用户名: 密码: 验证码:
六维加速度传感器的原理、系统及特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
六维加速度(Six degree-of-freedom (DOF) acceleration)传感技术是实现物体三维空间运动相对于参考惯性坐标系的三维线加速度和三维角加速度的传感和测量的多维运动传感技术。六维加速度传感技术在工业自动化控制系统、交通运输工具、机器人控制系统、导航制导设备、互动娱乐设备、医疗保健设备和地震预测装置中有着广泛的应用前景。目前,已经提出的各种六维加速度传感原理和结构复杂,导致开发的六维加速度传感器尺寸较大或工艺复杂。此外,缺乏完善的六维加速度传感器的传感特性评定方法和标准,制约了六维加速度传感器的实用化。因此,探索新的六维加速度传感方法,开发结构简单、成本低、精度高的六维加速度传感器,建立六维加速度传感器的传感特性评定方法和标准是六维加速度传感技术发展的必然要求。
     本文作者提出并实现了一种六维加速度传感器的原理,研究了基于该原理的六维加速度传感器系统的组成和传感特性。根据提出的原理设计并开发了一种基于六个共面的压电式单轴加速度传感器的压电式六维加速度传感器,建立了压电式六维加速度传感器的传感方程和传感误差模型,提出了相应的传感误差补偿方法和校准方法。在此基础上,建立了六维加速度传感器的传感特性测试系统,对开发的压电式六维加速度传感器的快速原型进行了实验测试。
     本文的主要研究工作和创新点归纳为以下五个方面:
     1.提出并研究了一种基于六个共面的单轴加速度传感器的六维加速度传感器的原理,通过获取和解耦固定在立方体上首尾相连、任意三条棱边不共面的六条棱边中点处且敏感轴线与相应棱边重合的六个单轴加速度传感器的输出实现六维加速度传感。建立了实现六维加速度传感的传感方程,分析了传感特性,包括传感误差、传感分辨率、传感范围和工作频率范围。
     2.研究了采用六个压电式单轴加速度传感器作为敏感元件的压电式六维加速度传感器系统的组成和工作原理,建立了相应的传感方程,设计并实现了实现六维加速度传感的敏感单元和相应的信号处理系统。采用基于实时仿真系统的快速控制原型技术开发了压电式六维加速度传感器的快速原型。
     3.分析了压电式六维加速度传感器的传感误差,建立了其传感误差模型和六个压电式单轴加速度传感器的安装误差和输出误差引起的传感误差的误差估计方程,分析了六个压电式单轴加速度传感器的安装误差和输出误差对传感误差的影响。在此基础上,提出了一种压电式六维加速度传感器的传感误差补偿方法,利用向量和矩阵的∞-范数建立了压电式六维加速度传感器的传感误差范围与被测对象运动的角速度范围、六个压电式单轴加速度传感器的安装误差范围和输出误差范围之间的数学关系模型。根据该数学模型,提出了一种误差补偿后的误差范围估计的方法。
     4.提出了压电式六维加速度传感器的校准原理,建立了相应的校准模型,分析了校准过程中加速度激励误差对校准结果的影响和最佳角加速度激励频率的范围,建立了对校准误差进行估计的方法。
     5.建立了六维加速度传感器的实验测试系统。在六维随机振动激励、固定轴线振动激励和固定轴旋转振动激励下对开发的压电式六维加速度传感器的快速原型的传感性能、校准和误差补偿的效果进行了实验测试。
     本文的研究工作为基于多个单轴加速度传感器的六维加速度传感器的研究和开发奠定了理论基础,对于评定六维加速度传感器的传感特性具有重要指导意义。
The sensing technology for six degree-of-freedom (DOF) acceleration is one kind of sensing technology for multi-dimensional motions by sensing and measuring the three-DOF linear acceleration and the three-DOF angular acceleration of the spatial motion of a measured object with respect to the reference inertial frame. The potential applications of the sensing technology for six-DOF acceleration can be found in industrial automatic control systems, transportations, robot control systems, navigation equipments, interactive entertainment equipments, medical equipments, and earthquake prediction equipments. Up to now, the existing principles and configurations for sensing the six-DOF acceleration are complex, which results in the dimensional size of the developed six-DOF accelerometers will be large and/or the manufacturing will be difficult. In addition, neither the methods nor the standards for evaluating the sensing performances of six-DOF accelerometers have been deeply investigated, which will restrain the application of six-DOF accelerometers. In this case, exploring new sensing methods for six-DOF acceleration, developing six-DOF accelerometers with simple structure, low cost, and high accuracy, and establishing the methods and standards for evaluating the sensing performances of six-DOF accelerometers are necessary for expediting the sensing technology for six-DOF acceleration.
     In this dissertation, the sensing principle of a six-DOF accelerometer based on six coplanar sensing elements for single-axis accelerations is proposed and realized, the systematic configuration and sensing characteristics of the six-DOF accelerometer based on the proposed principle are explored. According to the proposed principle, a piezoelectric six-DOF accelerometer based on six coplanar piezoelectric single-axis accelerometers is designed and developed, the sensing equation and sensing error model of the piezoelectric six-DOF accelerometer are established, and the corresponding compensation method and calibration method for the sensing errors are proposed. On these bases, the experimental setups for evaluating the sensing performances of the developed piezoelectric six-DOF accelerometer are established and the developed piezoelectric six-DOF accelerometer is experimentally tested.
     The major research works and the innovations in this dissertation can be summarized as follows
     1. The principle and sensing characteristics of a six-DOF accelerometer based on six coplanar sensing elements for single-axis accelerations are proposed and explored, the six-DOF acceleration can be sensed by accessing and decoupling the outputs from the six coplanar sensing elements for single-axis accelerations fixed at the midpoints of six end-to-end edges of a cube by ensuring that the sensing axial direction of one of the six single-axis accelerometers is aligned along one of the cube edges and any three edges of the six end-to-end edges are not in one plane. The corresponding sensing equation for the six-DOF acceleration is established. According to the established sensing equation, the sensing characteristics, including the sensing errors, sensing resolutions, sensing ranges, and operating frequency range, are analyzed.
     2. The configuration and principle of a piezoelectric six-DOF accelerometer based on coplanar six piezoelectric single-axis accelerometers is explored, the corresponding sensing equation is established, and the corresponding sensing unit of the piezoelectric six-DOF accelerometer to sense the six-DOF acceleration, as well as the signal processing system, are designed and developed. A rapid prototype of the piezoelectric six-DOF accelerometer is developed with the rapid control prototyping (RCP) technique based on a real-time simulation system.
     3. The sensing errors of the developed piezoelectric six-DOF accelerometer are analyzed, the mathematical model of the sensing errors and the estimation equations of the sensing errors attributable to the alignment errors and the output errors of the six piezoelectric single-axis accelerometers are established. On these bases, the impacts of the alignment errors and the output errors of the six piezoelectric single-axis accelerometers on the sensing errors of the piezoelectric six-DOF accelerameters are explored. The estimation method and the compensation method for the sensing errors of the piezoelectric six-DOF accelerometer are proposed and the mathematical relationship between the ranges of the sensing errors of the piezoelectric six-DOF accelerometer and the ranges of the alignment errors and the output errors of the six piezoelectric single-axis accelerometers is established utilizing the∞-norms of the vector and matrix. The estimation method for the ranges of the sensing errors after compensation is proposed according to the established mathematical relationship.
     4. The principle for calibrating the piezoelectric six-DOF accelerometer is proposed and the corresponding calibration model is established. The affect of the errors of the acceleration excitations on the calibration results and the optimal range of the frequency of the angular acceleration excitations are analyzed and an estimation method for the calibration error is proposed.
     5. The experiment setups for the six-DOF accelerometer are established. The sensing performances and the effects of the calibration and error compensation of the developed rapid prototype of the piezoelectric six-DOF accelerometer are experimentally verified with a six-DOF random vibration excitation, three fixed axis linear vibration excitations, and three fixed axis angular vibration excitations.
     The research works in this dissertation has established the theoretical foundation for the research and development of the six-DOF accelerometers based on multiple single-axis accelerometers and will be beneficial to evaluating the sensing characteristics of the six-DOF accelerometers.
引文
[1] Z. Y. Yang, S. Yi, and Z. Y. Liu. Measurement of six degree-of-freedom ground motion by using eight accelerometers [J]. Earthquake Engineering and Engineering Vibration, Vol. 4, No. 2: 229-232, 2005.
    [2]杨振宇,卢海燕,蔡莉,钟慧.六自由度地震动测量方法及其误差分析[J].世界地震工程, Vol. 23, No. 4: 84-87, 2007.
    [3] E. S. Choi, W. Chang, W. C. Bang, J. Yang, S. J. Cho, J. K. Oh, J. K. Cho, and D. Y. Kim. Development of the gyro-free handwriting input device based on inertial navigation system (INS) theory [C]. Proceedings of the SICE 2004 Annual Conference, Sapporo, Japan, Vol. 1-3: 1176-1181, August 2004.
    [4] J. Yang, E. S. Choi, W. Chang, W. C. Bang, S. J. Cho, J. K. Oh, J. K. Cho, and D. Y. Kim. A novel hand gesture input device based on inertial sensing technique [C]. Proceedings of the 30th Annual Conference of the IEEE Industrial Electronics Society (IECON 2004), Busan, South Korea, Vol. 3: 2786-2791, November 2004.
    [5] C. W. Jen, D. A. Johnson, and R. Gorez. A reduced-order dynamic model for end-effector position control of a flexible robot arm [J]. Mathematics and Computers in Simulation, Vol. 41, No. 5: 539-558, 1996.
    [6] J. M. Jasiewicz, J. H. Allum, J. W. Middleton, A. Barriskill, P. Condie, B. Purcell, and R. C. Li. Gait event detection using linear accelerometers or angular velocity transducers in able-bodied and spinal-cord injured individuals [J]. Gait & Posture, Vol. 24, No. 4: 502-509, 2006.
    [7] H. Lau and K. Tong. The reliability of using accelerometer and gyroscope for gait event identification on persons with dropped foot [J]. Gait & Posture, Vol. 27, No. 2: 248-257, 2008.
    [8] A. Zijlstra, J. H. Goosen, C. C. Verheyen, and W. Zijlstra. A body-fixed-sensor based analysis of compensatory trunk movements during unconstrained walking [J]. Gait & Posture, Vol. 27, No. 1: 164-167, 2008.
    [9] J. Favre, B. M. Jolles, R. Aissaoui, and K. Aminian. Ambulatory measurement of 3D knee joint angle [J]. Journal of Biomechanics, Vol. 41, No. 5: 1029-1035, 2008.
    [10] J. M. Jasiewicz, J. Treleaven, P. Condie, and G. Jull. Wireless orientation sensors: Their suitability to measure head movement for neck pain assessment [J]. Manual Therapy, Vol. 12, No. 4: 380-385, 2007.
    [11]周丽弦,崔中兴.无陀螺钻井测量技术研究[J].中国惯性技术学报, Vol. 8, No. 2: 54-57, 2000.
    [12] B. Barshan and H. F. Durrant-Whyte. An inertial navigation system for a mobile robot [C]. Proceedings of the 1993 International Conference on Intelligent Robots and Systems, Yokohama, Japan, Vol. 3: 2243-2248, July 1993.
    [13] S. Scheding, E. M. Nebot, M. Stevens, H. Durrant-Whyte, J. Roberts, P. Corke, J. Cunningham, and B. Cook. Experiments in autonomous underground guidance [C]. Proceedings of the 1997 IEEE International Conference on Robotics and Automation, New York, NY, USA, Vol. 3: 1898-1903, April 1997.
    [14] K. P. Ying and M. F. Golnaraghi. A vector-based gyro-free inertial navigation system by integrating existing accelerometer network in a passenger vehicle [C]. Proceedings of the 2004 Position Location and Navigation Symposium (PLANS 2004), Monterey, CA, USA, 234-242, April 2004.
    [15] K. S. Mostov, A. A. Soloviev, and T. K. J. Koo. Accelerometer based gyro-free multi-sensor generic inertial device for automotive applications [C]. Proceedings of the 2007 IEEE Conference on Intelligent Transportation System, Boston, MA, USA: 1048-1052, November 1997.
    [16] K. M. Kerr, J. A. White, D. A. Barr, and R. A. Mollan. Analysis of the sit-stand-sit movement cycle in normal subjects [J]. Clinical Biomechanics, Vol. 12, No. 4: 236-245, 1997.
    [17] M. C. Boonstra, R. M. A. van der Slikke, N. L. W. Keijsers, R. C. van Lummel, M. C. D. Malefijt, and N. Verdonschot. The accuracy of measuring the kinematics of rising from a chair with accelerometers and gyroscopes [J]. Journal of Biomechanics, Vol. 39, No. 2: 354-358, 2006.
    [18] P. G. Martin, G. Hall, J. R. Crandall, and W. D. Pilkey. Measuring the acceleration of a rigid body [J]. Shock and Vibration, Vol. 5, No. 4: 211--224, 1998.
    [19] N. Yoganandan, J. Zhang, F. A. Pintar, and L. Y. King. Lightweight low-profile nine-accelerometer package to obtain head angular accelerations in short-duration impacts [J]. Journal of Biomechanics, Vol. 39, No. 7: 1347-1354, 2006.
    [20] N. Xie, G. L. Qian, H. Q. Gao, and N. X. Wei. Measurement of ship motion during model tests and full scale seakeeping trials [C]. Proceedings of 8th International Symposium on Practical Design of Ships and Other Floating Structures, Vol. 1: 555-561, 2001.
    [21] A. Preumont, M. Horodinca, I. Romanescu, B. de Marneffe, M. Avraam, A. Deraemeker, F. Bossens, and A. A. Hanieh. A six-axis single-stage active vibration isolator based on Stewart platform [J]. Journal of Sound and Vibration, Vol. 300, No. 3-5: 644-661, 2007.
    [22] G. S. Hauge and M. E. Campbell. Sensors and control of a space-based six-axis vibration isolation system [J]. Journal of Sound and vibration, Vol. 269, No. 3-5: 913-931, 2004.
    [23] B. N. Agrawal and H. J. Chen. Algorithms for active vibration isolation on spacecraft using a Stewart platform [J]. Smart materials & structures, Vol. 13, No. 4: 873-880, 2004.
    [24] G. Zhen, S. Quanjun, L. Ming, L. Jianhe, Y. Yong, and G. YunJian. Research on a throwing multidimensional force sensing system for advanced training of shot-put athletes [C]. Proceedings of 2006 IEEE International Conference on Information Acquisition, Vol. 1-2: 376-381, 2006.
    [25] W. T. Ang, P. K. Pradeep, and C. N. Riviere. Active tremor compensation in microsurgery [C]. Proceedings of 26th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Vol. 4: 2738-2741, 2004.
    [26] J. H. Kim, K. Shih-Kang, and M. Chia-Hsiang. An ultraprecision six-axis visual servo-control system [J]. IEEE Transactions on Robotics, Vol. 21, No. 5: 985-993, 2005.
    [27] K. E. Steele, D. W. Wang, M. D. Earle, E. D. Michelena, and R. J. Dagnall. Buoy pitch and roll computed using three angular rate sensors [J]. Coastal Engineering, Vol. 35, No. 1-2: 123-139, 1998.
    [28] M. A. Lemkin, B. E. Boser, D. Auslander, and J. H. Smith. A 3-axis force balanced accelerometer using a single proof-mass [C]. Proceedings of International Conference on Solid-state Sensors and Actuators, Vol. 1-2: 1185-1188, 1997.
    [29] K. Kwon, and S. Park. A bulk-micromachined three-axis accelerometer using silicon direct bonding technology and polysilicon layer, Sensors and Actuators [J]. Vol. 66, No. 1-3: 250-255, 1998.
    [30] K. Kunz, P. Enoksson, and G. Stemme. Highly sensitive triaxial silicon accelerometer with integrated PZT thin film detectors, Sensors and Actuators [J]. Vol. 92, No. 1-3: 156-160, 2001.
    [31] M. A. Lemkin, M. A. Ortiz, N. Wongkomet, B. E. Boser, and J. H. Smith. A 3-axis surface micromachinedΣΔaccelerometer [C]. Proceedings of 1997 IEEE International Solids-State Circuits Conference, Vol. 40: 202-203, 1997.
    [32] P. P. K. Szaniawski, A. Napieralski, and P. Sekalski. Design of a Prototype of a 3-Axis Capacitive Acceleration Sensor[C]. Proceedings of 24th International Conference on Microelectronics, Vol. 1-2: 219-222, 2004.
    [33]孟明,葛运建,吴仲城,戈瑜,钱敏.一种新型多维加速度传感器弹性体设计与仿真分析[J].传感技术学报, Vol. 16, No. 4: 379-383, 2003.
    [34]吴仲城,孟明,申飞,戈瑜.一体化结构六维加速度传感器设计[J].仪器仪表学报, Vol. 25, No. 4: 302-303, 2004.
    [35] M. Meng, Z. C. Wu, Y. Yu, Y. Ge, and Y. J. Ge. Design and characterization of a six-axis accelerometer [C]. Proceedings of the 2005 IEEE International Conference on Robotics andAutomation (ICRA 2005), Barcelona, Spain, Vol. 1-4: 2356-2361, April 2005.
    [36] R. Amarasinghe, D. V. Dao, T. Toriyama, and S. Sugiyama. Design and fabrication of miniaturized six-degree of freedom piezoresistive accelerometer [C]. Proceedings of 18th IEEE International Conference on Micro Electro Mechanical Systems: 351-354, 2005.
    [37] R. Amarasinghe, D. V. Dao, T. Toriyama, and S. Sugiyama. Development of miniaturized 6-axis accelerometer utilizing piezoresistive sensing elements [J]. Sensors and Actuators A: Physical, Vol. 134, No. 2: 310-320, 2007.
    [38]唐富荣,薛大同,六轴加速度计的结构原理与阻尼振动设计[J].传感技术学报, No. 4: 287-292, 2002.
    [39] S. Nakamura. MEMS inertial sensor toward higher accuracy & multi-axis sensing [C]. Proceedings of IEEE Sensors, Vol. 1-2: 939-942, 2005.
    [40] B. Bachrach, E. R. Canavan, and W. S. Levine. Diagonalizing controller for a superconducting six-axis accelerometer [C]. Proceedings of 29th IEEE Conference on Decision and Control, Vol. 1-6: 2785-2793, 1990.
    [41] E. R. Canavan, H. J. Paik, and J. W. Parke. A superconducting six-axis accelerometer [J]. IEEE Transactions on Magnetics, Vol. 27, No. 2: 3253-3256, 1991.
    [42] V. Chapsky, V. T. Portman, and B. Z. Sandler. Single-mass 6-DOF isotropic accelerometer with segmented PSD sensors [J]. Sensors and Actuators A: Physical, Vol. 135, No. 2: 558-569, 2007.
    [43]于春战.基于并联机构的六维加速度传感器[D].秦皇岛:燕山大学, 2005.
    [44]侯文静.基于Stewart平台的六维加速度传感器弹性体设计[D].秦皇岛:燕山大学, 2007.
    [45]吕翔宇.并联结构六维加速度传感器研究[D].秦皇岛:燕山大学, 2007.
    [46] A. S. Hu. Rotational measurement techniques using linear accelerometers [C]. Proceeding of the 23rd International Instrumentation Symposium: 349-354, 1977.
    [47] V. B. Corey. Measuring angular acceleration with linear acceleration [J]. Control Engineering, No. 2: 79-80, 1962.
    [48] L. D. DiNapoli. The measurement of angular velocities without the use of gyros [D]. Master Thesis, Philadelphia: The Moore School of Electrical Engineering, University of Pennsylvania, 1965.
    [49] A. R. Schuler. Measuring rotational motion with linear accelerometers [J]. IEEE Transaction on AES, Vol. 3, No. 3: 465-472, 1967.
    [50] S. J. Merhav. A nongyroscopic inertial measurement unit [J]. Journal of Guidance, Vol. 5, No. 3: 227-235, 1982.
    [51] M. C. Algrain. Accelerometer-based platform stabilization [C]. Proceedings of SPIE onAcquisition, Tracking, and Pointing, Vol. 1482: 367-382, 1991.
    [52] J. H. Chen, S. C. Lee, and D. B. DeBra. Gyroscope free strap-down inertial measurement unit by six linear accelerometers [J]. Journal of Guidance, Control, and Dynamics, Vol. 17, No. 2: 286-290, 1994.
    [53] S. C. Lee and Y. C. Huang. Innovative estimation method with measurement likelihood for all-accelerometer type inertial navigation system [J]. IEEE Transactions on Aerospace and Electronic Systems, Vol. 38, No. 1: 339-346, 2002.
    [54] C. W. Tan, S. Park, K. Mostov, and P. Varaiya. Design of gyroscope-free navigation systems [C]. Proceedings of 2001 IEEE Intelligent Transportation Systems: 286-291 2001.
    [55] S. Park, C. W. Tan, and J. Park. A scheme for improving the performance of a gyroscope-free inertial measurement unit [J]. Sensors and Actuators A: Physical, Vol. 121, No. 2: 410-420, 2005.
    [56] C. W. Tan and S. Park. Design of accelerometer-based inertial navigation systems [J]. IEEE Transactions on Instrumentation and Measurement, Vol. 54, No. 6: 2520-2530, 2005.
    [57] C. F. Kao and T. L. Chen. Design and analysis of an orientation estimation system using coplanar gyro-free inertial measurement unit and magnetic sensors [J]. Sensors and Actuators A: Physical, Vol. 144, No. 2: 251–262, 2008.
    [58]丁明理,王祁,无陀螺惯性测量组合研究现状概述[J].中国惯性技术学报,Vol. 13, No. 4: 83-88, 2005.
    [59]史震,无陀螺捷联惯导系统中加速度计配置方式[J].中国惯性技术学报, Vol. 10, No. 1: 15-19, 2002.
    [60]马澍田,陈世有,李艳梅,张海霞.无陀螺捷联惯导系统[J].航空学报, Vol. 18, No. 4: 484-488, 1997.
    [61]尹德进,王宏力,刘光斌.捷联惯导系统六加速度计配置方案研究[J].中国惯性技术学报, Vol. 11, No. 2: 48-51, 2003.
    [62] Q. Wang, M. L. Ding, and P. Zhao. A new scheme of non-gyro inertial measurement unit for estimating angular velocity [C]. Proceedings of 29th Annual Conference of the IEEE Industrial Electronics Society, Vol. 2: 1564-1567, 2003.
    [63]丁明理,王祁.无陀螺惯性测量技术研究现状及理论概述[J].佳木斯大学学报(自然科学版), Vol. 21, No. 1: 38-42, 2003.
    [64]赵建伟,马澍田,陈慧.无陀螺捷联惯导系统角速度解算方法的研究[J].哈尔滨工程大学学报, Vol. 20, No. 4: 40-45, 1999.
    [65] M. Ding, Q. Zhou, Q. Wang, and C. Wang. Feasibility Analysis of Accelerometer Configuration of Non-gyro Micro Inertial Measurement Unit [C]. Proceedings of the 5thCES/IEEE Conference on International Power Electronics and Motion Control (IPEMC '06), Shanghai, China, Vol. 3:1799-1802, August 2006.
    [66]陈世友,李春花.无陀螺捷联惯导系统捷联方案研究[J].航空学报, Vol. 20, No. 6: 566-568, 1999.
    [67]王劲松,王祁,孙圣和.无陀螺微惯性测量装置[J].传感器技术, Vol. 22, No. 4: 43-45, 2003.
    [68] C. Tan, K. Mostov, and P. Varaiya. Feasibility of A Gyroscope-free Inertial Navigation System for Tracking Rigid Body Motion, California PATH Research Reports, University of California, Berkeley, 2000.
    [69] K. Mostov, C. W. Tan, and P. Varaiya. Development of integrated navigation systems based on gryo-free INS, California PATH Research Reports, University of California, Berkeley, 1999.
    [70] C. W. Tan and S. Park. Design and Error Analysis of Accelerometer-Based Inertial Navigation systems, California PATH Research Reports, University of California, Berkeley, 2002.
    [71] C. Y. Hung, C. M. Fang, and S. C. Lee. A compensator to advance gyro-free INS precision [J]. International Journal of Control, Automation and Systems, Vol. 4, No. 3: 351-358, 2006.
    [72] C. Y. Hung and S. C. Lee. A calibration method for six-accelerometer INS [J]. International Journal of Control, Automation and Systems, Vol. 4, No. 5: 615-623, 2006.
    [73]崔敏,马铁华,张慧,曹咏宏.基于十二加速度计的GFSINS安装误差标定及补偿[J].中国惯性技术学报, Vol. 17, No. 4: 413-418, 2009.
    [74] [113]吴俊伟,李绵伟,王小旭,金春竹.无陀螺捷联惯导系统的安装误差辨识方法[J].测试技术学报, Vol. 22, No. 5: 412-418, 2008.
    [75]汪小娜,王树宗,朱华兵.无陀螺捷联惯导系统加速度计安装误差研究[J].兵工学报, Vol. 29, No. 2: 159-163, 2008.
    [76]杨华波,蔡洪,张士峰.无陀螺系统构型安装误差标定及补偿方案分析[J].宇航学报, Vol. 29, No. 6: 1852-1857, 2008.
    [77]覃方君,许江宁,傅军,周红进.一种简化的无陀螺惯导系统安装误差校准方法[J].测试技术学报, Vol. 22, No. 2: 155-159, 2008.
    [78] K. S. Mostov. Design of accelerometer-based gyro-free navigation systems [D]. University of California Berkeley, 2000.
    [79] K. S. Mostov, A. A. Soloviev, and T. K. J. Koo. Initial attitude determination and correction of gyro-free INS angular orientation on the basis of GPS linear navigation parameters [C]. Proceedings of IEEE Conference on Intelligent Transportation System: 1034-1039, 1997.
    [80] S. Park and C. Tan. GPS-Aided Gyroscope-Free Inertial Navigation Systems, California PATH Research Reports, University of California, Berkeley, 2002.
    [81] S. C. Lee and C. Y. Liu. An innovative estimation method with own-ship estimator for an all accelerometer-type inertial navigation system [J]. International Journal of Systems Science, Vol. 30, No. 12: 1259-1266, 1999.
    [82]钱朋安,葛运建,吴仲城.六维加速度的测量研究[J].电子测量与仪器学报, Vol. 19, No. 2: 11-14, 2005.
    [83]史震.抗雷达关机的无陀螺捷联惯性制导方案探讨[J].弹箭与制导学报, No. 4: 42-45, 2000.
    [84]胡斌宗,周百令,赵池航.面向载体自转的无陀螺捷联惯导系统[J].中国惯性技术学报, Vol. 11, No. 6: 7-10, 2003.
    [85]施闻明,杨晓东,徐彬.无陀螺捷联惯导系统现状及发展研究[J].战术导弹控制技术, No. 3: 46-51, 2006.
    [86]赵龙,史震,马澍田.无陀螺捷联惯导系统角速度解算精度的研究[J].中国惯性技术学报, Vol. 9, No. 1: 12-15, 2001.
    [87]汪小娜,王树宗,朱华兵.无陀螺捷联惯导系统模型研究[J].兵工学报, Vol. 27, No. 2: 288-292, 2006.
    [88]屈新芬,谭惠民,商顺昌.捷联惯性测量单元配置方案及比较[J].探测与控制学报, Vol. 27, No. 3: 59-64, 2005.
    [89]罗运顺,王祁,丁明理,殷栩.基于加速度计的无陀螺惯性测量系统设计[J].战术导弹控制技术, No. 1: 30-33, 2006.
    [90]施闻明,杨晓东,徐彬.非理想状态下无陀螺惯导系统的误差分析[J].舰船电子工程, Vol. 26, No. 3: 69-72, 2006.
    [91]肖伟光,杜祖良,王祁,丁明理.九加速度计NGMIMU实用设计方案[J].宇航学报, Vol. 27, No. 3: 478-482, 2006.
    [92]李海涛,曹咏弘.捷联惯导系统十二加速度计配置方案研究[J].机械管理开发, No. 4: 23-24, 2007.
    [93]丁明理,王祁,周庆东.一种提高角速度解算精度的九加速度计配置方案[J].南京理工大学学报(自然科学版), Vol. 31, No. 2: 210-213, 2007.
    [94]赵龙,史震,马澍田.一种新的捷联矩阵更新算法在无陀螺捷联惯导系统中的应用[J].中国惯性技术学报, Vol. 8, No. 4: 51-54, 2000.
    [95]赵龙,史震,马澍田.对无陀螺捷联惯性制导系统中的数值积分方法的讨论[J].弹箭与制导学报, Vol. 21, No. 2: 11-15, 2001.
    [96]王劲松,王祁,孙圣和.无陀螺微惯性测量组合的优化算法研究[J].哈尔滨工业大学学报, Vol. 34, No. 5: 632-635, 2002.
    [97]赵龙,陈哲.提高无陀螺捷联惯导系统角速度解算精度的新方法[J].系统仿真学报, Vol.15, No. 4: 579-580, 2003.
    [98]王晓沁,李永新,朱明武.全加速度计惯性测量的优化设计及仿真分析[J].弹道学报, Vol. 15, No. 4: 12-16, 2003.
    [99]王劲松,王祁,孙圣和.基于数据融合理论的无陀螺微惯性测量组合算法研究[J].南京理工大学学报(自然科学版), Vol. 28, No. 1: 24-28, 2004.
    [100]李庆利,薛永祺,施鹏飞.无陀螺DR及其与北斗组合导航的融合算法[J].计算机工程, Vol. 32, No. 4: 18-20, 2006.
    [101]赵建伟,马澍田.提高无陀螺捷联惯导系统角速度解算精度的方法[J].自动化技术与应用, Vol. 18, No. 5: 42-44, 1999.
    [102]丁明理,王祁,洪亮,赵鹏.无陀螺微惯性测量单元的卡尔曼滤波方法研究[J].仪器仪表学报, Vol. 24, No. S4: 310-313, 2003.
    [103]丁明理,王祁,宋凯.无陀螺惯性测量组合姿态解算新方法[J].哈尔滨工业大学学报, Vol. 38, No. 7: 1025-1027, 2006.
    [104] C. Jekeli, Inertial Navigation Systems with Geodetic Applications [M], Berlin; New York: Walter de Gruyter: 20-22, 2001.
    [105]王代华,侯向红,袁刚.一种六轴加速度传感器的敏感元件的布局方法[P].专利号: ZL 2006 1 0095028. 3,授权公告日: 2009. 01. 07.
    [106]许江宁,朱涛,卞鸿巍.惯性传感技术发展与展望[J].海军工程大学学报, Vol. 19, No. 3: 1-5, 2007.
    [107]周红进,许江宁,覃方君.一种新的基于加速度计的无陀螺捷联惯性导航系统设计与实现[J].仪器仪表学报, Vol. 29, No. 7: 1549-1502, 2008.
    [108]许益明,赵现朝,高峰,张建政.一种新型六维加速度传感器的结构设计与分析[J].机械设计与研究, Vol. 25, No. 1: 48-52, 2009.
    [109]于波,陈云相,郭秀中.惯性技术[M]. 1版.北京:北京航空航天大学出版社, 1994.
    [110]邓正隆.惯性技术[M]. 1版.哈尔滨:哈尔滨工业大学出版社, 2006.
    [111]霍曼.飞速发展的航空电子[M]. 1版.北京:航空工业出版社, 2007.
    [112] O. J. Woodman. An introduction to inertial navigation [R], Technical Report, University of Cambridge, 2007.
    [113]周百令,黄胜华,王寿荣,胡斌宗.一种新型的单陀螺多加速度计捷联惯导系统[J].中国惯性技术学报, Vol. 10, No. 1: 6-9, 2002.
    [114]曹咏弘,祖静,林祖森.无陀螺捷联惯导系统综述[J].测试技术学报, Vol. 18, No. 3: 269-273, 2004.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700