200,000-year rainfall record from the Pretoria Saltpan[J]. Quaternary Science Reviews, 1997,16(10): 1125-1133.
    [235] Schulz H, von Rad U, Erlenkeuser H. Correlation between Arabian Sea and Greenland climate oscillations of the past 110,000 years[J]. Nature, 1998,393(6680): 54-57.
    [236] Altabet MA, Higginson MJ, Murray DW. The effect of millennial-scale changes in Arabian Sea denitrification on atmospheric CO2[J]. Nature, 2002,415(6868): 159-162.
    [237] Dannenmann S, Linsley BK, Oppo DW, et al. East Asian monsoon forcing of suborbital variability in the Sulu Sea during Marine Isotope Stage 3: Link to Northern Hemisphere climate[J]. Geochem Geophys Geosyst, 2003,4(1): 1001.
    [238] Oppo D, Linsley B, Rosenthal Y, et al. Orbital and suborbital climate variability in the Sulu Sea, western tropical Pacific[J]. Geochem Geophys Geosyst, 2003,4(1): 1003.
    [239] Maffei M. Chemotaxonomic significance of leaf wax n-alkanes in the Umbelliferae, Cruciferae and Leguminosae (Subf. Papilionoideae)[J]. Biochemical systematics and ecology, 1996,24(6): 531-545.
    [240] Zhang Z, Zhao M, Eglinton G, et al. Leaf wax lipids as paleovegetational and paleoenvironmental proxies for the Chinese Loess Plateau over the last 170 kyr[J]. Quaternary Science Reviews, 2006,25(5-6): 575-594.
    [241] Pelejero C. Terrigenous n-alkane input in the South China Sea: high-resolution records and surface sediments[J]. Chemical Geology, 2003,200(1-2): 89-103.
    [242]谢树成,王志远,王红梅,等.末次间冰期以来黄土高原的草原植被景观:来自分子化石的证据[J].中国科学( D), 2002,32(1):28-35.
    [243] Huang Y, Street-Perrott F, Metcalfe S, et al. Climate change as the dominant control on glacial-interglacial variations in C3 and C4 plant abundance[J]. Science, 2001,293(5535): 1647.
    [244] Zhang Z, Zhao M, Lu H, et al. Lower temperature as the main cause of C4 plant declines during the glacial periods on the Chinese Loess Plateau[J]. Earth and Planetary Science Letters, 2003,214(3-4): 467-481.
    [245]蒲阳,张虎才,雷国良,等.青藏高原东北部柴达木盆地古湖泊沉积物正构烷烃记录的MIS3晚期气候变化[J].中国科学:地球科学, 2010: 624-631.
    [246]谢树成,易轶,刘育燕,等.中国南方更新世网纹红土对全球气候变化的响应:分子化石记录[J].中国科学: D辑, 2003,33(005): 411-417.
    [247] Xie S, Yao T, Kang S, et al. Geochemical analyses of a Himalayan snowpit profile: implications for atmospheric pollution and climate[J]. Organic Geochemistry, 2000,31(1): 15-23.
    [248] Ohkouchi N, Kawamura K, Kawahata H, et al. Latitudinal distributions of terrestrial biomarkers in thesediments from the Central Pacific[J]. Geochimica et Cosmochimica Acta, 1997,61(9): 1911-1918.
    [249] Dahl KA, Oppo DW, Eglinton TI, et al. Terrigenous plant wax inputs to the Arabian Sea: Implications for the reconstruction of winds associated with the Indian Monsoon[J]. Geochimica et Cosmochimica Acta, 2005,69(10): 2547-2558.
    [250] Bendle J, Kawamura K, Yamazaki K, et al. Latitudinal distribution of terrestrial lipid biomarkers and n-alkane compound-specific stable carbon isotope ratios in the atmosphere over the western Pacific and Southern Ocean[J]. Geochimica et Cosmochimica Acta, 2007,71(24): 5934-5955.
    [251] Bendle JA, Kawamura K, Yamazaki K. Seasonal changes in stable carbon isotopic composition of n-alkanes in the marine aerosols from the western North Pacific: Implications for the source and atmospheric transport[J]. Geochimica et Cosmochimica Acta, 2006,70(1): 13-26.
    [252] Rommerskirchen F, Eglinton G, Dupont L, et al. Glacial/interglacial changes in southern Africa: Compound-specific |?13C land plant biomarker and pollen records from southeast Atlantic continental margin sediments[J]. Geochemistry Geophysics Geosystems, 2006,7(8): Q08010.
    [253] Rommerskirchen F, Eglinton G, Dupont L, et al. A north to south transect of Holocene southeast Atlantic continental margin sediments: Relationship between aerosol transport and compound-specific |?13C land plant biomarker and pollen records[J]. Geochemistry Geophysics Geosystems, 2003,4(12): 1101.
    [254] Hu J, Peng P, Jia G, et al. Biological markers and their carbon isotopes as an approach to the paleoenvironmental reconstruction of Nansha area, South China Sea, during the last 30 ka[J]. Organic Geochemistry, 2002,33(10): 1197-1204.
    [255] Sun XJ, Li X, Luo YL. Vegetation and climate on the Sunda Shelf of the South China Sea during the Last Glactiation-pollen results from station 17962[J]. ACTA BOTANICA SINICA-CHINESE EDITION-, 2002,44(6): 746-752.
    [256]贺娟,赵美训,李丽,等.南海北部MD05-2904沉积柱状样26万年以来表层海水温度及陆源生物标记物记录[J].科学通报, 2008,53(11): 1324-1331.
    [257]邢磊,赵美训,张海龙,等.二百年来黄海浮游植物群落结构变化的生物标志物记录[J].中国海洋大学学报:自然科学版, 2009,39(002): 317-322.
    [258] Eglinton TI, Benitez-Nelson BC, Pearson A, et al. Variability in radiocarbon ages of individual organic compounds from marine sediments[J]. Science, 1997,277(5327): 796.
    [259] Pearson A, Eglinton TI. The origin of n-alkanes in Santa Monica Basin surface sediment: a model based on compound-specific [Delta] 14C and [delta] 13C data[J]. Organic Geochemistry, 2000,31(11): 1103-1116.
    [260] Ishiwatari R, Hirakawa Y, Uzaki M, et al. Organic geochemistry of the Japan Sea sediments-1: Bulk organic matter and hydrocarbon analyses of Core KH-79-3, C-3 from the Oki Ridge for paleoenvironment assessments[J]. Journal of Oceanography, 1994,50(2): 179-195.
    [261] Pelejero C, Grimalt JO, Sarnthein M, et al. Molecular biomarker record of sea surface temperature and climatic change in the South China Sea during the last 140,000 years[J]. Marine Geology, 1999,156(1-4): 109-121.
    [262] Eglinton G, Hamilton RJ. Leaf epicuticular waxes[J]. Science, 1967,156(3780): 1322.
    [263] Freeman K, Colarusso L. Molecular and isotopic records of C4 grassland expansion in the late Miocene[J]. Geochimica et Cosmochimica Acta, 2001,65(9): 1439-1454.
    [264] Jeng WL. Higher plant n-alkane average chain length as an indicator of petrogenic hydrocarbon contamination in marine sediments[J]. Marine chemistry, 2006,102(3-4): 242-251.
    [265] Meyers PA, Ishiwatari R. Lacustrine organic geochemistry--an overview of indicators of organic matter sources and diagenesis in lake sediments[J]. Organic Geochemistry, 1993,20(7): 867-900.
    [266] Eglinton G,Hamilton R J.Leafepicuticcular waxes[J].Science,1967,156:1322-1335.
    [267] Bigot M, Saliot A, Cui X, et al. Organic geochemistry of surface sediments from the Huanghe estuary andadjacent Bohai Sea (China)[J]. Chemical Geology, 1989,75(4): 339-350.
    [268]毛登,范德江.长江,黄河河口沉积物中生物标志化合物组成的初步研究[J].青岛海洋大学学报:自然科学版, 2001,31(005): 747-754.
    [269]张娇.黄河及河口烃类有机物的分布特征及源解析[D]:中国海洋大学, 2008.
    [270] Gagosian RB, Peltzer ET, Zafiriou OC. Atmospheric transport of continentally derived lipids to the tropical North Pacific[J]. Nature, 1981,291:312-314.
    [271]Conte MH, Weber JC. Plant biomarkers in aerosols record isotopic discrimination of terrestrial photosynthesis[J]. Nature, 2002,417(6889): 639-641.
    [272] Zhang X, An Z, Chen T, et al. Late Quaternary records of the atmospheric input of eolian dust to the center of the Chinese Loess Plateau[J]. Quaternary Research, 1994,41(1): 35-43.
    [273] Lu H, Sun D. Pathways of dust input to the Chinese Loess Plateau during the last glacial and interglacial periods[J]. Catena, 2000,40(3): 251-261.
    [274] Sun J. Provenance of loess material and formation of loess deposits on the Chinese Loess Plateau[J]. Earth and Planetary Science Letters, 2002,203(3-4): 845-859.
    [275]张虎才,杨明生,张文翔,等.洛川黄土剖面S4古土壤及相邻黄土层分子化石与植被变化[J].中国科学D辑, 2007,37(12): 1634-1642.
    [276] McKee B, Aller R, Allison M, et al. Transport and transformation of dissolved and particulate materials on continental margins influenced by major rivers: benthic boundary layer and seabed processes[J]. Continental Shelf Research, 2004,24(7-8): 899-926.
    [277]吕厚远,刘东生.末次间冰期以来黄土高原南部植被演替的植物硅酸体记录[J].第四纪研究, 1999,(004): 336-349.
    [278]刘东生,郭正堂,吴乃琴,等.史前黄土高原的自然植被景观──森林还是草原?[J].地球学报-中国地质科学院院报, 1994,(3-4):226-273.
    [279]孙湘君,孙孟蓉.黄土高原南缘最近10万年来的植被[J].植物学报:英文版, 1996,38(012): 982-988.
    [280]林本海,安芷生,刘荣谟,等.最近60万年中国黄土高原季风变迁的稳定同位素证据[J].黄土·第四纪地质·全球变化(第三集)北京:科学出版社, 1992,5: l-54.
    [281]孙建中,赵景波.黄土高原第四纪[M].科学出版社, 1991.
    [282]史念海.河山集(二集)[J].北京:三联书店, 1981.
    [283]周斌,沈承德,郑洪波,等.黄土高原中部晚第四纪以来植被演化的元素碳碳同位素记录[J].科学通报, 2009,54(9):1262-1268.
    [284] Schwark L, Zink K, Lechterbeck J. Reconstruction of postglacial to early Holocene vegetation history in terrestrial Central Europe via cuticular lipid biomarkers and pollen records from lake sediments[J]. Geology, 2002,30(5): 463.
    [285] Zhou W, Xie S, Meyers PA, et al. Reconstruction of late glacial and Holocene climate evolution in southern China from geolipids and pollen in the Dingnan peat sequence[J]. Organic Geochemistry, 2005,36(9): 1272-1284.
    [286] Kawamura K, Ishimura Y, Yamazaki K. Four years' observations of terrestrial lipid class compounds in marine aerosols from the western North Pacific[J]. Global biogeochemical cycles, 2003,17(1): 1003.
    [287] Schefu E, Ratmeyer V, Stuut JBW, et al. Carbon isotope analyses of n-alkanes in dust from the lower atmosphere over the central eastern Atlantic[J]. Geochimica et Cosmochimica Acta, 2003,67(10): 1757-1767.
    [288] Gagosian RB, Peltzer ET. The importance of atmospheric input of terrestrial organic material to deep sea sediments[J]. Organic Geochemistry, 1986,10(4-6): 661-669.
    [289]孙湘君,罗运利.南海北部280ka以来深海花粉记录[J].中国科学(D辑), 2001,31(10):846-853.
    [290]郑艳红,周卫健,谢树成,等.正构烷烃分子化石与孢粉记录的指示意义对比:以华南地区为例[J].科学通报, 2009,54(12): 1749-1755.
    [291] Cerling T, Quade J, Wang Y, et al. Carbon isotopes in soils and palaeosols as ecology and palaeoecology indicators[J]. Nature, 1989,341(6238): 138-139.
    [292] Ambrose SH, Sikes NE. Soil carbon isotope evidence for Holocene habitat change in the Kenya Rift Valley[J]. Science, 1991,253(5026): 1402.
    [293] Vidic NJ, Monta ez IP. Climatically driven glacial-interglacial variations in C3 and C4 plant proportions on the Chinese Loess Plateau[J]. Geology, 2004,32(4): 337.
    [294] Jia G, Peng P, Fang D. Burial of different types of organic carbon in core 17962 from South China sea since the last glacial period[J]. Quaternary Research, 2002,58(1): 93-100.
    [295]陈发虎,饶志国,张家武,等.陇西黄土高原末次冰期有机碳同位素变化及其意义[J].科学通报, 2006,51(11): 1310-1317.
    [296]顾兆炎,刘强,许冰,等.气候变化对黄土高原末次盛冰期以来的C3/C4植物相对丰度的控制[J].科学通报, 2003,48(013): 1458-1464.
    [297]饶志国,陈发虎,曹洁,等.黄土高原西部地区末次冰期和全新世有机碳同位素变化与C 3/C 4植被类型转换研究[J].第四纪研究, 2005,25(1): 107-114.
    [298]刘卫国,宁有丰,安芷生,等.黄土高原现代土壤和古土壤有机碳同位素对植被的响应[J].中国科学( D辑), 2002,32(10):830-836.
    [299] Hood RR, Laws EA, Armstrong RA, et al. Pelagic functional group modeling: Progress, challenges and prospects[J]. Deep Sea Research Part II: Topical Studies in Oceanography, 2006,53(5-7): 459-512.
    [300] Thunell R, Qingmin M, Calvert S, et al. Glacial-Holocene biogenic sedimentation patterns in the South China Sea: Productivity variations and surface water pCO2[J]. Paleoceanography, 1992,7(2): 143-162.
    [301] Budziak D, Schneider RR, Rostek F, et al. Late Quaternary insolation forcing on total organic carbon and C37 alkenone variations in the Arabian Sea[J]. Paleoceanography, 2000,15(3): 307-321.
    [302]黄宝琦,林慧玲.南海东北部晚第四纪古生产力变化[J].海洋地质与第四纪地质, 2000,20(002): 65-68.
    [303] Harris P, Zhao M, Rosell-Mele A, et al. Chlorin accumulation rate as a proxy for Quaternary marine primary productivity[J]. Nature, 1996,383(6595): 63-65.
    [304] Lin HL, Lai CT, Ting HC, et al. Late Pleistocene nutrients and sea surface productivity in the South China Sea: A record of teleconnections with Northern Hemisphere events[J]. Marine Geology, 1999,156(1-4): 197-210.
    [305]Wang R, Li J. Quaternary high-resolution opal record and its paleoproductivity implication at ODP Site 1143, southern South China Sea[J]. Chinese Science Bulletin, 2003,48(4): 363-367.
    [306] Wang RJ, Jian ZM, Xiao WS, et al. Quaternary biogenic opal records in the South China Sea: Linkages to East Asian monsoon, global ice volume and orbital forcing[J]. Science in China Series D: Earth Sciences, 2007,50(5): 710-724.
    [307] Lawrence KT, Liu Z, Herbert TD. Evolution of the eastern tropical Pacific through Plio-Pleistocene glaciation[J]. Science, 2006,312(5770): 79.
    [308] Liu C, Wang P, Tian J, et al. Coccolith evidence for Quaternary nutricline variations in the southern South China Sea[J]. Marine Micropaleontology, 2008,69(1): 42-51.
    [309] Dahl KA, Repeta DJ, Goericke R. Reconstructing the phytoplankton community of the Cariaco Basin during the Younger Dryas cold event using chlorin steryl esters[J]. Paleoceanography, 2004,19(1): PA1006.
    [310]邢磊,赵美训,张海龙,等.冲绳海槽中部过去15 ka来浮游植物生产力和种群结构变化的生物标志物重建[J].科学通报, 2008,53(12): 1448-1455.
    [311] Schubert C, Villanueva J, Calvert S, et al. Stable phytoplankton community structure in the Arabian Sea over the past 200,000 years[J]. Nature, 1998,394(6693): 563-566.
    [312] Pourmand A, Marcantonio F, Bianchi TS, et al. A 28-ka history of sea surface temperature, primary productivity and planktonic community variability in the western Arabian Sea[J]. Paleoceanography, 2007,22(4):PA4208.
    [313] He J, Zhao M, Li L, et al. Biomarker evidence of relatively stable community structure in the northern South China Sea during the last glacial and Holocene[J]. Terrestrial Atmosphere Ocean Sciences, 2008,19(4): 377-387.
    [314] De Leeuw J, Irene W, Rijpstra C, et al. The occurrence and identification of C30, C31 and C32 alkan-1, 15-diols and alkan-15-one-1-ols in Unit I and Unit II Black Sea sediments[J]. Geochimica et Cosmochimica Acta, 1981,45(11): 2281-2285.
    [315] Sinninghe Damst¨| JS, Rampen S, Irene W, et al. A diatomaceous origin for long-chain diols and mid-chain hydroxy methyl alkanoates widely occurring in quaternary marine sediments: indicators for high-nutrient conditions[J]. Geochimica et Cosmochimica Acta, 2003,67(7): 1339-1348.
    [316]胡建芳,彭平安,贾国东,等.三万年来南沙海区古环境重建:生物标志物定量与单体碳同位素研究[J].沉积学报, 2003,21(002): 211-218.
    [317] Schouten S, Hoefs MJL, Sinninghe Damst¨| JS. A molecular and stable carbon isotopic study of lipids in late Quaternary sediments from the Arabian Sea[J]. Organic Geochemistry, 2000,31(6): 509-521.
    [318] Schulte S, Rostek F, Bard E, et al. Variations of oxygen-minimum and primary productivity recorded in sediments of the Arabian Sea[J]. Earth and Planetary Science Letters, 1999,173(3): 205-221.
    [319] Zhao M, Mercer JL, Eglinton G, et al. Comparative molecular biomarker assessment of phytoplankton paleoproductivity for the last 160 kyr off Cap Blanc, NW Africa[J]. Organic Geochemistry, 2006,37(1): 72-97.
    [320]赵美训,张荣平,邢磊,等.末次冰盛期以来日本海浮游植物生产力和群落结构变化[J].中国海洋大学学报:自然科学版, 2009,(005): 1093-1099.
    [321] Agnihotri R, Sarin M, Somayajulu B, et al. Late-Quaternary biogenic productivity and organic carbon deposition in the eastern Arabian Sea[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2003,197(1-2): 43-60.
    [322] Zhang J, Wang P, Li Q, et al. Western equatorial Pacific productivity and carbonate dissolution over the last 550 kyr: Foraminiferal and nannofossil evidence from ODP Hole 807A[J]. Marine Micropaleontology, 2007,64(3-4): 121-140.
    [323] Rossignol-Strick M. African monsoons, an immediate climate response to orbital insolation[J]. Nature, 1983,304(5921): 46-49.
    [324] Pokras EM, Mix AC. Earth's precession cycle and Quaternary climatic change in tropical Africa[J]. Nature, 1987,326: 486-487.
    [325] Prell WL, Kutzbach JE. Sensitivity of the Indian monsoon to forcing parameters and implications for its evolution[J]. Nature, 1992,360(6405): 647-652.
    [326] Huang CY, Liew PM, Zhao M, et al. Deep sea and lake records of the Southeast Asian paleomonsoons for the last 25 thousand years[J]. Earth and Planetary Science Letters, 1997,146(1-2): 59-72.
    [327] Higginson MJ, Maxwell JR, Altabet MA. Nitrogen isotope and chlorin paleoproductivity records from the Northern South China Sea: remote vs. local forcing of millennial-and orbital-scale variability[J]. Marine Geology, 2003,201(1-3): 223-250.
    [328] Zhao M, Huang CY, Wang CC, et al. A millennial-scale U37K'sea-surface temperature record from the South China Sea (8?? N) over the last 150 kyr: Monsoon and sea-level influence[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2006,236(1-2): 39-55.
    [329]梅西,张训华,郑洪波,等.南海南部50万年以来碳酸钙和有机碳记录及其揭示的东亚夏季风演化[J].地球科学, 2010,35(1):22-30.
    [330] Falkowski PG, Oliver MJ. Mix and match: how climate selects phytoplankton[J]. Nature Reviews Microbiology, 2007,5(10): 813-819.
    [331] Schulte S, Bard E. Past changes in biologically mediated dissolution of calcite above the chemical lysoclinerecorded in Indian Ocean sediments[J]. Quaternary Science Reviews, 2003,22(15-17): 1757-1770.
    [332] Wakeham SG, Peterson ML, Hedges JI, et al. Lipid biomarker fluxes in the Arabian Sea, with a comparison to the equatorial Pacific Ocean[J]. Deep Sea Research Part II: Topical Studies in Oceanography, 2002,49(12): 2265-2301.
    [333] Smayda TJ, Reynolds CS. Community assembly in marine phytoplankton: application of recent models to harmful dinoflagellate blooms[J]. Journal of Plankton Research, 2001,23(5): 447.
    [334] Seki O, Ikehara M, Kawamura K, et al. Reconstruction of paleoproductivity in the Sea of Okhotsk over the last 30 kyr[J]. Paleoceanography, 2004,19(1): PA1016.
    [335] Werne JP, Hollander DJ, Lyons TW, et al. Climate-induced variations in productivity and planktonic ecosystem structure from the Younger Dryas to Holocene in the Cariaco Basin, Venezuela[J]. Paleoceanography, 2000,15(1): 19-29.
    [336] Calvo E, Pelejero C, Logan GA, et al. Dust-induced changes in phytoplankton composition in the Tasman Sea during the last four glacial cycles[J]. Paleoceanography, 2004,19(2): PA2020.
    [337]郭炳火.黄海物理海洋学的主要特征[J].黄渤海海洋, 1993,11(003): 7-18.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700