用户名: 密码: 验证码:
南海西北次海盆张裂特征及扩张方式
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
南海西北次海盆东接东部次海盆,南靠中沙群岛,西临西沙海槽,北依南海北部陆坡,东北宽西南窄,是南海三个次海盆中面积最小的一个海盆,但其位置独特,构造演化复杂。西北次海盆作为南海地区的一个重要地质构造单元,记录了从大陆张裂到海盆扩张的丰富信息,西北次海盆附近区域则涵盖了裂谷、海盆等多种地质构造现象以及陆壳、过渡壳和洋壳等多种构造单元。而且由于西北次海盆尺度小,南北陆缘距离较近,成为研究大陆边缘初始张裂过程、共轭属性和区域重要地质事件的有利地区。
     本论文基于2006年西北次海盆海底地震仪(OBS)广角反射/折射地震调查所获取的两条高质量剖面数据,结合多道地震剖面资料,通过精细数据处理、射线追踪正反演技术,反演得到了西北次海盆纵向和横向的深部地壳结构模型。并结合重力数据,进行了密度反演计算,获取了海盆下方的密度分布模型。综合研究区内搜集到的地球物理数据,参考前人的研究结果,对西北次海盆的深部地壳结构特点进行了深入的分析与对比。对西北次海盆的陆缘张裂特征、莫霍面形态特点以及海盆地壳性质进行了重点剖析,以南海北部边缘张裂演化史和南海海盆构造演化史为主线,对西北次海盆北部陆缘性质,海盆地貌形态、深部地壳结构特征,构造成因及其形成、演化历史等进行了广泛讨论,获得了多项有益的研究成果,主要有以下几个方面:
     1)首次利用OBS广角地震数据建立了西北次海盆纵向和横向深部地壳结构模型,获取了详细的莫霍面形态和结构特征;通过重力反演获取了西北次海盆地壳深部密度分布信息。
     2)西北次海盆地壳结构表明,海盆下方Moho面呈隆起状,埋深约11km,两侧形态近似对称,中央稍深为12.0km,且与多道地震剖面发现的中央火山隆起区有镜像对称关系。地壳厚度也从陆坡厚约21km,至海盆减薄为最小7.7km,发生了强烈减薄,西北次海盆的张裂模式属于纯剪切模式。
     3)OBS2006-1、OBS2006-2两条剖面地壳结构中均不存在下地壳高速层,进一步证实了南海北部陆缘西部的非火山型性质。OBS2006-1地壳剖面的分布位置为划分南海北部地壳性质分界线提供了新的重要信息。
     4)西北次海盆地壳性质属新生洋壳性质。西北次海盆已经进入海底扩张阶段,但由于其规模小,从初始扩张到稳态的海底扩张时间短,记录不到清晰磁异常条带,故无明显磁异常条带表现。而西北次海盆经历了层2熔岩的不对称溢流,进一步又模糊和干涉了原有的磁条带。
     5)地貌、沉积物和构造分析表明,西沙海槽并非简单的西北次海盆向西扩展产物。南海北部地区西沙海槽,西北次海盆和东部次海盆在动力学特征方面更多表现出差异性,反映不同的演化过程和内在联系。
Located at the northwestern part of the South China Sea(SCS) among the east subbasin, the Zhongsha Islands(Maccelesfield Bank) and the Xisha Islands(Paracel) , the NW subbasin is the smallest ocean basin in all the three subbasins of SCS. It presents all major stages from continental rifting in the late Oligocene to initial seafloor spreading in the mid-Miocene, thus provides an ideal place to study therifting and initial seafloor spreading process in great detail. And because of its small scale and short distance between the northern and southern continental margin, theNW subbasin is a good place to study the continental rifting process, the conjugatenature and local geology events.
     Based on two high quality Ocean Bottom Seismometer(OBS) wide anglereflection/refraction profiles which were obtained in the northwest subbasin SCS,in 2006, through precious data processing, 2D ray tracing method and inversion technique, we calculated the velocity distribution under the NW subbasin and get the deep crust structure model. At the same time, cooperated with gravity data density model was calculated. Synthesize other geophysics data collected in the research area and read other scholars’research results for reference, analysis and contrast were done to the characteristic of the deep crust structure of the NW subbasin. The key analysis was conducted to the rifting characteristic, Moho surface geometry and crust nature of the NW subbasin in this paper, combined with the rifting evolution history of the northern continental margin and tectonic evolution history of the SCS, we have widely discussion on the continental margin nature, the morphologic shape, deep crust characteristic and tectonic evolution history,many beneficial results have been obtained which are mainly showed in the follow,
     1)For the 1st time the deep crust structure was built with OBS seismic data in the NW subbasin, detailed Moho geometry information and layered structure characteristic were got. Density model was calculated through gravity inversion in the NW subbasin.
     2)Data inversion and analysis show that, the crust thickness under the continental slope decreases from 21km to 11km, the crust thickness of the NW subbasin is about 7.7km, and the moho depth ascends from 21km to 11km. The tectonic geometry and velocity structure of the NW subbasin and its margins on both sides shows symmetrical and conjugate and indicates pure shear mode in continental margin rifting mechanism.
     3)We don’t find clear seismic signals from high velocity layer under the lower crust of the continental margin in the northern of the NW subbasin, which supplies new evidence for the viewpoint that western part of the northern continental margin of South China Sea is non-volcano crust.
     4)The crust of the NW subbasin similar to the east subbasin in structure is confirmed to be oceanic crust, with thicker layer 1(sedimentary layer) and thinner layer 2 , which is some different from typical oceanic crust structure. In addition, because the seafloor spreading period of the NW subbasin was short, the layer 2 experienced asymmetric basalt magma flow, which blurred the magnetic anomaly belt of the NW subbasin.
     5)Analysis on the geomorphic feature, sediment and tectonic showed that the Xisha Trough was not simply the extension result of the NW subbasin. The Xisha Trough, NW subbasin and east subbasin had more difference in dynamic characteristic which implied different evolution history and potential relationship.
引文
[1] Barckhausen, Udo and Roeser, H. A.. Seafloor Spreading Anomalies in the South China Sea Revisited. Continent-Ocean Interactions within East Asian Marginal Seas, AGU Chapman Conference, San Diego, CA , ETATS-UNIS (11/2002), 2004, vol. 149 (10 ref.), pp. 121~125.
    [2] Barton A J, White R S,Crustal structure of Edoras Bank continental margin and mantle thermal anomalies beneath the North Atlantic, J Geophys Res, 1997,102:3109-3130.
    [3] Barton, P.J. The relationship between seismic velocity and density in the continental crust-a useful constraint?, Geophys. J. Roy. astron. Soc., 1986, 87: 195~208.
    [4] Ben Avraham Z, Uyeda S. The evolution of the China basin and the Mesozoic paleogeography of Borneo. Earth planet. Sci. Lett., 1973(18):365-376.
    [5] Briais A., Tapponnier P. and Pautot G.. Constraints of Sea Beam data on crustal fabrics and seafloor spreading in the South China Sea. Earth and Planetary Science Letters, 1989(95): 307-320.
    [6] Briais, A, Patriat, P and Tapponnier, P. Updated interpretation of magnetic anomalies and seafloor spreading in the South China Sea: implications for the Tertiary Tectonics of Southeast Asia. J. Geophys. Res., 1993, 98(B4): 6299~6328.
    [7] Brias A. and Pautot G.. Reconstructions of the South China Sea from structural data and magnetic anomalies. in: Jin X., Kudrass H. R. and Pautot G. eds. Marine Geology and Geophysics of the South China Sea. Proc. Symp. on Recent Contributions to the Geological History of the South China Sea. Beijing: China Ocean Press .2000, 60-70.
    [8] Cady John Calculation of Gravity and Magnetic Anomalies of Finite-Length Right Polygonal Prisms, Geophysics, v 45 P 1507-1520, 1980.
    [9] Carbonell, R., F. Simancas, C. Juhlin, J. Pous, A. Pe′rez-Estau′n, F. Gonza′lez-Lodeiro, G. Mun?oz,W. Heise, and P. Ayarza , Geophysical evidence of a mantle derived intrusion in SW Iberia, Geophys. Res. Lett., 2004, 31(11), L11601, 1– 4, doi:10.1029/2004GL019684.
    [10] Christensen, N.I. and Mooney, W. D. Seismic velocity and composition of the continental crust: a global view. J. Geophys. Res,1995, 100(B7): 9761~9788.
    [11] Clift, P.D. and Lin, J.ODP Leg 184 Scientific Party. Patterns of extension and magmatism along the continent-ocean boundary, South China margin. Geological Society, London, Special Publications, 2001, 187: 489~510.
    [12] Ditmar, P. G. and Makris, J. Tomographic inversion of 2-D WARRP data based on Tikhonov regularization. 66th Ann. Intemat Mtg Soc Expl Geophys, Expanded Abstracts, 1996, 2015~2018.
    [13] Dunn, R.A. and Toomey, D.R. Seismological evidence for three-dimensional melt migration beneath the East Pacific Rise . Nature, 1997, 388: 259-262.
    [14] Epili, D, Grieger, J and Nef, W. 3-D WARRP design for explorationtargets. 69th Ann. Internatmat Mtg. Soc Expl Geophys. Expanded Abstracts. 1999, 985~988.
    [15] Fliedner, M M and White, R S. Using wide-angle seismic data for basalt and sub-basalt imaging. Expanded Abstracts of Annual Internet SEG- Mtg, 1999, 1021~1024.
    [16] Forsyth, D.W., Scheirer, D.S. et al. Imaging the deep seismic structure beneath a mid-ocean ridge: the MELT experiment . Science, 1998, 280(5367): 1215-1218.
    [17] Hall R. Cenozoic geological and plate tectonic evolution of SE Asia and the SW Pacific: computer-based reconstructions, model and animations. Journal of Asian Earth Sciences, 2002(20): 353-431.
    [18] Hall R. Reconstructing Cenozoic SE Asia. In:Hall R and Blumdell D(eds),Tectonic Evolution of Southeast Asia, Geological Special Publication, London, 1996,106:153-184.
    [19] Hall R. The plate tectonics of Cenozoic SE Asia and the distribution of land and sea. In: Hall R., Holloway J.D., eds. Biogeography and Geological Evolution of SE Asia . Leiden: Backhuys Publisher, 1998: 99-132.
    [20] Hamilton W. Tectonics of the Indonesian region. U.S.Geol. Surv., Prof. Paper 1078, 1979, 345 pp.
    [21] Hayes D E, Nissen S S, Buhl P, et al. Throughgoing crustal faults along the northern margin of South China Sea and their role in crustal extension, J. Geophysical. Res., 1995,100(B11):22435-22446.
    [22] Hayes D.E., and Lewis S.D. A geophysical study of the Manilla trench, Luzon,Philippines 1. Crustal structure, gravity and regional tectonic, J.Geophys. Res. 1984, 89:9171-9195
    [23] Hekinian P., Bonte G., Pautot D., et al., Volcanics of the South China Sea ridge system, Oceanol. Acta , 1989,12(2):101-116.
    [24] Hilde T W C, Uyeda S, Kroenke L. Evolution of the western Pacific and its margin. Tectonophysics, 1977, 38, 145-165.
    [25] Holloway N H. North Palawan block, Philippines– Its relation to Asian mainland and role in evolution of South China Sea. AAPG Bulletin, 1982, 66 (9) : 1355 - 1383.
    [26] Hollway N H. The stratigraphic and tectonic evolution of Reed Bank, North Palawan and Mindoro to the Asian mainland and its significance in the evolution of the South China Sea. AAPG Bulletin, 1982, 66:1357-1383.
    [27] Hsu, S K, Yeh Y C, Doo, W B, et al. New bathymetry and magnetic lineations identifications in the northernmost South China Sea and their tectonic implications. Marine Geophysical Researches, 2004, 25: 29~44.
    [28] Hutchison C S. Geological evolution of Southeast Asia. In: Oxford Monographs on Geology and Geophysics, 13. Oxford: Clarendon Press, 1989.355.
    [29] Hutchison C.S. Formation of marginal seas in Southeast Asia by rifting of the Chinese and Australian continental margins and implications for Borneo region. Proceedings Vol. II, Geol.Soc.Malaysia Bulletin, 1986, 20:2010-2020.
    [30] Jahn B M, Chen P Y, Yen T P. 1976. Rb-Sr ages of granitic rocks in southern China and their tectonic significance. Bull Geol Soc Am,86:763~776.
    [31] Karig D E, Origin and development of marginal basins in the western Pacific.J Geophys Res,1971,76:2543~2561.
    [32] Kennett J P. Marine Geology. New Jersey: Prentice-Hall, Englewood Cliffs, 1982.
    [33] Kodaira, S., T. Sato, N. Takahashi, A. Ito, Y. Tamura, Y. Tatsumi, and Y. Kaneda, Seismological evidence for variable growth of crust along the Izu intraoceanic arc, J. Geophys. Res., 2007, 112, B05104, doi:10.1029/2006JB004593.
    [34] Kozlovskaya, E., Taran, L., Yliniemi, J. et al. Deep structure of the crust along the Fennoscandia-Sarmatia Junction zone (central Belarus): Results of a geophysical-geological integration. Tectonophysics, 2002, 358: 97~120.
    [35] Kudras, H R., Wiedick, M., Capek, P., et al. Mesozoic and Cenozoic rocks dredged from the South China Sea (Reed Bank Area) and Sulu Sea and their significance for plate tectonic reconstruction. Marine and Petroleum Geology, 1985, (3):19~30.
    [36] Li C F, Zhou Z, Li J et al. 2007. Structure of the northeasternmost South China Sea continental margin and ocean basin: geophysical constraints and tectonic implications. Marine Geophysical Research,28:59-79.
    [37] Li J.B. The rifting and collision of the South China Sea Terrain system, Ed. Wang and Berggren, Proceedings of the 30th International Geological Congress, 1997(13): 33-46, VSP.
    [38] Li P L and Rao C T, Tectonic characteristics and evolution history of the Pearl River Mouth, Basin. Tectonophysics, 1994, 235: 13~25.
    [39] Li, C. F., Zhou, Z., Hao, H. et al. Late Mesozoic tectonic structure and evolution along the present-day northeastern South China Sea continental margin. Journal of Asian Earth Sciences, 2008, 31: 546~561.
    [40] Li, C.F., Zhou, Z., Li, J., Hao, H., et al. Structures of the northeasternmost South China Sea continental margin and ocean basin: geophysical constraints and tectonic implications. Marine Geophysical Researches, 2007, 28: 59~79.
    [41] Lister G S, Ethridge M A, Symonds P A. Detachment faulting and the evolution of passive continental margins. Geology, 1986, 14:246-250.
    [42] Lüdmann T, Wong H K. Neotectonic regime on the passive continental margin of the northern South China Sea. Tectonophysics, 1999, 311(1-4): 113-138.
    [43] Lüdmann T., Wong H. K., Wang P. X. Plio-Quaternary sedimentation processes and neotectonics of the northern continental margin of the South China Sea. Marine Geology, 2001(172):33l-358.
    [44] Ludwig W J. The manila trench and west Luzon TroughⅢSeismic-refraction measurements. Deep-Sea Research, 1970, 17(3): 553-571.
    [45] Ludwig W.J. et al., Sediments and structure of the Japan Sea, Geol. Soc.Amer.Bull.1975,88:651-664.
    [46] Ludwig, W. J., Kumar, N. and Houtx, R.E., Profiler-Sonobuoy measurements in the South China Sea Basin. J. Geophys. Res., 1979, 84(B7): 3505~3518.
    [47] Makris, J, Eglof, F and Rihm, R. WARRP (Wide Aperture Reflection and Refraction Profiling): The principle of successful data acquisition where conventional seismic fails.Expanded Abstracts of Annual Internet SEGMtg, 1999, 989~992.
    [48] Makris, J. and Yegorova, T. A 3-D density–velocity model between the Cretan Sea and Libya. Tectonophysics, 2006, doi:10.1016/j.tecto.2005.11.003.
    [49] McIntosh, K.D., Nakamura, Y., Wang, T.K., et al. Crustal-sacle seismic profiles across Taiwan and western Philippine Sea. Tectonophysics,2005,401:23-54.
    [50] Mckenzie D. Some remarks on the development of sedimentary basins. E.P.S.L, 1978, 40:25-32.
    [51] Nakamura, Y., McIntosh, K., Chen,A.T. Preliminary results of a large offset seismic survey west of Hengchun Peninsula, sourthern Taiwan. TAO,1998,9(3):359-408.
    [52] Neves, F. and Singh, S. C. Sensitivity study of seismic reflection/refraction data. Geophys. J. Int. 1996, 126: 470~476.
    [53] Nissen, S. S., Hayes D.E., Buhl P. et al. Deep penetration seismic sounding across the northern margin of the South China Sea. J. Geophys. Res, 1995a , 100(B11): 22407~22433.
    [54] Nissen, S. S., Hayes D.E., Yao B, et al. Gravity, heat flow, and seismic constrains on the processes of crustal extension: Northern margin of the South China Sea. J. Geophys. Res., 1995b, 100(B11): 22447~22483.
    [55] Northrup C J, Royden L H, Burchfiel B C. Motion of the Pacific plate relation to Eurasia and its potential relation to Cenozoic extension along the eastern margin of Eurasia. Geology, 1995, 23: 719-722.
    [56] Palomeras, I., R. Carbonell, I. Flecha, F. Simancas, P. Ayarza, J. Matas, D. Martinez Poyatos, A. Azor, F. Gonza′lez Lodeiro, and A. Pe′rez-Estau′n, Nature of the lithosphere across the Variscan orogen of SW Iberia: Dense wide-angle seismic reflection data, J. Geophys. Res., 2009,114, B02302, doi:10.1029/2007JB005050.
    [57] Pang X, Yang S, Zhu M, Li J. Deep-water fan system and petroleum resources on the northern slope of the South China Sea. Acta Geologica Sinica, 2004,78(3): 626-631.
    [58] Pautot G., et al. Spreading direction in the central South China Sea. Nature, 1986(321):150-154
    [59] Qiu, X.., Ye,S., Wu, S., Shi,X., Zhou,D., Xia,K., Flue, E.R., Crustal structure across the Xisha Trough, northwestern South China Sea. Tectonophysics ,2001,341:179-193.
    [60] Ru, K, Zhou D and Chen H Z. Basin evolution and hydrocarbon potential of the northern South China Sea. In: Zhou D, Liang Y B, Zeng C K, eds. Oceanology of China Seas. Doedrecht: Kluwer. Acad. Publ., 1994, 2: 361~372.
    [61] Ru, Ke, Pigott ,J. D. Episodic rifting and subsidence in the South China Sea. AAPG Bull. 1986,70,1136-1155.
    [62] Ryu, J. V. Seeing through seismically difficult rocks unconventionally. Geophysics, 1997, 62(4): 1177~1182.
    [63] Satish, C. Singh, Philip J. Hague and Michael McCaughey. Study of the crystalline crust from a two-ship normal-incidence and wide-angle experiment. Tectonophysics, 1998, 286: 79~91.
    [64] Shito, A., H. Shiobara, H. Sugioka, A. Ito, Y. Takei, H. Kawakatsu, and T. Kanazawa (2009), Physical properties of subducted slab and surrounding mantle in the Izu-Bonin subduction zone based on Broadband Ocean Bottom Seismometer data, J. Geophys. Res., 114, B03308, doi:10.1029/2007JB005568.
    [65] Simancas, F., et al., Crustal structure of the transpressional Variscanorogen of SW Iberia: SW Iberia deep seismic reflection profile (IBERSEIS), Tectonics, 2003, 22(6), 1062, doi:10.1029/2002TC001479.
    [66] Singh S.C.. Some thoughts on seismic imaging of Moho, magma chambers and ser-pentinisation front along Indian Ocean Ridge systems from MAR and EPR experiences . InterRidge Workshop on Tectonic & Oceanic Processes Along the Indian Ocean Ridge System. Dona-Paula, Goa-403 004, India: Local Organizing Committee of IRW 2005, 2005: 14.
    [67] Su D, White N, Mckenzie D, Extension and subsidence of the Peral River mouth basin, northern South China Sea, Basin Research, 1989, 2(4): 215~222.
    [68] Su, X., Xu Y. and Tu, Q., Early Oligocene-Pleistocene calcareous nannofossil biostratigraphy of the northern South China Sea (Leg 184, Sites 1146–1148). Proc. ODP, Sci. Results 184, 2006, 1~24.
    [69] Talwani M, Abreu V, Inferences regarding initiation of Oceanic crust formation from the U.S. East Coast margin and conjugate South Atlantic margin, Geophysical monograph, 2000,115:211-233. American Geophysical Union, Washington, DC.
    [70] Tapponnier P., Peltzer G., Le Dain A. Y., Armijo R. and Cobbold P. Propagating extrusion tectonics in Asia: New insights from simple experiments with plasticine. Geology, 1982, 10(12):611-616.
    [71] Tapponnier, P, Lacassin, R, Leloup, P H, et al. The Ailao Shan-Red River metamorphic belt: Tertiary left lateral shear between Indo-china and South China. Nature, 1990, 243: 431-437[DOI].
    [72] Tapponnier, P. et al., 1982, Propagating extrusion tectonics in Asia: new insights from simple experiments with plasticine. Geology, 10: 611-616.
    [73] Tapponnier, P., Peltzer, G., Armijo, R. et al. 1986. On the mechanics of the collision between India and Asia. In: Coward, M..P., Ries, A.C. (Eds), Collision Tectonics, Geol.Soc.Lond. Spec. Publ., Black-well Scientific,Oxford, Vol.19, pp.115-157.
    [74] Taylor B, Hayes D E. Origin and history of South China Sea Basin. In: Hayes D E, eds. The tectonic and Geologic Evolution of Southeast Asian Seas and Islands. Geophys. Monogr., AGU, Washington, D.C. 1983, 27:23-56
    [75] Taylor, B., Hayes,D.E., The tectonic evolution of the South China Sea Basin. In: Hayes, D.E.(Eds.), The tectonic and Geologic Evolution of Southeast Asian Seas and Islands. Geophys. Monogr. AGU, Washington, D.C. 1980,vol. 23,pp.89-104
    [76] Wang, Tan. K., Ming-Kai. Chen, Chao-Shing Lee et al. Seismic imaging of the transitional crust across the northeastern margin of the South China Sea. Tectonophysics,2006, (412): 237-254.
    [77] Wernicke B. Low-angle normal faults in the Basin&Range Province: nappe tectonics in an extending orogen. Nature, 1981,219(25):645-648.
    [78] Wessmann G, Kudrass H, Hinz K. Continuing rifting on the South China Margin. Geowissenschaften, 1996, 14:310-312.
    [79] White, R. S., Smith, L. K., Roberts, A. W., et a1. Lower-crustal intrusion on the North Atlantic continental margin, Nature, 2008, 452: doi: 10.1038/nature06687.
    [80] White, R.S., Melt Production Rates Under Mid-ocean Ridges . Inter Ridge Workshop on Tectonic & Oceanic Processes Along the Indian Ocean Ridge System. Dona-Paula, Goa-403 004, India: Local Organizing Committee of IRW 2005, 2005: 10.
    [81] Williams P R, Johnston C R, Almond R A, et al. Late Cretaceous to Early Tertiary structural elements of West Kalimantan. Tectonophysics, 1988, 148, 279-297.
    [82] Wombell, R, Jones, E, Dave, P, et a1.Long offset acquisition and processing for sub-basalt imaging. Expanded Abstracts of Annual Internet SEG Mtg, 1999, l429~l432.
    [83] Wu, Jin-min. Evaluation and models of Cenozoic sedimentation in the South China Sea. Tectonophysics, 1994, 235: 77~98.
    [84] Yan, P., Zhou, D., Liu, Z.S. A crustal structure profile across the northern continental margin of the South China Sea. Tectonophysics, 2001, 338(1):1-21.
    [85] Zhou D, Ru K, Chen H Z, et al. Kinematics of Cenozoic extension on the South China Sea continental margin and its implications for the tectonic evolution of the region. Tectonophysics, 1995, 251: 161-177.
    [86] Zhou, X M and Li, W X. Origin of late Mesozoic igneous rocks in southeastern China: implications for lithosphere subduction and underplating of mafic magmas. Tectonophysics, 2000, 326: 269~287.
    [87]鲍才旺.南海地形特征.中国近海地质.北京:地质出版社,1997.
    [88]陈圣源.南海磁力异常图.南海地质地球物理图集.广州:广东地图出版社,1987.
    [89]丁巍伟,陈汉林,杨树锋等.南海西南次海盆与东部次海盆地质与地球物理分析,高校地质学报,2002:8(3):268-279.
    [90]丁巍伟,黎明碧,赵俐红,等.南海西北次海盆新生代构造-沉积特征及伸展模式探讨.地学前缘.2009,16(4):147-156
    [91]杜德莉,曾维军,吴能友.南海及邻域中、新生代盆地类型与油气资源关系探讨.地质评论, 1998, 14 (3): 580~589.
    [92]董冬冬,吴时国,张功成等.南海北部深水盆地的裂陷过程及裂陷期延迟机制探讨.科学通报2008,53(19): 2342-2351.
    [93]龚再升,李思田,杨甲明等.南海北部大陆边缘盆地油气成藏动力学研究.北京:科学出版社,2004.
    [94]郭令智,施央申,马瑞士.西太平洋中、新生代活动大陆边缘和岛弧构造的形成及演化.地质学报, 1983, 57(1): 11~21.
    [95]郝天珧,黄松,徐亚等.南海东北部及邻区深部结构的综合地球物理研究.地球物理学报, 2008, 51(6): 1785~1796.
    [96]何廉声,陈邦彦.南海地质构造图.南海地质地球物理图集.广州:广东地图出版社, 1987.
    [97]胡中平,管路平,顾连兴等.高速屏蔽层下广角地震波场分析及成像方法.地球物理学报, 2004, 47(1): 1~7.
    [98]黄福林.论南海的地壳结构及深部过程.海洋地质与第四纪地质, 1986, 6(1): 31-40
    [99]金庆焕主编.南海地质与油气资源.北京:地质出版社, 1989.
    [100]金庆焕,李唐根.南沙海域区域地质构造.海洋地质与第四纪地质, 2000,20(1) : 1-8
    [101]金翔龙,H.R.Kudrass,Guy Pautot. Marine Geology and Geophysics of the South China Sea.北京:海洋出版社. 1992.
    [102]金翔龙.南海地球科学研究报告.东海海洋, 1989, 7(4):21-29.
    [103]李家彪,金翔龙,阮爱国等.马尼拉增生楔中段的挤入构造.科学通报, 2004, 49(10): 1000-1008
    [104]李家彪,金翔龙,高金耀.南海东部海盆晚期扩张的构造地貌研究.中国科学D辑,2002,32(03):239-248.
    [105]李家彪主编.中国边缘海形成演化与资源效应. 2005,北京:海洋出版社,228-240.
    [106]李家彪主编.多波束勘测原理技术与方法.北京:海洋出版, 1999, 1-257.
    [107]李家彪主编.南海海洋图集-地质地球物理分册.2007,北京:海洋出版社.
    [108]李录明等.地震勘探原理、方法与解释.北京:地质出版社, 2007
    [109]李乃胜主编.中国边缘海地质地球物理特征及其演化.北京:海洋出版社, 2004, 1-456.
    [110]李湘云,吴振利,薛彬等. SEDIS IV型短周期自浮式海底地震仪及应用体会.热带海洋学报, 2007, 26 (5): 35~39.
    [111]李振伍.南海中部和北部地壳性质探讨.地球物理学报, 1984, 27(2): 153~165.
    [112]李智宏,胡中平,王辉明等,含高速层地震物理模型的广角地震波场研究勘探地球物理进展,2005,28(5): 345-348.
    [113]刘方兰,吴庐山.西沙海槽海域地形地貌特征及成因.海洋地质与第四纪地质.2006.26(3): 8-14.
    [114]刘光鼎.中国海区及邻域地质地球物理系列图及说明书(1:500万).北京:地质出版社,1992.
    [115]刘福田,胡戈,吴华等译.地震学中的射线方法[M].地质出版社,北京,1986
    [116]刘昭蜀,黄滋流,杨树康等.南海地质构造与陆缘扩张.北京:科学出版社, 1988
    [117]刘昭蜀,赵焕庭,范时清等.南海地质.北京:科学出版社,2002.
    [118]刘昭蜀.南海地质构造与油气资源.第四纪研究, 2000, 20(1): 69-77
    [119]刘忠臣,刘保华,黄振宗等.中国近海及邻近海域地形地貌.北京:海洋出版社, 2005: 205-208
    [120]栾锡武,高德章,喻普之等,中国东海及邻近海域一条剖面的地壳速度结构研究,地球物理学进展,2001,16(2):28-34.
    [121]吕文正,柯长志,吴声迪,等.南海中央海盆条带磁异常特征及构造演化.海洋学报, 1987, 9(10): 69~78.
    [122]丘学林,施小斌,阎贫等.南海北部地壳结构的深地震探测和研究新进展.自然科学进展,2003,(3): 231-236.
    [123]丘学林,陈颙,朱日祥等.大容量气枪震源在海陆联测中的应用:南海北部试验结果分析.科学通报, 2007, 52(4): 463-469.
    [124]丘学林,曾钢平,胥颐等.南海西沙石岛地震台下的地壳结构.地球物理学报2006,49(6): 1720-1729.
    [125]邱燕,温宁.南海北部边缘东部海域中生界及油气勘探意义.地质通报, 2004, 23(2): 142~146.
    [126]任纪瞬.中国东部及邻区大陆岩石圈的构造演化与成矿.北京:科学出版社,1990.
    [127]阮爱国,李家彪,冯占英等.海底地震仪及其国内外发展现状.东海海洋, 2004, 22(2): 19~27.
    [128]阮爱国,牛雄伟,吴振利,等.潮汕坳陷中生代沉积的折射波2D速度结构和密度.高校地质学报,2009,15(4):417-428.
    [129]邵磊,李献华,汪品先等.南海渐新世以来构造演化的沉积记录-ODP1148站深海沉积物中的证据.地球科学进展, 2004, 19 (4) : 539~544.
    [130]施小斌,丘学林等.南海热流特征及其构造意义.热带海洋学报.2003 (2): 63-73.
    [131]施小斌,周蒂,张毅祥,等.南海西沙海槽岩石圈的密度结构与热-流变结构.热带海洋学报,2002, 21(2):23-31.
    [132]宋海斌,郝天珧,江为为等.南海北部张裂边缘的类型及其形成机制探讨.陈颙等编:寸丹集—庆贺刘光鼎院士工作50周年学术论文集,北京:科学出版社. 1998, 1~10.
    [133]宋海斌,郝天珧,江为为等.南海地球物理场特征与基底断裂体系研究.地球物理学进展, 2002, 17(1): 24~33.
    [134]宋海斌,耿建华.海北部东沙海域天然气水合物的初步研究.地球物理学报,2001,44(05): 687-695.
    [135]宋海斌,吴时国,江为为.南海东北部973剖面BSR及其热流特征.地球物理学报,2007,50(5): 1508-1517.
    [136]孙珍,孙龙涛,周蒂,蔡东升,等.南海岩石圈破裂方式与扩张过程的三维物理模拟.地球科学,2009, 34(3):435-447..
    [137]王宏语,孙春岩,张洪波等.西沙海槽潜在天然气水合物成因及形成地质模式.海洋地质与第四纪地质, 2005,25(4):85-91.
    [138]王宏语,孙春岩等.西沙海槽潜在天然气水合物成因及形成地质模式.海洋地质与第四纪地质.2005.25(4).
    [139]吴时国,刘展,王万银等.东沙群岛海区晚新生代构造特征及其对弧-陆碰撞的响应.海洋与湖沼, 2004,35(6): 481-490.
    [140]吴世敏,周蒂,丘学林等.南海北部陆缘的构造属性问题.高校地质学报, 2001, 7(4): 419~426.
    [141]吴世敏,杨怡,周蒂,等.南海南北共轭边缘伸展模型探讨.高校地质学报,2005, 11(1):105-110.
    [142]吴振利,阮爱国,李家彪等.南海中北部地壳深部结构探测新进展.华南地震, 2008, 28(1): 21~28.
    [143]夏戡原,黄慈流.南海中生代特提斯沉积盆地的发现与寻找中生代含油气盆地的前景.地学前缘, 2000, 7 (3) :227~238.
    [144]夏戡原,黄慈流.深海钻探与南海.地球科学进展.1995, 10(3): 246~250.
    [145]薛彬,阮爱国,李湘云等. SEDIS IV型短周期自浮式海底地震仪数据校正方法.海洋学研究, 2008, 26(2): 98~102.
    [146]阎贫,刘海龄.南海及其周缘中新生代火山活动时空特征与南海的形成模式.热带海洋学报, 2005, 24(2): 33~41.
    [147]阎贫,温宁,王嘹亮等.南海北部跨越潮汕坳陷的海底地震仪调查实验.金翔龙,秦蕴珊,朱日祥等主编.中国地质地球物理研究进展—庆祝刘光鼎院士八十华诞, 2008, 494~500.
    [148]阎贫,刘海龄.南海北部陆缘地壳结构探测结果分析.热带海洋学报,2002,21(2):1-12
    [149]阎贫,刘昭蜀,姜绍人.南海北部地壳的深地震地质结构探测.海洋地质与第四纪地质,1997. 17(2):21-27.
    [150]杨森楠,杨巍然.中国区域大地构造学.北京:地质出版社, 1985
    [151]杨子赓.海洋地质学.济南:山东教育出版社,2004
    [152]姚伯初,曾维军,陈艺中等.南海北部陆缘东部的地壳结构.地球物理学报, 1994, 37(1): 27~35.
    [153]姚伯初,曾维军,陈艺中等.南海北部陆缘东部中生代沉积的地震反射特征.海洋地质与第四纪地质, 1995, 15(1): 81~90.
    [154]姚伯初,曾维军,D E Hayes等.中美合作调研南海地质专报.武汉:中国地质大学出版社,1994.
    [155]姚伯初,曾维军,陈艺中,等.南海西沙海槽,一条古缝合线.海洋地质与第四纪地质,1994,14(1):1-10.
    [156]姚伯初.南海北部陆缘天然气水合物初探.海洋地质与第四纪地质, 1998, 18(4): 11-18.
    [157]姚伯初.南海的地质构造及矿产资源,中国地质. 1998, 251(4): 27-30
    [158]姚伯初.南海海盆新生代的演化史.海洋地质与第四纪地质, 1996, 16 (2): 1~13.
    [159]姚伯初.南海西北海盆的构造特征及南海新生代的海底扩张.热带海洋, 1999, 18(1): 7~15.
    [160]姚伯初.南海西南海盆的岩石圈张裂模式探讨.海洋地质与第四纪地质,1999,19(2):37-48.
    [161]游庆瑜,刘福田,冉崇荣等.高频微功耗海底地震仪研制.地球物理学进展, 2003, 18(1): 173~176.
    [162]喻普之,楼清远等.海洋岩石圈的调查与研究.海洋科学译报增刊, 1994, 37:17-25.
    [163]张健等.南海深部地球动力学特征及其演化机制.地球物理学报. 2001,44(5). 602-610
    [164]张健,宋海斌等.南海西南海盆构造演化的热模拟研究.地球物理学报, 2005,48(6): 1357-1365.
    [165]张训华,徐世浙.南海海盆形成演化模式初探.海洋地质与第四纪地质. 1997, 17(2):1-7.
    [166]赵明辉,丘学林,叶春明等.南海东北部海陆深地震联测与滨海断裂带两侧地壳结构分析.地球物理学报2004:47(5): 845-852.
    [167]周蒂,陈汉宗,吴世敏等.南海的右行陆缘裂解成因.地质学报, 2002, 76(2): 180~190.
    [168]周蒂,王万银,庞雄等.地球物理资料所揭示的南海东北部中生代俯冲增生带.中国科学D辑-地球科学, 2006, 36(3): 209~218.
    [169]周蒂,俞何兴等.南海的右行陆缘裂解成因.地质学报, 2002, 76(2): 180-190.
    [170]周祖翼,李春峰.大陆边缘构造与地球动力学.北京:科学出版社, 2008.
    [171]朱俊江,丘学林,詹文欢,徐辉龙,孙龙涛.南海东部海沟的震源机制解及其构造意义.地震学报, 2005. 27(3): 260-268.
    [172]朱伟林,张功成,高乐.南海北部大陆边缘盆地油气地质特征与勘探方向.石油学报, 2008, 29(1):1~9.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700