用户名: 密码: 验证码:
水稻稻瘟病广谱和持久抗性基因的发现与定位及其抗病机理的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
长期以来,在中国的广东省,三黄占2号(SHZ-2)被育种家们公认为是具有广谱,持久抗水稻稻瘟病的优良品种。但是,由于育种家们对它的抗病分子遗传机制缺乏了解,所以很难将它的这种广谱,持久抗病性转移到其他品种中并长期利用它来抵抗因稻瘟病带来的产量损失。为了了解三黄占2号品种的这种抗病的分子遗传机制,本文我们用它与另一个具有中度感稻瘟病的品种特籼占13号(TXZ-13)杂交,并用F1与特籼占13号回交,通过单粒传和田间选择的方法,从BC3中筛选到一个不仅具有优良农艺性状,而且具有持久抗水稻稻瘟病的品种BC-10。BC-10在种植的8个季节中一直表现着很强的稻瘟病抗性。此外,为了发掘和研究与持久抗病相关的QTL,本文还通过单粒传的方法创建了一个具有244个株系的BC4F3群体。同时为了能做到对QTL的精细定位,又利用单粒传的方法创建了两个F2群体,其中一个是SHZ-2和TXZ-13杂交得到的含有343个单株的群体;另一个是用BC-10和TXZ-13杂交得到的含有600个单株的群体。本研究采用了SNP芯片技术,SSR分子标记技术和设计候选基因特异引物的方法来识别与持久抗稻瘟病相关的导入片段以及QTLs。同时还利用44K基因表达芯片技术研究了SHZ-2, BC-10和TXZ-13在稻瘟病感染24小时和48小时的基因表达情况。
     通过上述研究,获得下述重要结果:
     1、利用SNP芯片技术,SSR分子标记技术和候选基因特异引物的方法,在BC-10中找到了一些从SHZ-2中导入的片段,经过在BC4F3群体中分析,发现了3个分布在染色体2,6和9上的与持久抗病相关的新的QTLs, qBR2.1,qBR6.1和qBR9.1。它们对水稻叶瘟病抗性方面的贡献分别为16.2%,14.9%和22.3%。
     2、利用BC4F3中杂合的自交系创建了含有qBR2.1,qBR6.1和qBR9.1三个QTLs的近等基因系,对这些近等基因系进行了多季田间稻瘟病抗性鉴定,发现qBR9.1对稻瘟病具有完全抗性;qBR2.1或qBR6.1单独存在时并没有减少病害,而是两个QTLs结合在一起时,它们减少了水稻19.5%的病害,这表明具有部分抗性的QTL可以有效地减少稻瘟病疫情。
     3、利用两个F2群体,发现qBR9.1是一个新的具有广谱抗稻瘟病的主效基因,将其精细定位,被确定在染色体9上一个69.1 kb区间内,并证明BC-10携带的该基因确系来自其亲本SHZ-2。通过水稻基因组分析,发现在这一区间只有一个具有假定抗病功能的NBS-LRR基因。利用设计该基因特因引物,发现该基因与持久抗病性紧密连锁。鉴此,将该新的持久抗病基因命名为Pi46(t)。
     4、经过测序分析,发现Pi46(t)编码一个具有NBS-LRR结构域的蛋白质,该蛋白质含有743个氨基酸。而在TXZ-13中Pi46(t)的等位基因只编码一个具有537个氨基酸的蛋白质,并且缺失了LRR结构域。进一步的表达研究表明稻瘟病可以强烈诱导Pi46(t)基因的表达。同时,本研究还发展了三个新的与Pi46(t)紧密连锁的分子特异标记CRG4-1 CRG4-2和CRG4-3,该标记已被用于分子辅助育种计划中。
     5、为了充分发掘与稻瘟病抗性有关的基因并了解水稻稻瘟病抗病的分子机制,首次利用44K基因表达芯片技术对SHZ-2, BC-10和TXZ-13在感染稻瘟病菌24和48小时的转录本进行了分析,结果表明,在抗病品种SHZ-2和BC-10中,因感染稻瘟病菌而被大大激活的基因(DEGs)数量是感病品种中的两倍。对这些基因(DEGs)进行聚类分析发现,SHZ-2和BC-10的持久抗性可能与那些48小时在两个品种中同时被激活的基因(DEGs)有关。对DEGs的功能分析同时结合BC-10基因组中的导入片段的调查,发现和荷尔蒙JA信号调节途径在水稻稻瘟病抗病中起着重要的作用。同时,在抗病品种中,一些转录因子也因稻瘟病菌的入侵而被大大激活,例如WRKY, AP2和ZIM。还有一些与防卫反应相关的基因和一些与抗病相关基因的表达也大大增强。
SHZ-2, an indica cultivar with broad spectrum and durable resistance to multiple races of the blast pathogen, has been recognized as a cultivar for long time in Guangdong, China. However, it has been difficult to transfer its broad spectrum and durable resistance into other cultivars due to the poor understanding of the molecular genetic mechanism of its resistance. In order to understand its molecular genetic basis of the broad spectrum and durable resistance of SHZ-2, it was crossed to TXZ-13, a blast susceptible variety, to produce a BC3 line (BC-10) that exhibited strong to moderate blast resistance over eight cropping seasons in the field. To identify and dissect the QTL responsible for durable blast resistance, 244 BC4F3 lines were evaluated for blast resistance in the greenhouse and blast nursery. To fine mapping the QTLs, two populations of 343 F2 derived from SHZ-2×TXZ-13 and 600 F2 from SHZ-2×TXZ-13 were developed by single seed descent. A single feature polymorphism microarray, Golden Gate chips, SSR markers and gene-specific primers were used to identify the introgressions of SHZ-2 in BC-10, to decide the QTLs associated with the durable resistance to multiple races in Philippines and fine mapping the QTLs. The main results obtained are as followings:
     1. Chromosomal introgressions from SHZ-2 were identified by using a single feature polymorphism microarray, SSR markers and gene-specific primers. Segregation analysis of BC4F3 population indicated that three regions (QTLs) on chromosome 2, 6, and 9, designated as qBR2.1, qBR6.1 and qBR9.1 were associated with blast resistance and contributed to the reduction of diseased leaf area (DLA) by 16.2%, 14.9 and 22.3% respectively.
     2. We defined three QTLs using pairs of near-isogenic lines extracted from heterogeneous inbred families (HIF). Pairwise comparison of these lines enabled the dissection of the relative contributions of individual QTL. The qBR9.1 conferred strong resistance as expected because of the presence of NBS-LRR genes. Under field condition, qBR2.1 or qBR6.1 individually did not reduce disease but when combined together, they reduced disease by 19.5%, suggesting that small effect QTLs could be effective in reducing epidemics. The qBR6.1 and qBR9.1 region contains NBS-LRR sequences, whereas the qBR2.1 did not. The expression pattern of candidate genes within the QTL regions suggested functional roles of these genes in response to blast infection.
     3. A new major QTL of qBR9.1 conferring durable resistance to rice blast was finely mapped into a 69.1 kb region on the chromosome 9 that has been inherited from the resistant line SHZ-2 into backcross 3 lines BC-10. By annotation analysis, only one predicated disease resistance gene with NBS-LRR domain was found within this region. Using gene specific marker analysis, we found this gene co-segregated with blast resistance in F2 and F3 populations derived from SHZ-2. We tentatively designate it as Pi46(t).
     4. Sequence analysis revealed that the Pi46(t) encodes a nucleotide binding site and leucine-rich repeat (NBS–LRR) protein which is composed of 743 amino acid polypeptide, Pi46 was highly induced by blast infection in resistant lines SHZ-2 and BC-10.
     5. Three new gene specific markers, CRG4-1 CRG4-2 and CRG4-3, have also been developed, which are co-segregated with the Pi46(t) and have been used for MAS breeding and the introduction of the durable resistant gene Pi46(t) into IR64 and the development of near isogenic lines.
     6. To identify the genes involved in blast resistance to blast in rice and understand the molecular mechanism of plants resistance to blast, a comparative transcriptomic analysis were did among the backcross line BC-10 and its parental lines SHZ-2 and TXZ-13 using 44k microarray method.
     We found the number of genes responding to blast infection in resistance lines BC-10 and SHZ-2 was twice that in susceptible line TXZ-13 at 24 HAI and 48 HAI. Cluster analysis reveals that the blast resistance in SHZ-2 and BC-10 may relate to those DEGs which response to blast infection both in SHZ-2 and BC-10 at 48 HAI. The function analysis of the DEGs suggests that the JA signaling pathway plays important role in the rice resistance to blast. The expression of some of the transcription factors, such as WRKY, AP2 and ZIM were significantly up-regulated only in resistant line BC-10 and SHZ-2 by blast infection. And some of the defense related genes were activated only in resistant lines BC-10 and SHZ-2.
引文
Allen T D, Nuss D L. 2004. Specific and common alterations in host gene transcript accumulation following infection of the chestnut blight fungus by mild and severe hypoviruses. J Virol, 78:4145-4155
    Aranda M A, Escaler M, Wang D, Maule A J. 1996. Induction of HSP70 and polyubiquitin expression associated with plant virus replication. Proc Natl Acad Sci, 93:15289-15293
    Ashikawa I, Hayashi N, Yamane H, Kanamori H, Wu J Z, Matsumoto T, Ono K, Yano M. 2008. Two adjacent NBS-LRR class genes are required to confer Pikm-specific rice blast resistance. Genetics, 180: 2267–2276
    Babujee L, Gnanamanickam S S. 2000. Molecular tools for characterization of rice blast pathogen, Magnaporthe grisea, population and molecular marker-assisted breeding for disease resistance. Curr Sci, 78: 248–257
    Bai J F, Pennill L A, Ning J C, Lee S W, Ramalingam J, Webb C A, Zhao B Y, Sun Q, Nelson J C, Leach J E, Hulbert S H. 2002. Diversity in nucleotide binding site–leucine-rich repeat genes in cereals. Genome Research, 12: 1871-1884
    Balbi V, Devoto A. 2008. Jasmonate signaling network in Arabidopsis thaliana: crucial regulatory nodes and new physiological scenarios. New Phytol, 177:301–318
    Ballini E, Morel J B, Droc G, Price A, Courtois B, Notteghem J L, Tharreau D. 2008. A genome-wide meta-analysis of rice blast resistance genes and quantitative trait loci provides new insights into partial and complete resistance. Molecular Plant-Microbe Interactions, 21: 859–868
    Bennetzen J L. 2000. Comparative sequence analysis of plant nuclear genomes: Micro-colinearity and its many exceptions. Plant Cell, 12:1021-1029
    Berruyer R, Adreit H, Milazzo J, Gaillard S, Berger A, Dioh W, Lebrun M H, Tharreau D. 2003.
    Identification and fine mapping of Pi33, the rice resistance gene corresponding to the Magnaporthe grisea avirulence gene ACE1. Theor Appl Genet, 107:1139–1147
    B?hnert H U, Fudal I, Dioh W, Tharreau D, Nottéghem J L, Lebrun M H. 2004. A putative polyketide synthase/peptide synthetase from Magnaporthe grisea signals pathogen attack to resistant rice. Plant Cell, 16: 2499–2513
    Bonman J M, Khush G S, Nelson R J. 1992. Breeding rice for resistance to pests. Annu Rev Phytopathol, 30: 507–528
    Broekaert W F, Delaure S L, De Bolle M F, Cammue B P. 2006. The role of ethylene in host-pathogen interactions. Annu Rev Phytopathol, 44:393–416
    Bryan G T, Wu K S, Farrall L, Jia Y L, Hershey H P, McAdams S A, Faulk K N, Donaldson G K, Tarchini R, Valent B. 2000. A single amino acid difference distinguishes resistant and susceptible alleles of the rice blast resistance gene Pi-ta. Plant Cell, 12: 2033–2045
    Caracuel-Rios Z, Talbot N J. 2007. Cellular differentiation and host invasion by the rice blast fungus Magnaporthe grisea. Curr Opin Microbiol, 10:339-345Catoni M, Miozzi L, Fiorilli V, Lanfranco L, Accotto G P. 2009. Comparative analysis of expression
    profiles in shoots and roots of tomato systemically infected by tomato spotted wilt virus reveals organ-specific transcriptional responses. Molecular Plant-Microbe Interactions, 22(12): 1504–1513
    Chauhan RS, Farman ML, Zhang HB, Leong SA. 2002. Genetic and physical mapping of a rice blast resistance locus, Pi-CO39(t), that corresponds to the avirulence gene AVR1-CO39 of Magnaporthe grisea. Mol Genet Genomics, 267(5): 603-612
    Chen D H, Zeigler R S, Ahn S W, Nelson R J. 1996. Phenotypic characterization of the rice blast resistance gene Pi-2(t). Plant Disease, 80: 52–56
    Chen S, Wang L, Que Z Q, Pan R Q, Pan Q H. 2005. Genetic and physical mapping of Pi37(t), a new gene conferring resistance to rice blast in the famous cultivar St. No. 1. Theor Appl Genet, 111: 1563–1570
    Chen W Q, Provart N J, Glazebrook J, Katagiri F, Chang H S, Eulgem T, Mauch F, Luan S, Zou G Z, Whitham S A, Budworth P R, Tao Y, Xie Z Y, Chen X, Lam S, Kreps J A, Harper J F, Si-Ammour A, Mauch-Mani B, Heinlein M, Kobayashi K, Hohn T, Dang J L, Wang X, Zhu T. 2002. Expression profile matrix of Arabidopsis transcription factor genes suggests their putative functions in response to environmental stresses. Plant Cell, 14: 559–574
    Chen X, Shang J, Chen D, Lei C, Zou Y, Zhai W, Liu G, Xu J, Ling Z, Cao G, Ma B, Wang Y, Zhao X, Li S, Zhu L. 2006. A B-lectin receptor kinase gene conferring rice blast resistance. Plant J, 46:794-804
    Collemare J, Pianfetti M, Houlle A E, Morin D, Camborde L, Gagey M J, Barbisan C, Fudal I, Lebrun M H, B(?)hnert H U. 2008. Magnaporthe grisea avirulence gene ACE1 belongs to an infection-specific gene cluster involved in secondary metabolism. New Phytologist, 179: 196–208
    Couch B C, Kohn L M. 2002. A multilocus gene genealogy concordant with host preference indicates segregation of a new species, Magnaporthe oryzae, from M. grisea. Mycologia, 94: 683–693
    Dai L Y, Liu X, Xiao Y, Wang G L. 2007. Recent advances in cloning and characterization of disease resistance genes in rice. J Integr Plant Biol, 49:112-119
    Dean R A, Talbot N J, Ebbole D J, Farman M L, Mitchell T K, Orbach M J, Thon M, Kulkarni R, Xu J R, Pan H, Read N D, Lee Y H, Carbone I, Brown D, Oh Y Y, Donofrio N, Jeong J S, Soanes D M, Djonovic S, Kolomiets E, Rehmeyer C, Li W, Harding M, Kim S, Lebrun M H, Bohnert H, Coughlan S, Butler J, Calvo S, Ma L J, Nicol R, Purcell S, Nusbaum C, Galagan J E, Birren B W. 2005. The genome sequence of the rice blast fungus Magnaporthe grisea. Nature, 434: 980–986
    Deng Y W, Zhu X D, Shen Y, He Z H. 2006. Genetic characterization and fine mapping of the blast resistance locus Pigm(t) tightly linked to Pi2 and Pi9 in a broad-spectrum resistant Chinese variety. Theor Appl Genet, 113: 705–713
    Ebbole D J. 2007. Magnaporthe as a model for understanding host–pathogen interactions. Annu Rev Phytopathol, 45:437-56
    Edwards J D, Janda J, Sweeney M T, Gaikwad A B, Liu B, Leung H, Galbraith D W. 2008. Development and evaluation of a high-through, low-cost genotyping platform based on oligonucleotide microarrays in rice. Plant Methods, 4:13
    Escaler M, Aranda M A, Thomas C L, Maule A J. 2000b. Pea embryonic tissues show common responses to the replication of a wide range of viruses. Virology, 267:318-325
    Eulgem T, Somssich I E. 2007. Networks of WRKY transcription factors in defense signaling. Curr Opin Plant Biol, 10:366-371
    Farman M L, Leong S A. 1998. Chromosome walking to the AVR1- CO39 avirulence gene of Magnaporthe grisea: discrepancy between the physical and genetic maps. Genetics, 150: 1049–1058
    Farman M L, Eto Y, Nakao T, Tosa Y, Nakayashiki H, Mayama S, Leong S A. 2002. Analysis of the structure of the AVR1-CO39 avirulence locus in virulent rice-infecting isolates of Magnaporthe grisea. MPMI, 15: 6–16
    Fjellstrom R, Conaway-Bormans C A, McClung A M, Marchetti M A, Shank A R, Park W D. 2006.
    Development of DNA markers suitable for marker assisted selection of three Pi genes conferring resistance to multiple pyricularia grisea pathotypes. Crop Sci, 44:1790-1798
    Fjellstroma R, Conaway-Bormans C A, McClung A M, Marchetti M A, Shank A R, Park W D. 2004.
    Development of DNA markers suitable for marker assisted selection of three Pi genes conferring resistance to multiple Pyricularia grisea pathotypes. Crop Sci, 44: 1790–1798
    Fu H, Dooner H K. 2002. Intraspecific violation of genetic colinearity and its implications in maize. Proc Natl Acad Sci, 99:9573–9578
    Fujii K, Hayano-Saito Y, Saito K, Sugiura N, Hayashi N, Tsuji T, Izawa T, Iwasaki M. 2000. Identification of a RFLP marker tightly linked to the panicle blast resistance gene Pb1, in rice. Breed Sci, 50: 183–188
    Fukuoka S, Okuno K, Kawase M. 2007. Rice blast disease gene Pi21, resistance gene pi21 and utilization thereof. Patent WO/2007/000880
    Fukuoka S, Okuno K. 2001. QTL analysis and mapping of pi21, a recessive gene for field resistance to rice blast in Japanese upland rice. Theor Appl Genet, 103: 185–190
    Fukuoka S, Saka N, Koga H, Shimizu T, Ebana K, Takahasi A, Hirochika H, Yano M, Okuno K. 2007.
    Molecular cloning and gene pyramiding of QTLs controlling field resistance to blast in rice. The 4th International Rice Blast Conference, 9–14 October 2007, Changsha, Hunan, China
    Fukuoka S, Saka N, Koga H, Ono K, Shimizu T, Ebana K, Hayashi N, Takahashi A, Hirochika H, Okuno K, Yano M. 2009. Loss of function of a proline-containing protein confers durable disease resistance in rice. Science, 325: 998–1001
    Glazebrook J. 2005. Contrasting mechanisms of defence against biotrophic and necrotrophic pathogens. Annu Rev Phytopathol, 43:205–227
    Gnanamanickam S S. 2000. Lineage-exclusion resistance breeding: pyramiding of blast resistance genes for management of rice blast in India. Adv Rice Blast Res, 15: 172–179
    Goff S A, Ricke D, Lan T H, Presting G, Wang R, Dunn M, Glazebrook J, Sessions A, Oeller P, Varma H, Hadley D, Hutchison D, Martin C, Katagiri F, Lange B M, Moughamer T, Xia Y, Budworth P, Zhong J P, Miguel T, Paszkowski U, Zhang S, Colbert M, Sun W L, Chen L, Cooper B, Park S, Wood T C, Mao L, Quail P, Wing R, Dean R, Yu Y, Zharkikh A, Shen R, Sahasrabudhe S, Thomas A, Cannings R, Gutin A, Pruss D, Reid J, Tavtigian S, Mitchell J, Eldredge G, Scholl T, Miller R M, Bhatnagar S, Adey N, Rubano T, Tusneem N, Robinson R, Feldhaus J, Macalma T, Oliphant A, Briggs S. 2002. A draft sequence of the rice genome (Oryza sativa L. ssp. japonica). Science, 296:92-100
    Gutterson N, Reuber T L. 2004. Regulation of disease resistance pathways by AP2/ERF transcription factors. Current Opinion in Plant Biology, 7:465–471
    Hayashi K, Yoshida H. 2009. Refunctionalization of the ancient rice blast disease resistance gene Pit by the recruitment of a retrotransposon as a promoter. Plant J, 57: 413–425
    Hayashi K, Hashimoto N, Daigen M, Ashikawa I. 2004. Development of PCR-based SNP markers for rice blast resistance genes at the Piz locus. Theor Appl Genet, 108: 1212–1220
    Hittalmani S, Foolad M R, Mew T, Rodriguez R L, Huang N. 1995. Development of a PCR-based marker to identify rice blast resistance gene, Pi-2(t), in a segregating population. Theor Appl Genet, 109: 978–985
    Hittalmani S, Parco A, Mew T V, Zeigler R S, Huang N. 2000. Fine mapping and DNA marker-assisted pyramiding of the three major genes for blast resistance in rice. Theor Appl Genet, 100: 1121–1128
    Hogenhout S A, Van der Hoorn R A L, Terauchi R, Kamoun S. 2009. Emerging concepts in effector biology of plant-associated organisms. Molecular Plant-Microbe Interactions, 22: 115–122
    Hulbert S H, Craig A W, Smith S M, Sun Q. 2001. Resistance gene complexes: Evolution and Utilization. Annu Rev hytopathol, 39:285–312
    Ishizaki K, Hoshi T, Abe S, Sasaki Y, Kobayashi K, Kasaneyama H, Matsui T, Azuma S. 2005. Breeding of blast resistant isogenic lines in rice variety‘Koshihikari’and evaluation of their characters. Breed Sci, 55: 371–377
    Johnson R. 1981. Durable resistance: definition of, genetic control, and attainment. Phytopathology, 71:567–568
    Jia Y L, Liu G J, Costanzo S, Lee S H, Dai Y T. 2009. Current progress on genetic interactions of rice with rice blast and sheath blight fungi. Front Agric, 3(3): 231–239
    Jia Y L, McAdams S A, Bryan G T, Hershey H P, Valent B. 2000. Direct interaction of resistance gene and avirulence gene products confers rice blast resistance. EMBOJ, 19: 4004–4014
    Jia Y L, Wang Z H, Singha P. 2002. Development of dominant rice blast Pi-ta resistance gene markers. Crop Science, 42:2145-2149
    Jiang J, Wang S. 2002. Identification of a 118-kb DNA fragment containing the locus of blast resistance gene Pi-2(t) in rice. Mol Genet Genomics, 268: 249–252
    Jeon J S, Chen D, Yi G H, Wang G L, Ronald P C. 2003. Genetic and physical mapping of Pi5 (t), a locus associated with broad-spectrum resistance to rice blast. Mol Gen Genomics, 269: 280–289
    Jeung J U, Kim B R, Cho Y C, Han S S, Moon H P, Lee Y T, Jena K K. 2007. A novel gene, Pi40(t), linked to the DNA markers derived from NBS-LRR motifs confers broad spectrum of blast resistance in rice. Theor Appl Genet, 115: 1163–1177
    Jeung J U, Kim R, Cho Y C, Han S S, Moon H P, Lee Y T, Jena K K. 2007. A novel gene, Pi40(t), linked to the DNA markers derived from NBS-LRR motifs confers broad spectrum of blast resistance in rice. Theor Appl Genet, 115:1163–1177
    Kang S, Sweigard JA, Valent B. 1995. The PWL host specificity gene family in the blast fungus Magnaporthe grisea. Molecular Plant-Microbe Interactions, 8: 939–948
    Kiyosawa S. 1970. Inheritance of blast resistance of rice varieties Aomase Nishika and Gina. Bull Natl Inst Agr Sci, 21: 73-105
    Khush G S. 2005. What it will take to feed 5.0 billion rice consumers in 2030. Plant Mol Biol, 59:1-6
    Khush G S, Jena K K. 2009. Current status and future prospects for research on blast resistance in rice (Oryza sativa L.). In: Advances in Genetics, Genomics and Control of Rice Blast Disease (Wang, G L and Valent B, eds), Dordrecht, Springer, pp:1–10
    Kiyosawa S. 1981. Gene analysis for blast resistance. Oryza, 18:196–203
    Kiyosawa S, Ling Z Z. 1984. Identification of genes for rice blast resistance in Chinese differential varieties with Japanese fungus strains. Sci Sin, 27:273-283
    Kiyosawa S. 1970. Inheritance of blast resistance of the rice varieties Aomase Nishika and Gina. Bull Natl Inst Agr Sci, 21:73-105
    Koizumi S, Ashizawa T, Zenbayashi K S. 2004. Durable control of rice blast disease with multilines. In Rice Blast: Interaction with Rice and Control (Kawasaki S ed), pp: 191–199
    Krishna P. 2003. Brassinosteroid-mediated stress responses. J Plant Growth Regul, 22:289–297
    Lay F T, Anderson M A. 2005. Defensins—components of the innate immune system in plants. Curr Protein Pept Sci, 6:85–101
    Leong S A. 2008. The ins and outs of host recognition of Magnaporthe oryzae. In: Genomics of Disease. Gustafson JP, Taylor J and Stacey G (eds), New York, Springer, pp:199–216
    Lee SK, Song MY, Seo YS, Kim HK, Ko S, Cao PJ, Suh JP, Yi G, Roh JH, Lee S, An G, Hahn TR, Wang GL, Ronald P, Jeon JS (2009) Rice Pi5-mediated resistance to magnaporthe oryzae requires the rresence of two CC-NB-LRR genes. Genetics 181: 1627–1638
    Liu B, Zhang S H, Zhu X Y, Yang Q Y, Wu S Z, Mei M T, Mauleon R, Leach J E, Mew T, Leung H. 2004.
    Candidate defense genes as predictors of quantitative blast resistance in rice. Molecular Plant-Microbe Interactions, 17(10): 1146–1152
    Liu B, Zhu X Y, Zhang S H, Wu J L, Han S S, Cho Y C, Roh J H, Leach J E, Liu Y, Suzette M, Alice B, Marietta B, Isabelita O, Vera Cruz C M, Leung H. 2009. What it takes to achieve durable resistance to rice blast? In: Wang G L, Valent B (eds) Advances in genetics, genomics and control of rice blast disease, Springer, Netherlands, pp: 385-402
    Liu B. 2001. Identification of candidate genes associated with durable resistance to blast in rice (oryza sativa L.) and marker-assisted selection. South China Agricultural University, China Lin F, Chen S, Que Z, Wang L, Liu X, Pan Q H. 2007a. The blast resistance gene Pi37 encodes a nucleotide binding site leucine-rich repeat protein and is a member of a resistance gene cluster on rice chromosome 1. Genetics, 177:1871-1880
    Lin F, Liu Y, Wang L, Liu X, Pan Q. 2004. A high-resolution map of the rice blast resistance gene Pi15 constructed by sequence-ready markers. Plant Breeding, 126, 287—290
    Li Q, Chen F, Sun L X, Zhang Z Q, Yang Y N, He Z H. 2006. Expression profiling of rice genes in early defense responses to blast and bacterial blight pathogens using cDNA microarray. Physiological and Molecular Plant Pathology, 68: 51–60
    Liu J L, Wang X J, Mitchell T, Hui Y J, Liu X L, Dai L Y, Wang G L. 2009. Recent progress and understanding of the molecular mechanisms of the rice–Magnaporthe oryzae interaction. Molecular Plant Patholonogy, in press
    Liu X Q, Yang Q Z, Lin F, Hua L X, Wang C T, Wang L, Pan Q H. 2007. Identification and fine mapping of Pi39(t), a major gene conferring the broad-spectrum resistance to Magnaporthe oryzae. Mol Genet Genomics, 278: 403–410
    Liu X, Lin F, Wang L, Pan Q H. 2007. The in silico map-based cloning of Pi36, a rice CC-NBS-LRR gene which confers race-specific resistance to the blast fungus. Genetics, 176:2541-2549
    Liu X Q, Wang L, Chen S, Lin F, Pan Q H. 2005. Genetic and physical mapping of Pi36(t), a novel rice blast resistance gene located on rice chromosome 8. Mol Gen Genomics, 274: 394–401
    Liu Y, Zhu X Y, Zhang S H, Bernardo M, Edward J, Galbraith D, Zhang G S, Liu B, Leung H. 2010. Dissecting quantitative resistance against blast using heterogeneous inbred families in rice. Theor Appl Genet, in review
    Loake G, Grant M. 2007. Salicylic acid in plant defence—the players and protagonists. Curr Opin Plant Biol, 10:466–472
    Lorenzo O, Solano R. 2005. Molecular players regulating the jasmonate signaling network. Curr Opin Plant Biol, 8:532–540
    Ma J H, Wang L, Feng S J, Lin F, Xiao Y, Pan Q H. 2006. Identification and fine mapping of AvrPi15, a novel avirulence gene of Magnaporthe grisea. Theor Appl Genet, 113: 875–883
    Mackill D J, Bonman J M. 1992. Inheritance of blast resistance in near-isogenic lines of rice. Phytopathology, 82:746–749
    Maleck K, Levine A, Eulgem T, Morgan A, Schmid J, Lawton K A. 2000. The transcriptome of Arabidopsis thaliana during systemic acquired resistance. Nat Genet, 26:403–410
    Manosalva P M, Davidson R M, Liu B, Zhu X Y, Hulbert S H, Leung H, Leach J E. 2009. A germin-like protein gene family functions as a complex quantitative trait locus conferring broad-spectrum disease resistance in rice. Plant Physiol, 149:286-296
    McClung A M, Marchetti M A, Webb B D, Bollich C N. 1997. Registration of‘Jefferson’rice. Crop Sci, 37: 629–630
    McCouch S R, CGSNL. 2008. Gene nomenclature system for rice. Rice, 1:72-84
    Meyers B C, Dickerman A W, Michelmore R W, Sivaramakrishnan S, Sobral B W, Young N D. 1999. Plant disease resistance genes encode members of an ancient and diverse protein family within the nucleotide-binding superfamily. Plant J, 20(3): 317–332
    Meyers B C, Alexander K, Alyssa G, Hanhui K, Richard W M. 2003. Genome-wide analysis of NBS-LRR–encoding genes in Arabidopsis. Plant Cell, 15: 809–834
    Michelmore R W.1995. Molecular approaches to manipulation of disease genes. Ann Rev Phytopath, 33:393-428
    Miki S, Matsui K, Kito H, Otsuka K, Ashizawa T, Yasuda N, Fukiya S, Sato J, Hirayae K, Fujita Y, Nakajima T, Tomita F, Sone T. 2009. Molecular cloning and characterization of the AVR-Pia locus from a Japanese field isolate of Magnaporthe oryzae. Mol Plant Pathol, 10: 361–374
    Miyamoto M, Yano M, Hirasawa H. 2001. Mapping of quantitative trait loci conferring blast weld resistance in the Japanese upland rice variety Kahei. Breed Sci, 51: 257–261
    Monosi B, Wisser R J, Pennill L, Hulbert S H. 2004. Full-genome analysis of resistance gene homologues in rice. Theor Appl Genet, 109:1434-1447
    Murray M G, Thompson W F. 1980. Rapid isolation of high molecular weight plant DNA. Nucl Acids Res, 8: 4321-4325
    Nakashita H, Yasuda M, Nitta T. Asami T, Fujioka S, Arai Y, Sekimata K, Takatsuto S, Yamaguchi I, Yoshida S. 2003. Brassinosteroid functions in a broad range of disease resistance in tobacco and rice. Plant J, 33:887–898
    Nguyen T, Koizumi S, La T N, Zenbayashi K S, Ashizawa T, Yasuda N, Imazaki I, Miyasaka A. 2006. Pi35(t), a new gene conferring partial resistance to leaf blast in the rice cultivar Hokkai 188. Theor Appl Genet, 113: 697–704
    Notteghem J L, Chatel M, Dechanet R D. 1981. Analyze of two characteristics of rice resistance to Pyricularia oryzae. In: Comptes-rendus du symposium sur la resistance du riz a la pyriculariose. IRAT-GERDAT, Montpellier, France, pp : 301-318
    Orbach M J, Farrall L, Sweigard J A, Chumley F G, Valent B. 2000. A telomeric avirulence gene determines efficacy for the rice blast resistance gene Pi-ta. Plant Cell, 12: 2019–2032
    Ou S H. 1979. Breeding rice for resistance to blast, a critical view. In: Proceedings of the Rice Blast Workshop. Philippines, Manila, International Rice Research Institute, pp: 79–137
    Ou S H. 1987. Rice Diseases. CAB International Mycological Institute Ou SH, Rice Diseases, 2nd ed, C.A.B. International, Farnham House, Farnham Royal, Slough. pp:380
    Ou S H.1985. Rice blast. In: Rice Disease. 2nd ed, The Cambrian News Ltd, U K, pp: 109-201
    Ou S H, Nuque F L, Bandong J M. 1975. Relation between qualitative and quantitative resistance to rice blast. Phytopathology, 65: 1315-1316
    Parlevliet J E, van Ommeren A. 1975. Partial resistance of barley to leaf rust Puccinia hordei. II. Relationship between field trials micro plot tests and latent period. Euphytica, 24:293-303
    Parlevliet J E. 1977. Evidence of differential interaction in the polygenic Hordeum vulgare–Puccinia hordei relation during epidemic development. Phytopathology, 67:776–778
    Parlevliet J E. 1979. Components of resistance that reduce the rate of epidemic development. Ann Rev Phytopath, 1: 203-222
    Parlevliet J E. 1989. Identification and evaluation of quantitative resistance. In: Leonard K J, Fry W E (eds) Plant disease epidemiology, New York, McGraw-Hill, 2: 215–248
    Polverari A, Molesini B, Pezzotti M, Buonaurio R, Marte M, Delledonne M. 2003. Nitric oxide-mediated transcriptional changes in Arabidopsis thaliana. Molecular Plant-Microbe Interactions, 16:1094–1050
    Qu S H, Liu G, Zhou B, Bellizzi M, Zeng L, Dai L, Han B, Wang G L. 2006. The broad-spectrum blast resistance gene Pi9 encodes a nucleotide-binding site-leucine-rich repeat protein and is a member of a multigene family in rice. Genetics, 172: 1901–1914
    Raghavan C, Naredo M E B, Wang H H, Atienza G, Liu B, Qiu F L, McNally K L, Leung H. 2007. Rapid method for detecting SNPs on agarose gels and its application in candidate gene mapping. Mol Breeding, 19:87–101
    Rajendra B, Jonathan D G. 2009. Role of plant hormones in plant defence responses. Plant Mol Biol, 69:473–488
    Ribot C, Hirsch J, Balzergue S, Tharreau D, Nottéghem J L, Lebrun M H, Morel J B. 2007. Susceptibility of rice to the blast fungus, Magnaporthe grisea. J Plant Physiol, 165:114-124
    Richly E, Kurth J, Leister D. 2002. Mode of amplification and reorganization of resistance genes during recent Arabidopsis thaliana evolution. Molecular Biology and Evolution, 19:76-84
    Sallaud C, Lorieux M, Roumen E, Tharreau D, Berruyer R, Svestasrani P, Garsmeur O, Ghesquiere A, Notteghem J L. 2003. Identification of five new blast resistance genes in the highly blast-resistant rice variety IR64 using a QTL mapping strategy. Theor Appl Genet, 106:794-803
    Sasaki R.1923. Existence of strains in rice blast fungus II. J. Plant Prot, 10:1-10
    Satoh K, Kondoh H, Sasaya T, Shimizu T, Choi I R, Omura T, Kikuchi S. 2010. Selective modification of rice (Oryza sativa) gene expression by rice stripe virus infection. J Gen Virol, 91:294-305
    Schenk P M, Kazan K, Wilson I, Anderson J P, Richmond T, Somerville S C. 2000. Coordinated plant defense responses in Arabidopsis revealed by microarray analysis. Proc Natl Acad Sci, 97:11655–11660
    Shang J J, Tao Y, Chen X W, Zou Y, Lei C L, Wang J, Li X B, Zhao X F, Zhang M J, Lu Z K, Xu J C, Cheng Z K, Wan J M, Zhu L H. 2009. Identification of a new rice blast resistance gene, Pid3, by genome-wide comparison of paired NBS-LRR genes and their pseudogene alleles between the two sequenced rice genomes. Genetics, 182(4):1303-1311
    Sharma T R, Shanker P, Singh B K, Jana T K, Madhav M S, Gaikwad K, Singh N K, Plaha P, Rathour R. 2005. Molecular mapping of rice blast resistance gene Pi-kh in the rice variety Tetep. J Plant Biochem Biotechnol, 14:127-133
    Shen MG and Lin JY. 1994. The economic impact of rice blast disease in China. in: Rice Blast Disease. Zeigler RS, Leong SA and Teng PS, eds. CAB International/IRRI, Wallingford, U.K. Pages 321-331
    Shimono M, Sugano S, Nakayama A, Jiang C J, Ono K, Toki S, Takatsujia H. 2007. Rice WRKY45 plays a crucial role in benzothiadiazole-inducible blast resistance. Plant Cell, 19: 2064–2076
    Skamnioti P, Gurr S J. 2009. Against the grain: safeguarding rice from rice blast disease. Trends in Biotechnology, 27(3): 141-150
    Song F M, Goodman R M. 2001. Molecular biology of disease resistance in rice. Physiological and Molecular Plant Pathology, 59: 1-11
    Sweigard J A, Carroll A M, Kang S, Farrall L, Chumley F G, Valent B. 1995. Identification, cloning and characterization of Pwl2, a gene for host species-specificity in the rice blast fungus. Plant Cell, 7: 1221–1233
    Takeuchi Y, Ebitani T, Yamamoto T, Sato H, Ohta H, Hirabayashi H, Kato H, Ando I, Nemoto H, Imbe T, Yano M. 2006. Development of isogenic lines of rice cultivar Koshihikari with early and late heading by marker-assisted selection. Breed Sci, 56: 405–413
    Takahashi Y. 1965. Genetics of resistance to the rice blast disease. In: The Rice Blast Disease. The Johns Hopkins Press, Baltimore, Talukder Z (ed) pp: 303-329
    Talbot N J. 2003. On the trail of a cereal killer: exploring the biology of Magnaporthe grisea. Annu Rev Microbiol, 57: 177–202
    Thomma B P, Cammue B P, Thevissen K. 2002. Plant defensins. Planta 216:193–202
    Tuinstra M R, Ejeta G, Goldsbrough P B. 1997. Heterogeneous inbred family (HIF) analysis: a method for developing near-isogenic lines that differ at quantitative trait loci. Theor Appl Genet, 95: 1005-1011
    Valent B. 1990. Rice blast as a model system for plant pathology. Phytopathology, 80:33-36
    Valent B, Chumley F G. 1994. Avirulence genes and mechanism of genetic instability in the rice blast fungus. In: Zeigler RS, Leong SA, Teng PS (eds) Rice blast disease. CAB International, Wallingford, pp:111–134
    Vanderplank J E. 1978. Genetic and molecular basis of plant pathogenesis. Berlin, Heidelberg, New York, Springer
    Vanderplank J E. 1963. Plant diseases: epidemics and control. Academic Press, New York Van Loon L C, Rep M, Pieterse C M J. 2006. Significance of inducible defense-related proteins in infected plants. Annu Rev Phytopathol, 44:135–162
    Variar M. 2007. Pathogenic variation in Magnaporthe grisea and breeding for blast resistance in India. In: Japan International Research Center for Agricultural Sciences Working Report, Fukuta Y, Vera Cruz C M and Kobayashi N (eds), Tsukuba, Japan International Research Center for Agricultural Sciences, pp:87–95
    Veneault-Fourrey C, Talbot N J. 2005. Moving toward a systems biology approach to the study of fungal pathogenesis in the rice blast fungus Magnaporthe grisea. Adv Appl Microbiol, 57:177-215
    Wang G L, Mackill D J, Bonman M, McCouch S R, Champoux M C, Nelson R J. 1994. RFLP mapping of genes conferring complete and partial resistance to blast in a durably resistant rice cultivar. Genetics, 136:1421-1434
    Wang Z X, Yano M, Yamanouchi U, Iwamoto M, Monna L, Hayasaka H, Katayose Y, Sasaki T. 1999. The Pib gene for rice blast resistance belongs to the nucleotide binding and leucine-rich repeat class of plant disease resistance genes. Plant J, 19 (1): 55-64
    Wang Z X, Yamanouchi U, Katayose Y, Sasaki T, Yano M. 2001. Expression of the Pib gene rice-blast-resistance gene family is up-regulated by environmental conditions favouring infection and chemical signals that trigger secondary plant defense. Plant Molecular Biology, 47: 653-661
    Wei G, Tao Y, Liu G Z, Chen C, Luo R Y, Xia H A, Gan Q, Zeng H P, Lu Z K, Han Y N, Li X B, Song G S, Zhai H L, Peng Y G, Li D Y, Xu H L, Wei X L, Cao M L, Deng H F, Xin Y Y, Fu X Q, Yuan L P, Yu J, Zhu Z, Zhu L H. 2009. A transcriptomic analysis of superhybrid rice LYP9 and its parents. Proc Natl Acad Sci, 106(19): 7695-7701
    Whitham S A, Yang C, Goodin M M. 2006. Global Impact: Elucidating Plant Responses to Viral Infection. Molecular Plant-Microbe Interactions, 19(11):1207–1215
    Whitham S A, Quan S, Chang H S, Cooper B, Estes B, Zhu T, Wang X, Hou Y M. 2003. Diverse RNA viruses elicit the expression of common sets of genes in susceptible Arabidopsis thaliana plants. Plant J, 33:271-283
    Wise R P, Moscou M J, Bogdanove A J, Whitham S A. 2007. Transcript profiling in host–pathogen interactions. Annu Rev Phytopathol, 45:329-369
    Wisser R J, Sun Q, Hulbert S H, Kresovich S, Nelson R J. 2005. Identification and characterization of regions of the rice genome associated with broad-spectrum, quantitative disease resistance. Genetics, 169: 2277–2293
    Xu X, Chen H, Fujimura T, Kawasaki S. 2008. Fine mapping of a strong QTL of Weld resistance against rice blast, Pikahei-1(t), from upland rice Kahei, utilizing a novel resistance evaluation system in the greenhouse. Theor App Genet, 117: 997–1008
    Yamaguchi I. 2004. Overview on the chemical control of rice blast disease. in: Rice blast: Interaction with Rice and Control. (Kawasaki S.ed) Kluwer Academic Press, Dordrecht, The Netherlands, Pages 1-13
    Yan J B, Yang X H, Shah T, Sánchez-Villeda H, Li J S, Warburton M, Zhou Y, Crouch J H, Xu Y B. 2009. High-throughput SNP genotyping with the GoldenGate assay in maize. Mol Breeding, 25:441–451
    Ye H Y, Du H, Tang N, Li X H, Xiong L Z. 2009. Identification and expression profiling analysis of TIFY family genes involved in stress and phytohormone responses in rice. Plant Mol Biol, 71:291–305
    Yi G, Lee S K, Hong Y K, Cho Y C, Nam M H, Kim S C, Han S S, Wang G L, Hahn T R, Ronald P C. 2004. Use of Pi5(t) markers in marker-assisted selection to screen for cultivars with resistance to Magnaporthe grisea. Theor Appl Genet, 109: 978–985
    Young N D. 1996. QTL mapping and quantitative disease resistance in plants. Ann Rev Phytopath, 34:479-501
    Zeigler R S, Cuoc L X, Scott R P, Bernardo M A, Chen D H, Valent B, Nelson R J. 1995. The relationship between lineage and virulence in Pyricularia grisea in the Philippines. Phytopathology, 85: 443–451
    Zenbayashi K, Ashizawa T, Tani T, Koizumi S. 2002. Mapping of the QTL (quantitative trait locus) conferring partial resistance to leaf blast in rice cultivar Chubu 32. Theor Appl Genet, 104: 547–552
    Zenbayashi-Sawata K, Fukuoka S, Katagiri S, Fujisawa M, Matsumoto T, Ashizawa T, Koizumi S. 2007. Genetic and physical mapping of the partial resistance gene, Pi34, to blast in rice. Phytopathology, 97: 598–602
    Zhang Q F. 2007. Strategies for developing green super rice. Proc Natl Acad Sci, 104: 16402–16409
    Zhou B, Qu S H, Liu G F, Dolan M, Sakai H, Lu G D, Bellizzi M, Wang G L. 2006. The eight amino-acid differences within three leucine-rich repeats between Pi2 and Piz-t resistance proteins determine the resistance specificity to Magnaporthe grisea. Molecular Plant-Microbe Interactions, 19:1216-1228
    Zhou J H, Wang J L, Xu J C, Lei C L, Ling Z Z. 2004. Identification and mapping of a rice blast resistance gene Pi-g(t) in the cultivar Guang chang zhan. Plant Pathology, 53: 191–196
    Zhu Y Y, Chen H R, Fan J H, Wang Y Y, Li Y, Chen J B, Fan J X, Yang S S, Hu L P, Leung H, Mew T W, Teng P S, Wang Z H, Mundt C C. 2000. Genetic diversity and disease control in rice. Nature, 406: 718–722

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700