用户名: 密码: 验证码:
刺槐光合生理特征与固碳能力研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
当前,全球性环境问题,特别是气候变化与温室效应问题的形势已经十分严峻,受到国内外学者的广泛关注。森林能够通过光合作用吸收固定大气中的CO2,在减缓气候变暖过程中具有重要的独特作用。黄土高原生态环境脆弱,是全球变化响应的敏感区域之一。刺槐人工林在渭北黄土高原的植被恢复和光合固碳方面都起到了关键作用。开展刺槐光合生理特征与固碳能力的研究,可以为评估渭北地区林分光合生产力提供科学依据,同时,也对该区刺槐林的科学经营有重要的指导意义。
     本研究以地处渭北地区的永寿县马莲滩流域刺槐林为研究对象,于2008年8月和2009年6月、8月、10月,采用LI-6400便携式光合作用系统和WinScanopy冠层分析仪,系统研究了冠层部位、环境参数、天气条件、坡向、林龄、林分密度和疏伐等因子对刺槐林光合生理特征和固碳能力的影响。主要研究结果如下:
     (1)刺槐树冠光合作用的空间异质性
     刺槐树冠不同层次的光合作用差异性显著,净光合速率、蒸腾速率、气孔导度、羧化效率、光合有效辐射表现为:上>中>下;而水汽压亏缺、气孔限制值、空气温度表现为:下>中>上。对于阳坡刺槐,水汽压亏缺、空气温度、气孔导度、蒸腾速率是影响不同层次净光合速率的主要因子;对于阴坡刺槐,水汽压亏缺、蒸腾速率、光合有效辐射是影响不同层次净光合速率的主要因子。光合作用在刺槐树冠的不同方位没有显著差异,所有光合生理生态参数变化均很小,蒸腾速率、气孔限制值、光合有效辐射、空气温度是影响不同方位净光合速率的主要因子。阳坡刺槐树冠中层西方和阴坡中层东方的日总光合速率值,可以分别代表阳坡和阴坡刺槐整个冠层的日总光合速率。
     (2)刺槐光合气体交换与环境因子的关系
     刺槐净光合速率的日变化为单峰曲线,在10:00~14:00,刺槐净光合速率的降低主要由气孔限制引起,而14:00~18:00,净光合速率的降低由非气孔限制引起。蒸腾速率、气孔导度与净光合速率的日动态趋势相似。在刺槐叶片进行气体交换的日进程中,环境因子对刺槐不同光合生理参数的影响程度不尽相同。总体来看,光合有效辐射、空气温度和空气相对湿度是影响刺槐光合气体交换的主要环境因子。此外,分别建立了净光合速率、蒸腾速率、气孔导度与环境因子的最优回归方程。
     (3)刺槐光合作用在晴天和阴天的差异
     无论在6月还是8月,晴天刺槐的净光合速率和气孔导度在10:00以前高于阴天,而在12:00和14:00低于阴天。刺槐的胞间CO2浓度、空气CO2浓度、空气相对湿度、光能利用率在晴天的绝大多数时间显著低于阴天,而蒸腾速率、水汽压亏缺、光合有效辐射、空气温度在晴天的全天都显著高于阴天。在晴天条件下,虽然刺槐的气孔导度、胞间CO2浓度、空气CO2浓度、空气相对湿度、光能利用率的日均值比阴天低,但净光合速率、蒸腾速率、水汽压亏缺、光合有效辐射、空气温度的日均值比阴天高,从而能够积累更多的日均光合固碳量。在阴天条件下,刺槐的最大光合速率高于晴天,且暗呼吸速率和光补偿点显著低于晴天,表现出很强的光合适应能力。
     (4)坡向和林龄对刺槐光合生理特征的影响
     成熟刺槐(18 a)在阴坡(西北坡向)的最大光合速率、最大羧化效率、表观量子产率、表观羧化效率、暗呼吸速率、光呼吸速率、Rubisco含量、光饱和点显著高于阳坡(东南坡向),而最大电子传递速率与羧化效率的比值、光补偿点、CO2饱和点显著低于阳坡。刺槐的蒸腾速率和水分利用效率对光合有效辐射和CO2浓度的响应在不同坡向之间表现出很大的差异。幼龄刺槐(6 a)的最大光合速率、最大电子传递速率、最大电子传递速率与羧化效率的比值、暗呼吸速率、光补偿点、CO2补偿点、CO2饱和点、蒸腾速率显著高于成熟刺槐,而表观量子产率、水分利用效率显著低于成熟刺槐。分析认为,阳坡和阴坡上的成熟和幼龄刺槐都能对渭北地区脆弱的生境表现出有效的光合生理适应性。
     (5)坡向和林龄对刺槐林光合固碳能力的影响
     阳坡刺槐林比阴坡具有更低的日均蒸腾速率、水汽压亏缺、羧化效率、净光合速率、叶面积指数、光合固碳能力;幼龄林比成熟林具有更高的日均气孔导度、蒸腾速率、胞间CO2浓度与空气CO2浓度比值、羧化效率、净光合速率、光合固碳能力。阳坡刺槐林更低的日均净光合速率和光合固碳能力可能是由于阳坡与阴坡之间微气象条件的变化导致的。幼龄林更高的日均净光合速率和光合固碳能力可能受林龄相关的树体尺寸差异的影响。
     (6)林分密度和疏伐对刺槐林光合固碳能力的影响
     低密度刺槐林的光合固碳能力显著高于高密度林分,主要归因于前者林分内部更加适宜的营养空间和生态环境。在对刺槐林进行疏伐后的第1年,低强度的疏伐(伐除1/3林木)可以增强刺槐林的光合固碳能力,而高强度的疏伐(伐除1/2林木)反而降低了刺槐林的光合固碳能力,这可能与疏伐相关的叶面积指数和郁闭度的变化有关。研究认为,通过对黄土高原上的刺槐林进行合理的经营管理,它们将为中国的碳固定做出积极的贡献。
Nowadays, global environmental problems, especially the global climatic change and greenhouse effect problems have been more and more serious. Forest can absorb and fix atmospheric CO2 through tree photosynthesis, as a result forest has critical and special effect to slow up climatic warming. Loess Plateau is one of the most sensitive regions to global change, which is due to its fragile ecological environment. Black locust (Robinia pseudoacacia L.) is a key tree species not only for the vegetation rehabilitation but also for the photosynthetic carbon dynamics on the Loess Plateau. Hence, a study on photosynthetic characteristics and carbon fixation capacity of black locust can provide information for the evaluation of forest photosynthetic productivity in Weibei area, and also has important significance for the forest management of black locust plantations.
     This study was done to investigate the effects of canopy positions, environmental parameters, climatic conditions, slope aspects, stand ages, stand densities and thinning intensities on the photosynthetic and physiological characteristics and carbon fixation capacities of black locust plantations at the Maliantan valley of Yongshou county in Weibei area in August 2008 and June, August, October 2009, respectively, by using the LI-6400 portable gas exchange system and WinScanopy canopy analyzer. The main results are as follows:
     (1) Spatial heterogeneity of canopy photosynthesis in black locust plantations
     Photosynthetic parameters at different canopy levels of black locust plantations have showed significantly different values. Irrespective of slope aspects, values for net photosynthetic rate (Pn), transpiration rate (Tr), stomatal conductance (Gs), carboxylation efficiency (CE), and photosynthetic active radiation (PAR) follow the pattern: the upper canopy is more than the middle canopy which is more than the lower canopy. In contrast, values for vapor pressure deficit (VPD), stomatal limitation (Ls), and air temperature (Ta) show the pattern: the lower canopy is more than the middle canopy which is more than the upper canopy. The contributions of main photosynthetic parameters to Pn at different canopy levels or orientations of black locust plantations were determined using path analysis. For the black locust plantation on the sunny slope, VPD, Ta, Gs, Tr are the main factors to impact Pn at different canopy levels. For the black locust plantation on the shady slope, VPD, Tr, PAR are the main factors to impact Pn at different canopy levels. No marked difference was observed in photosynthesis at different orientations of black locust canopies both on sunny and shady slopes. Values of most photosynthetic parameters change little and Tr, Ls, PAR, Ta are the main factors to influence Pn at different orientations of the canopies. The daily total Pn of black locust plantation at the west middle canopy level on the sunny slope and at the east middle level on the shady slope can represent the daily total Pn of the whole canopies on the sunny and shady slopes, respectively.
     (2) Relationships between photosynthetic gas exchange of black locust and environmental factors
     Diurnal dynamics of the net photosynthetic rate (Pn) show a single peak curve, the decline of Pn at 10: 00-14: 00 is associated with stomatal limitation, while the decline of Pn at 14: 00-18: 00 is associated with non-stomatal limitation. The trends of dynamics of transpiration rate (Tr) and stomatal conductance (Gs) are similar with Pn. In the diurnal dynamics of gas exchange, the effects of environmental factors on photosynthetic and physiological parameters of black locust are different. In conclusion, the photosynthetic active radiation (PAR), air temperature (Ta) and relative humidity (RH) are main environmental factors to influence photosynthetic gas exchange of black locust. Moreover, the optimal regression equation among environmental factors and Pn, Tr, Gs is built, respectively.
     (3) Differences in photosynthesis of black locust under sunny and cloudy days
     Whether in June or August, the net photosynthetic rate (Pn) and stomatal conductance (Gs) of black locust under the sunny days are higher than those under the cloudy days before 10: 00, while both of them are lower at 12: 00 and 14: 00. The intercellular CO2 concentration (Ci), ambient CO2 concentration (Ca), relative humidity (RH), light use efficiency (LUE) across most times of the day are significantly lower under the sunny days than those under the cloudy days. In contrast, the transpiration rate (Tr), vapor pressure deficit (VPD), photosynthetic active radiation (PAR), air temperature (Ta) in the whole day are markedly higher under the sunny days compared to those under the cloudy days. Under the sunny day conditions, although black locust has lower daily mean values of Gs, Ci, Ca, RH, LUE, they show higher daily mean values of Pn, Tr, VPD, Ta and can in turn accumulate more average daily photosynthetic carbon fixation amounts. Under the cloudy day conditions, black locust presents the greater maximum photosynthetic rate (Pmax) and the pronouncedly lower dark respiration rate (Rd) and light compensation point (LCP), which indicates that black locust has a strong photosynthetic acclimation capacity.
     (4) Effects of slope aspect and stand age on the photosynthetic and physiological characteristics of black locust
     Mature black locusts (18-year-old) on the shady slopes (northwest-facing) present significantly higher maximum photosynthetic rate (Pmax), maximum carboxylation efficiency (Vcmax), apparent quantum yield (AQY), apparent carboxylation efficiency (ACE), dark respiration rate (Rd), light respiration rate (Rp), Rubisco (rubisco content), light saturation point (LSP) but lower ratio of Jmax to Vcmax (Jmax/Vcmax), light compensation point (LCP), CO2 saturation point (CSP) than those on the sunny slopes (southeast-facing). The responses of transpiration rate (Tr) and water use efficiency (WUE) to photosynthetic active radiation (PAR) and intercellular CO2 concentration (Ci) show considerable discrepancies at different slope aspects. Juvenile black locusts (6-year-old) have significantly greater Pmax, Jmax, Jmax/Vcmax, Rd, LCP, CCP, CSP, Tr but lower AQY, WUE compared to mature trees. It is concluded that the mature and/or juvenile black locusts on the sunny and shady slopes perform various effective acclimations of photosynthetic physiology to different slope conditions in Weibei area.
     (5) Influences of slope aspect and stand age on the photosynthetic carbon fixation capacities of black locust plantations
     Mature plantations on the sunny slopes have lower average daily transpiration rate (Tr), vapor pressure deficit (VPD), carboxylation efficiency (CE), net photosynthetic rate (Pn), leaf area index (LAI) and photosynthetic carbon fixation capacity (PCFC) than those on the shady slopes. Juvenile plantations have higher average daily (Gs), transpiration rate (Tr), ratio of intercellular to ambient CO2 concentrations (Ci/Ca), carboxylation efficiency (CE), net photosynthetic rate (Pn) and photosynthetic carbon fixation capacity (PCFC) compared to the mature plantations. It is concluded that the lower average daily Pn and PCFC of the mature black locust plantations on the sunny slopes may be due to variations in the microclimatic conditions between sunny and shady slope aspects. The higher average daily Pn and PCFC of the juvenile black locust plantations are likely associated with stand age-related differences in tree sizes.
     (6) Effects of stand density and thinning on the photosynthetic carbon fixation capacities of black locust plantations
     Black locust plantations at lower stand densities present a significantly greater photosynthetic carbon fixation capacity (PCFC) than those at higher stand densities, mainly due to more suitable nutrition space and environmental condition of the former. In the first year after thinning, low intensity thinning (1/3 trees removed) increases the PCFC in black locust plantations, while high intensity thinning (1/2 trees removed) decreases the PCFC in black locust plantations, which is likely associated with a variation in thinning-related leaf area index (LAI) and/or canopy density. Our findings suggest that black locust plantations on the Loess Plateau may make a marked contribution to the carbon fixation in China if these plantations are well managed.
引文
白坤栋,蒋得斌,曹坤芳,万贤崇,廖德宝. 2010.哀牢山和猫儿山中山常绿和落叶阔叶树光合特性对季节温度变化的响应.生态学报, 30(4): 0905~0913
    曹军胜,刘广全. 2005.刺槐光合特性的研究.西北农业学报, 14(3): 118~122
    陈德祥,李意德,骆土寿,陈步峰,林明献. 2004.短期CO2浓度升高对雨林树种盘壳栎光合特性的影响.生态学报, 24(8): 1622~1628
    陈根云,俞冠路,陈悦,许大全. 2006.光合作用对光和二氧化碳响应的观测方法探讨.植物生理与分子生物学学报, 32(6): 691~696
    陈利顶,傅伯杰, Messing I. 2001.黄土丘陵沟壑区典型小流域土地持续利用案例研究.地理研究,20(6): 713~722
    冯建灿,胡秀丽,苏金乐. 2002.保水剂对干早胁迫下刺槐叶绿素a荧光动力学参数的影响.西北植物学报, 22(5): 1144~1149
    付士磊,何兴元,陈玮. 2006. CO2质量浓度对沈阳市银杏生长及光合固碳能力的影响.辽宁工程技术大学学报, 25(增刊): 269~271
    付为国,李萍萍,卞新民,吴沿友,曹秋玉. 2006.镇江北固山湿地芦苇光合日变化的研究.西北植物学报, 26(3): 496~501
    郭明春,于澎涛,王彦辉,沈振西,时忠杰,杜阿朋,何常清. 2005.林冠截持降雨模型的初步研究.应用生态学报, 16(9): 1633~1637
    韩炜. 2009.不同土壤水分含量对刺槐光合特性的影响. [硕士学位论文].杨凌:西北农林科技大学
    韩勇,刘钢,朱建国,冈田益己,吉本真由美. 2002.稻麦轮作FACE系统平台Ⅱ系统控制和数据分析软件.应用生态学报, 13(10): 1259~1263
    贺康宁,张光灿,田阳. 2003.黄土半干旱区集水造林条件下林木生长适宜的土壤水分环境.林业科学, 39(1): 10~16
    何明,翟明普,曹帮华. 2009.水分胁迫下增施氮、磷对刺槐无性系苗木光合特性的影响.北京林业大学学报, 31(6): 116~120
    蒋高明,常杰,高玉葆. 2004.植物生理生态学.北京:高等教育出版社:93~95
    蒋高明,韩兴国,林光辉. 1997.大气浓度升高对植物的直接影响.植物生态学报, 21(6): 489~502
    蒋高明,何维明. 1999.一种在野外自然光照条件下快速测定光合作用-光响应曲线的新方法.植物学通报, 16(6): 712~718
    蒋高明,渠春梅. 2000.北京山区辽东栎林中几种木本植物光合作用对CO2浓度升高的响应.植物生态学报, 24(2): 204~208
    颉耀文,陈发虎. 2002.干旱区土地利用/土地覆盖变化与全球环境变化.地域研究与开发, 21(2): 22~26
    靳甜甜,刘国华,胡婵娟,苏常红,刘宇. 2008.黄土高原常见造林树种光合蒸腾特征.生态学报, 28(11): 5758~5765
    李春明. 2003.抚育间伐对人工林分生长的影响研究. [硕士学位论文].北京:中国林业科学研究院
    李德志,臧润国. 2004.森林冠层结构与功能及其时空变化研究进展.世界林业研究, 17(3): 12~16
    李根柱,王贺新,朱教君. 2008.辽东次生林区主要阔叶林型叶面积指数季节动态.生态学杂志, 27(12): 2049~2055
    李美茹,王以柔,刘鸿先,林植芳. 2001.光照强度调控4种亚热带森林植物叶片的抗氧化能力.植物生态学报, 25: 460~464
    李鹏,李占斌,赵忠,郑良勇. 2002.渭北黄土高原不同立地上刺槐根系分布特征研究.水土保持通报, 22(5): 15~19
    李文华. 2007.陕北黄土区主要造林树种蒸腾耗水及光合特性研究. [博士学位论文].北京:北京林业大学
    梁军生,陈晓鸣,杨子祥,刘娟,王健敏,陈航. 2009.云南松与华山松人工混交林针叶光合速率对光及CO2浓度的响应特征.林业科学研究, 22(1): 21~25
    林栋. 2008.华北土石山区优势灌草植物光合生理生态特征的研究. [硕士学位论文].兰州:甘肃农业大学
    林平,李吉跃,陈崇. 2008.银杏光合生理生态特性研究.北京林业大学学报, 30(6): 22~29
    林世青,许春辉,张其德. 1992.叶绿素荧光动力学在植物抗性生理、生态学和农业现代化中的应用.植物学通报, 9(1): 1~6
    刘澄. 2008.林分密度对华北落叶松人工林林木生长及林下植物多样性影响的研究. [硕士学位论文].保定:河北农业大学
    刘钢,韩勇,朱建国,冈田益己,中村浩史,吉本真由美. 2002.稻麦轮作FACE系统平台Ⅰ系统结构与控制.应用生态学报, 13(10): 1253~1258
    刘金祥,李文送,刘家琼. 2005.模拟光条件下有性繁殖香根草光合生理的研究.生态学杂志, 24(4): 390~394
    刘亮. 2009.小兴安岭阔叶红松林叶面积指数季节动态及特征. [硕士学位论文].哈尔滨:东北林业大学
    刘晓东,朱春全,雷静品,巨关升,白锐. 2000.杨树人工林冠层光合辐射分布的研究.林业科学, 36(3): 2~7
    刘玉华,史纪安,贾志宽,韩清芳. 2006.旱作条件下紫花苜蓿光合蒸腾日变化与环境因子的关系.应用生态学报, 17(10): 1811~1814
    刘遵春,包东娥. 2008.‘金光杏梅’叶片净光合速率与生理生态因子的关系.西北植物学报, 28(3): 0564~0568
    罗伟祥. 1995.黄土高原渭北生态经济型防护林体系建设模式研究.北京:中国林业出版社:152
    吕建华,季劲钧. 2002.青藏高原大气-植被相互作用的模拟试验II.植被叶面积指数和净初级生产力.大气科学, 26(2): 255~262
    毛子军,赵溪竹,刘林馨,姜海凤. 2010. 3种落叶松幼苗对CO2升高的光合生理响应.生态学报, 30(2): 0317~0323
    孟陈,徐明策,李俊祥,高三平. 2007.栲树冠层光合生理特性的空间异质性.应用生态学报, 18(9): 1932~1936
    孟秦倩,蔡焕杰,王健,张青峰. 2009.黄土高原坡面刺槐林土壤水分生态位特征分析.干旱地区农业研究, 27(6): 89~92
    潘瑞炽. 2001.植物生理学:第四版.北京:高等教育出版社:55~57, 91~95
    潘瑞炽. 2004.植物生理学:第五版.北京:高等教育出版社:18~20
    彭少兵,郭军战. 2007.不同树莓和黑莓品种的光合特性研究.西北农林科技大学学报(自然科学版),35(3): 116~120
    齐华,于贵瑞,刘允芬,王建林. 2004.柑橘叶片气孔导度的环境响应模型研究.中国生态农业学报, 4: 43~48
    任海,彭少麟. 2001.恢复生态学导论.北京:科学出版社
    单长卷,梁宗锁,韩蕊莲,郝文芳. 2005.黄土高原陕北丘陵沟壑区不同立地条件下刺槐水分生理生态特性研究.应用生态学报, 16(7): 1205~1212
    邵玺文,韩梅,韩忠明,孔伟伟,杨利民. 2009.不同生境条件下黄芩光合日变化与环境因子的关系.生态学报, 29(3): 1470~1477
    沈允钢. 2000.地球上最重要的化学反应——光合作用.北京:清华大学出版社
    孙伟,王德利,王立,杨允菲. 2003.模拟光条件下禾本科植物和藜科植物蒸腾特性与水分利用效率比较.生态学报, 23(4): 814~819
    谭晓红,王爽,马履一,彭祚登,贾忠奎. 2010.豫西刺槐能源林培育的光合生理生态理论基础.生态学报, 30(11): 2940~2948
    唐凤德,武耀祥,韩士杰,张军辉. 2008.长白山阔叶红松林叶片气孔导度与环境因子的关系.生态学报, 28(11): 5649~5655
    王安志,裴铁璠,金昌杰,关德新. 2006.长白山阔叶红松林降雨截留量的估算.应用生态学报, 17(8): 1403~1407
    王琛瑞,黄国宏,周玉梅,韩士杰,张军辉,邹春静. 2002. CO2浓度升高条件下长白赤松幼苗种植密度对净光合速率的影响.应用生态学报, 13(9): 1195~1197
    王广军,张彦妮,何叶. 2008.不同情况复叶槭(Acer negundo L)叶片净光合速率的日变化.东北林业大学学报, 36(8): 14~16
    王克勤,王斌瑞. 2002.黄土高原刺槐林间伐改造研究.应用生态学报, 13(1): 11~15
    王力,邵明安. 2004.陕北黄土高原人工刺槐林生长与土壤干化的关系研究.林业科学, 40(1): 84~91
    王希群,马履一,贾忠奎,徐程扬. 2005.叶面积指数的研究和应用进展.生态学杂志, 24(5): 537~541
    吴大千,徐飞,郭卫华,王仁卿,张治国. 2007.中国北方城市常见绿化植物夏季气孔导度影响因素及模型比较.生态学报, 27(10): 4141~4148
    吴统贵,李艳红,吴明,萧江华. 2009.芦苇光合生理特性动态变化及其影响因子分析.西北植物学报, 29(4): 789~794
    吴统贵,周和锋,吴明,萧江华,蒋科毅. 2008.旱柳光合作用动态及其与环境因子的关系.生态学杂志, 27(12): 2056~2061
    伍维模,李志军,罗青红,韩路. 2007.土壤水分胁迫对胡杨、灰叶胡杨光合作用-光响应特性的影响.林业科学, 43(5): 30~35
    许大全. 2002.光合作用效率.上海:上海科学技术出版社:13~14
    许大全,沈允刚. 1998.光合作用的限制因素:植物生理与分子生物学.北京:科学出版社:262~276
    徐德应. 1994.大气CO2增长和气候变化对森林的影响研究进展.世界林业研究, 2: 26~32
    徐飞,郭卫华,徐伟红,王仁卿. 2010.不同光环境对麻栎和刺槐幼苗生长和光合特征的影响.生态学报, 30(12): 3098~3107
    延晓冬,赵世洞,于振良. 2000.中国东北森林生长演替模拟模型及其在全球变化研究中的应用.植物生态学报, 24(1): 1~8
    杨建伟,梁宗锁,韩蕊莲,孙群,崔浪军. 2004.不同干旱土壤条件下杨树的耗水规律及水分利用效率的研究.植物生态学报, 28(5): 630~636
    杨秀芳,玉柱,徐妙云,孙启忠,李峰. 2009. 2种不同类型的尖叶胡枝子光合-光响应特性研究.草业科学, 26(7): 61~65
    于强,王天铎. 1998.光合作用-蒸腾作用-气孔导度的耦合模型及C3植物叶片对环境因子的生理响应. 植物学报, 40(8): 740~754
    于强,谢贤群,孙寂芬,王天铎,陆佩玲. 1999.植物光合生产力与冠层燕散模拟研究进展.生态学报, 19(5): 744~753
    张长庆,张文辉. 2009.黄土高原不同立地条件下刺槐人工林种群的无性繁殖与更新.西北农林科技大学学报(自然科学版), 37(1): 135~144
    张光灿,刘霞,贺康宁,王百田. 2004.金矮生苹果叶片气体交换参数对土壤水分的响应.植物生态学报, 28(1): 66~72
    张津林,张志强,查同刚,陈吉泉,孙阁,刘晨峰,崔令军,陈军,申李华. 2006.沙地杨树人工林生理生态特性.生态学报, 26(5): 1523~1532
    张弥,关德新,吴家兵,施婷婷,金昌杰,韩士杰. 2006.植被冠层尺度生理生态模型的研究进展.生态学杂志, 25(5): 563~571
    张守仁. 1999.叶绿素荧光动力学参数的意义及讨论.植物学通报, 16(4): 444~448
    张淑勇,周泽福,夏江宝,张光灿. 2007.不同土壤水分条件下小叶扶芳藤叶片光合作用对光的响应. 西北植物学报, 27(12): 2514~2521
    张小全,徐德应. 2000.杉木中龄林不同部位和叶龄针叶光合特性的日变化和季节变化.林业科学, 36(3): 19~26
    张小全,徐德应. 2001. 18年生杉木不同部位和叶龄针叶光响应研究.生态学报, 21(3): 409~414
    张小全,徐德应,赵茂盛,陈仲庐. 2000. CO2增长对杉木中龄林针叶光合生理生态的影响.生态学报, 20(3): 390~396
    赵成义. 2004.陆地不同生态系统土壤呼吸及土壤碳循环研究. [博士后研究工作报告].北京:中国农业科学院
    赵俊芳,延晓冬,贾根锁. 2008.东北森林净第一性生产力与碳收支对气候变化的响应.生态学报, 28(1): 92~102
    赵丽英,杨建伟,张二芹,杜瑞卿. 2010.环境因子对盆栽刺槐苗木生理生长变化影响的通径分析. 林业科学, 46(4): 140~145
    赵天宏,王美玉,张巍巍,张鑫. 2006.大气CO2浓度升高对植物光合作用的影响.生态环境, 15(5): 1096~1100
    赵忠,成向荣,薛文鹏,王迪海,袁志发. 2006.黄土高原不同水分生态区刺槐细根垂直分布的差异. 林业科学, 42(11): 1~7
    郑凤英,彭少麟. 2001.植物生理生态指标对大气CO2浓度倍增响应的整合分析.植物学报, 43(11): 1101~1109
    郑文君,范崇辉,韩明玉. 2007.不同天气对苹果叶片光合特性的影响.西北农业学报, 16(6): 124~127
    郑元,赵忠,周慧,周靖靖. 2010.刺槐树冠光合作用的空间异质性.生态学报. (已录用)
    种培芳,李毅,苏世平,高暝,邱珍静. 2010.红砂3个地理种群的光合特性及其影响因素.生态学报, 30(4): 0914~0922
    周广胜,王玉辉. 2003.全球生态.北京:中国气象出版社:82~83
    周玉梅,韩士杰,胡艳玲,张海森,郑俊强. 2008.高浓度CO2对红松(Pinus koraiensis)针叶光合生理参数的影响.生态学报, 28(1): 423~429
    邹年根. 1986.刺槐人工林.北京:中国林业出版社:210
    Abdul-Hamid H, Mencuccini M. 2009. Age- and size-related changes in physiological characteristics and chemical composition of Acer pseudoplatanus and Fraxinus excelsior trees. Tree Physiology, 29(1): 27~38
    Ahl D E, Gower S T, Mackay D S, Burrowsa S N, Normanb J M, Diak G R. 2004. Heterogeneity of light use efficiency in a northern Wisconsin forest: Implications for modeling net primary production with remote sensing. Remote Sensing of Environment, 93(1-2): 168~178
    Allen C D, Macalady A K, Chenchouni H, Bachelet D, McDowell N, Vennetier M, Kitzberger T, Rigling A, Breshears D D, (Ted) Hogg E H, Gonzalez P, Fensham R, Zhang Z, Castro J, Demidova N, Lim J H, Allard G, Running S W, Semerci A, Cobb N. 2010. A global overview of drought and heat-induced tree mortality reveals emerging climate change risks for forests. Forest Ecology and Management, 259(4): 660~684
    Alton P B. 2008. Reduced carbon sequestration in terrestrial ecosystems under overcast skies compared to clear skies. Agricultural and Forest Meteorology, 148(10): 1641~1653
    Alton P B, North P R, Los S O. 2007. The impact of diffuse sunlight on canopy light use efficiency, gross photosynthetic product and net ecosystem exchange in three forest biomes. Global Change Biology, 13(4): 776~787
    Amthor J S. 1994. Scaling CO2 photosynthesis relationships from the leaf to canopy. Photosynthesis Research, 39(3): 321~350
    Aphalo P J, Jarvis P G. 1993. Separation of direct and indirect responses of stomata to light: Results from a leaf inversion experiment at constant intercellular CO2 molar fraction. Journal of Experimental Botany, 44(261): 791~800
    Arndt S K, Clifford S C, Wanek W, Jones H G, Popp M. 2001. Physiological and morphological adaptations of the fruit tree Ziziphus rotundifolia in response to progressive drought stress.Tree Physiology, 21(11): 705~715
    Balaguer L, Pugnaire F I, Martinez-Ferri E, Armas C, Valladares F, Manrique E. 2002. Ecophysiological significance of chlorophyll loss and reduced photochemical efficiency under extreme aridity in Stipa tenacissima L. Plant and Soil, 240(2): 343~352
    Baldochhi D, Collineau S. 1994. The physical nature of solar radiation in heterogeneous canopies: Spatial and temporal attributes// Caldwell M M, Pearcy R W, eds. Exploitation of Environmental Heterogeneity by Plants: Ecophysiological Processes Above and Below Ground. San Diego, CA: Academic Press: 21~64
    Baligar V C, Bunce J A, Machado R C R, Elson M K. 2008. Photosynthetic photon flux density, carbon dioxide concentration, and vapor pressure deficit effects on photosynthesis in cacao seedlings. Photosynthetica, 46(2): 216~221
    Barron-Gafford G A, Grieve K A, Murthy R. 2007. Leaf- and stand- level responses of a forested mesocosm to independent manipulations of temperature and vapor pressure deficit. New Phytologist, 174: 614~625
    Barton C V M, Montagu K D. 2006. Effect of spacing and water availability on root: shoot ratio in Eucalyptus camaldulensis. Forest Ecology and Management, 221(1-3): 52~62
    Bassman J H, Zwier J C. 1991. Gas exchange characteristics of Populus trichocarpa, Populus deltoides, and Populs trichocarpa×P. deltoides clones. Tree Physiology, 8: 145~159 Bauer H, Bauer U. 1980. Photosynthesis in leaves of the juvenile and adult phase of ivy (Hedera helix). Physiologia Plantarum, 49: 366~372
    Bellot J, Maestre F T, Hernandez N. 2004. Spatio temporal dynamics of chlorophyll fluorescence in a semi arid Mediterranean shrubland. Journal of Arid Environments, 58(3): 295~308
    Bethenod O, Tardieu F, Katerji N. 1996. Relationship between net photosynthetic rate and stomatal conductance in leaves of field grown maize subjected to soil compaction or soil drying. Photosynthetica, 32(3): 367~379
    Blanco J A, Imbert J B, Castillo F J. 2008. Nutrient return via litterfall in two contrasting Pinus sylvestris forests in the Pyrenees under different thinning intensities. Forest Ecology and Management, 256(11): 1840~1852
    Bonan G B. 1993. Importance of leaf area index and forest type when estimating photosynthesis in boreal forest. Remote Sensing of Environment, 43: 303~314
    Bond B J. 2000. Age-related changes in photosynthesis of woody plants. Trends in Plant Science, 5(8): 349~353
    Bota J, Medrano H, Flexas J. 2004. Is photosynthesis limited by decreased Rubisco activity and RuBP content under progressive water stress? New Phytologist, 162(3): 671~681
    Boucher J F, Bernier P Y, Margolis H A, Munson A D. 2007. Growth and physiological response of eastern white pine seedlings to partial cutting and site preparation. Forest Ecology and Management, 240(1-3): 151~164
    Breda N, Granier A, Aussenac G. 1995. Effects of thinning on soil and tree water relations, transpiration and growth in an oak forest (Quercus petraea (Matt.) Liebl.). Tree Physiology, 15(5): 295~306
    Bruggemann W, Vanderkooij T A W, Vanhasselt P R. 1992. Long term chilling of tomato plants under low light and subsequent recovery .2. Chlorophyll fluorescence, carbon metabolism and activity of ribulose-1, 5-bisphosphate carboxylase oxygenase. Planta, 186(2): 179~187
    Bunce J A. 1998. The temperature dependence of the stimulation of photosynthesis by elevated carbon dioxide in wheat and barley. Journal of Experimental Botany, 49: 1555~1561
    Burner D M, Pote H, Ares A. 2005. Management effects on biomass and foliar nutritive value of Robinia pseudoacacia and Gleditsia triacanthos f. inermis in Arkansas, USA. Agroforestry Systems, 65(3): 207~214
    Buylaert J P, Murray A S, Vandenberghe D, Vriend M, De Corte F, Van den haute P. 2008. Optical dating of Chinese loess using sand-sized quartz: Establishing a time frame for Late Pleistocene climate changes in the western part of the Chinese Loess Plateau. Quaternary Geochronology, 3(1-2): 99~113
    Cai Z Q, Slot M, Fan Z X. 2005. Leaf development and photosynthetic properties of three tropical tree species with delayed greening. Photosynthetica, 43(1): 91~98
    Caldwell M M, Meister H P, Tenhunen J D, Lange O L. 1986. Canopy structure, light microclimate and leaf gas exchange of Quercus coccifera L. in a Portuguese macchia: Measurements in different canopy layers and simulations with a canopy model. Trees, 1: 25~41
    Cao S X, Chen L, Yu X X. 2009. Impact of China's Grain for Green Project on the landscape of vulnerable arid and semi arid agricultural regions: a case study in northern Shaanxi Province. Journal of AppliedEcology, 46(3): 536~543
    Chen L F, Gao Y H, Li L, Liu Q H, Gu X F. 2008. Forest NPP estimation based on MODIS data under cloudless condition. Science in China Series D: Earth Sciences, 51(3): 331~338
    Choudhury B J. 2001. Estimating gross photosynthesis using satellite and ancillary data: approach and preliminary results. Remote Sensing of the Environment, 75(1): 1~21
    Colon M R, Prato E P, Giannini R. 2003. Chlorophyll fluorescence and photosynthetic response to light in 1-year-old needles during spring and early summer in Pinus leucodermis. Trees, 17(3): 207~210
    Condon A G, Richards R A, Rebetzke G J, Farquhar G D. 2004. Breeding for high water-use efficiency. Journal of Experimental Botany, 55(407): 2447~2460
    Curtis P S. 1996. A meta analysis of leaf gas exchange and nitrogen in trees grown under elevated carbon dioxide. Plant, Cell & Environment, 19(2): 127~137
    Davi H, Dufrêne E, Francois C, Le Maire G, Loustau D, Bosc A, Rambal S, Granier A, Moors E. 2006. Sensitivity of water and carbon fluxes to climate changes from 1960 to 2100 in European forest ecosystems. Agricultural and Forest Meteorology, 141(1): 35~56
    Day M E. 2000. Influence of temperature and leaf-to-air vapor pressure deficit on net photosynthesis and stomatal conductance in red spruce (Picea rubens). Tree Physiology, 20: 57~63
    Day M E, Greenwood M S, White A S. 2001. Age-related changes in foliar morphology and physiology in red spruce and their influence on declining photosynthetic rates and productivity with tree age. Tree Physiology, 21(16): 1195~1204
    Delucia E, Sasck T W, Strain B R. 1985. Photosynthetic inhibition after long term exposure to elevated levels of atmospheric carbon dioxide. Photosynthesis Research, 7: 175~184
    DeLucia E H, Smith W K. 1987. Air and soil temperature limitations on photosynthesis in Engelmann spruce during summer. Canadian Journal of Forest Research, 17: 527~533 de Moraes G J L, Stape J L, Laclau J P, Smethurst P, Gava J L. 2004. Silvicultural effects on the productivity and wood quality of eucalypt plantations. Forest Ecology and Management, 193(1-2): 45~61
    DeSoyza A G, Franc A C, Virginia R A, Reynolds J E, Whitford W G. 1996. Effects of plant size on photosynthesis and water relations in the desert shrub Prosopis glandulosa (Fabaceae). American Journal of Botany, 83(1): 99~105
    Dini-Papanastasi O. 2008. Effects of clonal selection on biomass production and quality in Robinia pseudoacacia var. monophylla Carr. Forest Ecology and Management, 256(4): 849~854
    Donovan L A, Ehleringer J R. 1991. Ecophysiological differences among juvenile and reproductive plants of several woody species. Oecologia, 86: 594~597
    Donovan L A, Ehleringer J R. 1992. Contrasting water use patterns among size and life history classes of a semiarid shrub. Functional Ecology, 6: 482~488
    Drolet G G, Middleton E M, Huemmrich K F, Hall F G, Amiro B D, Barr A G, Black T A, McCaughey J H, Margolis H A. 2008. Regional mapping of gross light-use efficiency using MODIS spectral indices. Remote Sensing of Environment, 112(6): 3064~3078
    Du Y C, Nose A, Wasano K. 1999. Effects of chilling temperature on photosynthetic rates, photosynthetic enzyme activities and metabolite levels in leaves of three sugarcane species. Plant, Cell & Environment, 22(3): 317~324
    Duursma R A, Kolari P, Peramaki M, Pulkkinen M, Makela A, Nikinmaa E, Hari P, Aurela M, Berbigier P, Bernhofer C, Grunwald T, Loustau D, Molder M, Verbeeck H, Vesala T. 2009. Contributions of climate, leaf area index and leaf physiology to variation in gross primary production of six coniferous forests across Europe: a model based analysis. Tree Physiology, 29: 621~639
    England J R, Attiwill P M. 2007. Changes in sapwood permeability and anatomy with tree age and height in the broad leaved evergreen species Eucalyptus regnans. Tree Physiology, 27: 1113~1124
    Ewers B E, Gower S T, Bond-Lamberty B, Wang C K. 2005. Effects of stand age and tree species on canopy transpiration and average stomatal conductance of boreal forests. Plant, Cell & Environment, 28(5): 660~678
    Fang H Y, Cai Q G, Chen H, Li Q Y. 2008. Effect of rainfall regime and slope on runoff in a gullied loess region on the Loess Plateau in China. Environmental Management, 42: 402~411
    Farquhar G D, Roderick M L. 2003. Atmospheric science: Pinatubo, diffuse light and the carbon cycle. Science, 299(5615): 1997~1998
    Farquhar G D, Sharkey T D. 1982. Stomatal conductance and photosynthesis. Annual Review of Plant Physiology, 33: 317~345
    Farquhar G D, von Caemmerer S. 1982. Modelling of photosynthetic response to environmental conditions. In O. Lange, et al. (Eds.), Encyclopaedia of Plant Physiology. Vo.l 12B. Physiological Plant Ecology II: Water Relations and Carbon Assimilation. Berlin, Springer Verlag: 549~587
    Farquhar G D, von Caemmerer S, Berry J A. 1980. Biochemical model of photosynthetic CO2 assimilation in leaves of C3 species. Planta, 149: 78~90
    Farquhar G D, von Caemmerer S, Berry J A. 2001. Models of photosynthesis. Plant Physiology, 125: 42~45
    Feddema J J, Oleson K W, Bonan G B, Mearns L O, Buja L E, Meehl G A, Washington W M. 2005. The importance of land-cover change in simulating future climates. Science, 310: 1674~1678
    Feldhake C M. 2001. Microclimate of a natural pasture under planted Robinia pseudoacacia in central Appalachia, West Virginia. Agroforestry Systems, 53(3): 297~303
    Feng Z, Dyckmans J, Flessa H. 2004. Effects of elevated carbon dioxide concentration on growth and N2 fixation of young Robinia pseudoacacia. Tree Physiology, 24(3): 323~330
    Field C B, Mooney H A. 1986. The photosynthesis-nitrogen relationship in wild plants. In: Givnish T J (ed), Response of Plants to Multiple Stresses, London: Cambridge University Press: 25~55
    Flexas J, Gulias J, Jonasson S, Medrano H, Mus M. 2001. Seasonal patterns and control of gas exchange in local populations of the Mediterranean evergreen shrub Pistacia lentiscus L. Acta Oecologica, 22(1): 33~43
    Franks P J, Cowan I R, Farquhar G D. 1997. The apparent feed forward response of stomata to air vapor deficit: information revealed by different experimental procedures with two rainforest trees. Plant Cell & Environment, 20(4): 142~145
    Frazer G W, Fournier R A, Trofymow J A, Hall R J. 2001. A comparison of digital and film fisheye photography for analysis of forest canopy structure and gap light transmission. Agricultural and Forest Meteorology, 109: 249~263
    Gao Q, Zhang X S, Huang Y M, Xu H M. 2004. A comparative analysis of four models of photosynthesis for 11 plant species in the Loess Plateau. Agricultural and Forest Meteorology, 126: 203~222
    Garcia-Quijano J F, Barros A P. 2005. Incorporating canopy physiology into a hydrological model: photosynthesis, dynamic respiration, and stomatal sensitivity. Ecological Modelling, 185: 29~49
    Ghannoum O, von Caemmerer S, Barlow E W R. 1997. The effects of CO2 enrichment and irradiance on the growth, morphology and gas exchange of a C3 and a C4 grass. Australian Journal of Plant Physiology, 24: 227~237
    Gielen B, Calfapietra C, Sabatti M, Ceulemans R. 2001. Leaf area dynamics in a closed poplar plantation under free-air carbon dioxide enrichment. Tree Physiology, 21: 1245~1255
    Gillespie A R, Pope P E. 1990. Rhizosphere acidification increases phosphorus recovery of black locust: II. Model predictions and measured recovery. Soil Science Society of America Journal, 54: 538~541
    Ginn S E, Seiler J R, Cazell B H, Kreh R E. 1991. Physiological and growth responses of eight year old loblolly pine stands to thinning. Forest Science, 37: 1030~1040
    Gouasmi M, Mordelet P, Demarez V, Gastellu-Etchegorry J P, Le Dantec V, Dedieu G, Menaut J C, Calvet J C, Lamaze T. 2009. Photosynthesis of a temperate fallow C3 herbaceous ecosystem: measurements and model simulations at the leaf and canopy levels. Photosynthetica, 47(3): 331~339
    Gower S T, McMurtrie R E, Murty D. 1996. Aboveground net primary production decline with stand age: Potential causes. Trends in Ecology & Evolution, 11(9): 378~382
    Gravatt D A, Chambers J L, Barnett J P. 1997. Temporal and spatial patterns of net photosynthesis in 12-year-old loblolly pine five growing seasons after thinning. Forest Ecology and Management, 97(1): 73~83
    Greenwood M S, Ward M H, Day M E, Adams S L, Bond B J. 2008. Age-related trends in red spruce foliar plasticity in relation to declining productivity. Tree Physiology, 28(2): 225~232
    Griffiths H, Parry M A J. 2002. Plant responses to water stress. Annals of Botany, 89:801~802
    Gu L H, Baldocchi D, Verma S B, Black T A, Vesala T, Falge E M, Dowty P R. 2002. Advantages of diffuse radiation for terrestrial ecosystem productivity. Journal of Geophysical Research, 107(4050): ACL 2~1
    Gu L H, Baldocchi D D, Wofsy S C, Munger J W, Michalsky J J, Urbanski S P, Boden T A. 2003. Response of a deciduous forest to the Mount Pinatubo eruption: Enhanced photosynthesis. Science, 299(5615): 2035~2038
    Gunderson C A, Sholtis J D, Wullschleger S D, Tissue D T, Hanson P J, Norby R J. 2002. Environmental and stomatal control of photosynthetic enhancement in the canopy of a sweetgum (Liquidambar styraciflua L.) plantation during 3 years of CO2 enrichment. Plant, Cell & Environment, 25: 379~393
    Han Q, Araki M, Chiba Y. 2006. Acclimation to irradiance of leaf photosynthesis and associated nitrogen reallocation in photosynthetic apparatus in the year following thinning of a young stand of Chamaecyparis obtuse. Photosynthetica, 44(4): 523~529
    Han Q M, Chiba Y. 2009. Leaf photosynthetic responses and related nitrogen changes associated with crown reclosure after thinning in a young Chamaecyparis obtusa stand. Journal of Forest Research, 14: 349~357
    Hanson P J, Samuelson L J, Wullschleger S D, Tabberer T A, Edwards G S. 1994. Seasonal patterns of light saturated photosynthesis and leaf conductance for mature and seedling Quercus rubra L. foliage: differential sensitivity to ozone exposure. Tree Physiology, 14(12): 1351~1366
    Hasler R. 1982. Net photosynthesis and transpiration of Pinus montana on east and north facing slopes atalpine timberline. Oecologia, 54: 14~22
    He X, Zhou J, Zhang X, Tang K. 2006. Soil erosion response to climatic change and human activity during the Quaternary on the Loess Plateau, China. Regional Environmental Change, 6(1-2): 62~70
    Heath J, Ayres E, Possell M, Bardgett R D, Black H I J, Grant H, Ineson P, Kerstiens G. 2005. Rising atmospheric CO2 reduces sequestration of root-derived soil carbon. Science, 309(5741): 1711~1713
    Hilker T, Coops N C, Wulder M A, Black T A, Guy R D. 2008. The use of remote sensing in light use efficiency based models of gross primary production: A review of current status and future requirements. Science of The Total Environment, 404(2-3): 411~423
    Hilker T, Hall F G, Coops N C, Lyapustin A, Wang Y J, Nesic Z, Grant N, Black T A, Wulder M A, Kljun N,
    Hopkinson C, Chasmer L. 2010. Remote sensing of photosynthetic light-use efficiency across two forested biomes: Spatial scaling. Remote Sensing of Environment, 114(12): 2863~2874
    Hollinger D Y, Kelliher F M, Byers J N. 1994. Carbon dioxide exchange between an undisturbed old-growth temperate forest and the atmosphere. Ecology, 75(1): 134~150
    Horton J L, Kolb T E, Hart S C. 2001. Leaf gas exchange characteristics differ among Sonoran Desert riparian tree species. Tree Physiology, 21: 233~241
    Huang N, Niu Z, Wu C Y, Tappert M C. 2010. Modeling net primary production of a fast-growing forest using a light use efficiency model. Ecological Modelling, 221(24): 2938~2948
    Huemmrich K F, Gamon J A, Tweedie C E, Oberbauer S F, Kinoshita G, Houston S, Kuchy A, Hollister R D, Kwon H, Mano M, Harazono Y, Webber P J, Oechel W C. 2010. Remote sensing of tundra gross ecosystem productivity and light use efficiency under varying temperature and moisture conditions. Remote Sensing of Environment, 114(3): 481~489
    Hutchison K W. 1990. Maturation in larch, II. Effects of age on photosynthesis and gene expression in developing foliage. Plant Physiology, 94: 1308~1315
    Hymus G J, Snead T G, Johnson D P, Hungate B A, Drake B G. 2002. Acclimation of photosynthesis and respiration to elevated atmospheric CO2 in two Scrub Oaks. Global Change Biology, 8(4): 317~328
    Imhoff M L, Bounoua L, Ricketts T, Loucks C, Harriss R, Lawrence W T. 2004. Global patterns in human consumption of net primary production. Nature, 429(6994): 870~873
    IPCC. 2007. Summary for Policymakers of Climate Change 2007: The Physical Science Basis. Contribution of working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge: Cambridge University Press
    Jimenez E, Vega J A, Perez-Gorostiaga P, Cuinas P, Fonturbel T, Fernandez C, Madrigal J, Hernando C, Guijarro M. 2008. Effects of precommercial thinning on transpiration in young post fire maritime pine stands. Forestry, 81(4): 543~557
    Johnson D M, Germino M J, Smith W K. 2004. Abiotic factors limiting photosynthesis in Abies lasiocarpa and Picea engelmannii seedlings below and above the alpine timberline. Tree Physiology, 24(4): 377~386
    Johnson Z, Richard T. 2003. The low light reduction in the quantum yield of photosynthesis: potential errors and biases when calculating the maximum quantum yield. Photosynthesis Research, 75: 85~95
    Jose S, Gillespie A R. 1997. Leaf area-productivity relationships among mixed-species hardwood forest communities of the central hardwood region. Forest Science, 43: 56~64
    Juan F, Garcia Q, Barros A P. 2005. Incorporating canopy physiology into a hydrological model:photosynthesis, dynamic respiration, and stomatal sensitivity. Ecological Modeling, 185: 29~49
    Kayama M. 2006. Study on the adaptation capacity of spruce species grown on serpentine soil and its application for forest rehabilitation. Res Bull Hokkaido Univ Forest, 63:33~78
    Kayama M, Choi D S, Sasa K, Satoh F, Nomura M, Koike T. 2007. A trial for reforestation after forest fires with Sakhalin spruce in the northern most Japan. Eurasian Journal of Forest Research, 10: 31~39
    Kayama M, Makoto K, Nomura M, Sasa K, Koike T. 2009. Growth characteristics of Sakhalin spruce (Picea glehnii) planted on the northern Japanese hillsides exposed to strong winds. Trees, 23(1): 145~157
    Kayama M, Nomura M, Sugishita Y, Satoh F, Sasa K, Koike T. 2000. Growth and survival of Sasa (Sasa senanensis) community grown under cold and strong windy environment in northern Japan. Bamboo Journal, 17: 20~26
    Khramova E P, Kornarevtseva E K, Kutsenogii K P, Kovalskaya G A, Chankina O V. 2008. Elemental composition and flavonol content of Pentaphylloides fruticosa (L.) O. Schwarz in connection with plant age. Contemporary Problems of Ecology, 1(4): 491~495
    Kim S H, Gitz D C, Sicher R C, Baker J T, Timlin D J, Reddy V R. 2007. Temperature dependence of growth, development, and photosynthesis in maize under elevated CO2. Environmental and Experimental Botany, 61(3): 224~236
    Kimball B A. 1983. Carbon dioxide and agricultural yield: an assemblage and analysis of 430 prior observations. Agronomy Journal, 75: 779~788
    Kingston-Smith A H, Harbinson J, William J, Foyer C H. 1997. Effect of chilling on carbon assimilation, enzyme activation, and photosynthetic electron transport in the absence of photo inhibition in maize leaves. Plant Physiology, 114(3): 1039~1046
    Kira T, Sihdei T. 1967. Primary production and turnover of organic matter in different forest ecosystems of the western pacific. Japanese Journal of Ecology, 17: 70~87
    Koike T, Kitao M, Maruyama Y, Mori S, Lei T T. 2001. Leaf morphology and photosynthetic adjustments among deciduous broad leaved trees within the vertical canopy profile. Tree Physiology, 21(12-13): 951~958
    Kolb T E, Stone J E. 2000. Differences in leaf gas exchange and water relations among species and tree sizes in an Arizona pine oak forest. Tree Physiology, 20(1): 1~12
    Koretsune S, Fukuda K, Chang Z Y, Shi F C, Ishida A. 2009. Effective rainfall seasons for interannual variation in delta C-13 and tree-ring width in early and late wood of Chinese pine and black locust on the Loess Plateau, China. Journal of Forest Research, 14: 88~94
    Kozlowski T T, Kramer P L, Pallardy S G. 1991. The Physiological Ecology of Wood Plants. New York: Academic Press
    Kull O. 2002. Acclimation of photosynthesis in canopies: models and limitations. Oecologia, 133: 267~279
    Kull O, Koppel A. 1987. Net photosynthetic response to light intensity of shoots from different crown positions and age in Picea abies (L.) Karst. Scandinavian Journal of Forest Research, 2: 157~166
    Kurets V K, Drosdov S N, Popov E G. 2003. The temperature gradient air~soil as a factor in the optimization of net photosynthesis in whole plants. Russian Journal of Plant Physiology, 50(1): 72~78
    Laurent M, Antoine N, Joel G. 2003. Effects of different thinning intensities on drought response in Norway spruce (Picea abies (L.) Karst.). Forest Ecology and Management, 183(1-3): 47~60
    Lawlor D W. 2002. Limitation to photosynthesis in water stressed leaves: stomata vs metabolism and the role of ATP. Annals of Botany, 89: 871~885
    Le Dantec V, Dufre?ne E, Saugier B. 2000. Interannual and spatial variation in maximum leaf area index of temperate deciduous stands. Forest Ecology and Management, 134: 71~81
    Letts M G, Lafleur P M, Roulet N T. 2005. On the relationship between cloudiness and net ecosystem carbon dioxide exchange in a peatland ecosystem. Ecoscience, 12(1): 53~59
    Leverenz J W, Jarvis P G. 1979. Photosynthesis in Sitka spruce VIII. The effects of light flux density and direction on the rate of net photosynthesis and the stomatal conductance of needles. Journal of Applied Ecology, 16: 919~932
    Li Y K, Ni J, Yang Q K, Li R. 2006. Human impacts on soil erosion identified using land~use changes: A case study from the Loess Plateau, China. Physical Geography, 27(2): 109~126
    Liao J X, Ge Y, Huang C C, Zhang J, Liu Q X, Chang J. 2005. Effects of irradiance on photosynthetic characteristics and growth of Mosla chinensis and M. scabra. Photosynthetica, 43(1): 111~115
    Liberloo M, Tulva I, Raim O, Kull O, Ceulemans R. 2007. Photosynthetic stimulation under long term CO2 enrichment and fertilization is sustained across a closed Populus canopy profile (EUROFACE). New Phytologist, 173(3): 537~549
    Lindroth A, Lagergren F, Aurela M, Bjarnadottir B, Christensen T, Dellwik E, Grelle A, Ibrom A, Johansson T, Lankreijer H. 2008. Leaf area index is the principal scaling parameter for both gross photosynthesis and ecosystem respiration of Northern deciduous and coniferous forests. Tellus, 60: 129~142
    Long S P, Baker N P, Raines C A. 1993. Effect of the long-term elevation of CO2 concentration in the field on the quantum yield of photosynthesis of the C3 sedge. Plant Physiology, 96: 221~226
    Luo Z B, Calfapietra C, Scarascia- Mugnozza G, Liberloo M, Polle A. 2008. Carbon-based secondary metabolites and internal nitrogen pools in Populus nigra under Free Air CO2 Enrichment (FACE) and nitrogen fertilisation. Plant and Soil, 304(1-2): 45~57
    Luo Z B, Langenfeld-Heyser R, Calfapietra C, Polle A. 2005. Influence of free air CO2 enrichment (EUROFACE) and nitrogen fertilisation on the anatomy of juvenile wood of three poplar species after coppicing. Trees, 19: 109~118
    Luo Z B, Polle A. 2009. Wood composition and energy content in a poplar short rotation plantation on fertilized agricultural land in a future CO2 atmosphere. Global Change Biology, 15(1): 38~47
    Luyssaert S, Schulze E D, Borner A, Knohl A, Hessenmoller D, Law B E, Ciais P, Grace J. 2008. Old growth forests as global carbon sinks. Nature, 455: 213~215
    Makinen H, Isomaki A, Hongisto T. 2006. Effect of half-systematic and systematic thinning on the increment of Scots pine and Norway spruce in Finland. Forestry, 79(1): 103~121
    Matsuda R, Ohashi-Kaneko K, Fujiwara K, Goto E, Kurata K. 2004. Photosynthetic characteristics of rice leaves grown under red light with or without supplemental blue light. Plant and Cell Physiology, 45(12): 1870~1874
    Mebrahtu T, Hanover J W. 1991. Leaf age effects on photosynthesis and stomatal conductance of black locust seedlings. Photosynthetica, 25(4): 537~544
    Mebrahtu T, Layne D R, Hanover J W, Flore J A. 1993. Net photosynthesis of black locust seedlings in response to irradiance, temperature and CO2. Photosynthetica, 28(1): 45~54
    Medhurst J L, Beadle C L. 2001. Crown structure and leaf area index development in thinned and unthinned Eucalyptus nitens plantations. Tree Physiology, 21(12-13): 989~999
    Medhurst J L, Beadle C L. 2005. Photosynthetic capacity and foliar nitrogen distribution in Eucalyptus nitens is altered by high intensity thinning. Tree Physiology, 25(8): 981~991
    Meir P, Levy P E, Grace J, Jarvis P G. 2007. Photosynthetic parameters from two contrasting woody vegetation types in West Africa. Plant Ecology, 192(2): 277~287
    Mencuccini M, Martinez-Vilalta J, Vanderklein D, Hamid H A, Korakaki E, Lee S. 2005. Size-mediated ageing reduces vigour in trees. Ecology Letters, 8(11): 1183~1190
    Merilo E, Tulva I, Raim O, Kukit A, Sellin A, Kull O. 2009. Changes in needle nitrogen partitioning and photosynthesis during 80 years of tree ontogeny in Picea abies. Trees, 23(5): 951~958
    Misson L, Vincke C, Devillez F. 2003. Frequency responses of radial growth series after different thinning intensities in Norway spruce (Picea abies (L.) karst.) stands. Forest Ecology and Management, 177(1-3): 51~63
    Moreno G, Cubera E. 2008. Impact of stand density on water status and leaf gas exchange in Quercus ilex. Forest Ecology and Management, 254(1): 74~84
    Moreno-Sotomayor A, Weiss A, Paparozzi E T, Arkebauer T J. 2002. Stability of leaf anatomy and light response curves of field grown maize as a function of age and nitrogen status. Journal of Plant Physiology, 159(8): 819~826
    Mulkey S S, Pearcy R W. 1992. Interactions between acclimation and photoinhibition of photosynthesis of a tropical forest understory herb, Alocasia macrorrhiza, during simulated canopy gap formation. Functional Ecology, 6: 719~729
    Munne-Bosch S. 2007. Aging in perennials. Critical Reviews in Plant Sciences, 26(3): 123~138
    Munne-Bosch S. 2008. Do perennials really senesce? Trends in Plant Science, 13(5): 216~220
    Myneni R B, Yang W Z, Nemani R R, Huete A R, Dickinson R E, Knyazikhin Y, Didan K, Fu R, Juarez R I
    N, Saatchi S S, Hashimoto H, Ichii K, Shabanov N V, Tan B, Ratana P , Privette J L, Morisette J T, Vermote E F, Roy D P, Wolfe R E, Friedl M A, Running S W, Votava P, El-Saleous N, Devadiga S, Su Y, Salomonson V V. 2007. Large seasonal swings in leaf area of Amazon rainforests. P NAS, 104: 4820~4823
    Myung S S, Woo S Y, Lee D S. 2007. A study on the photosynthetic rates of Panax ginseng in the different ages and provinces. Journal of Korean Forestry Society, 96(3): 357~361
    Nahoko K, Hagihara A, Hozumi K. 1993. Canopy photosynthetic production in a Japanese larch forest. II. Estimation of the canopy photosynthetic production. Ecological Research, 8: 349~361
    Ni B R, Stephen G P. 1991. Response of gas exchange to water stress in seedlings of woody angiosperms. Tree Physiology, 8(1):1~9
    Niinemets U. 2002. Stomatal conductance alone does not explain the decline in foliar photosynthetic rates with increasing tree age and size in Picea abies and Pinus sylvestris. Tree Physiology, 22(8): 515~535
    Nikolov N T, Massman W J, Schoette A W. 1995. Coupling biochemical and biophysical processes at the leaf level: an equilibrium photosynthesis model for leaves of C-3 plants. Ecological Modelling, 80(2-3): 205~235
    Niu S, Li Z, Xia J, Han Y, Wu M, Wan S. 2008. Climatic warming changes plant photosynthesis and its temperature dependence in a temperate steppe of northern China. Environmental and ExperimentalBotany, 63: 91~101
    Niyogi D, Chang H I, Saxena V K, Holt T, Alapaty K, Booker F, Chen F, Davis K J, Holben B. 2004. Direct observations of the effects of aerosol loading on net ecosystem CO2 exchanges over different landscapes. Geophysical Research Letters, 31(20): L20506
    Novichkova N S, Romanova A K, Ignatev A R, Mudirik V A, Permyakov S E, Ivanov B N. 2008. Effect of surplus glucose on physiological and biochemical characteristics of sugar beet leaves in relation to the age of the leaf and the whole plant. Russian Journal of Plant Physiology, 55: 201~210
    Odum E P. 1969. The strategy of ecosystem development. Science, 164: 262~270
    Oshima K, Tang Y H, Washitani I. 1997. Spatial and seasonal patterns of microsite light availability in a remnant fragment of deciduous riparian forest and their implication in the conservation of Arisaema heterophyllum, a threatened plant species. Journal of Plant Research, 110(1099): 321~327
    Ozanne C M P, Anhuf D, Boulter S L, Keller M, Kitching R L, Korner C, Meinzer F C, Mitchell A W,
    Nakashizuka T, Dias P L S, Stork N E, Wright S J, Yoshimura M. 2003. Biodiversity meets the atmosphere: A global view of forest canopies. Science, 301(5630): 183~186
    Peng C H, Zhou X L, Zhao S Q, Wang X P, Zhu B, Piao S L, Fang J Y. 2009. Quantifying the response of forest carbon balance to future climate change in Northeastern China: Model validation and prediction. Global and Planetary Change, 66(3-4): 179~194
    Penuelas J, Filella I, Llusia J. 1998. Comparative field study of spring and summer leaf gas exchange and photobiology of the Mediterranean trees Quercus ilex and Phillyrea latifolia. Journal of Experimental Botany, 49(319): 229~238
    Peri P L, Moot D J, McNeil D L. 2006. Validation of a canopy photosynthesis model for cocksfoot pastures grown under different light regimes. Agroforestry Systems, 67: 259~272
    Pettigrew W T, Hesketh J D, Peters D B, Woolley J T. 1990. A vapor pressure deficit effect on crop canopy photosynthesis. Photosynthesis Research, 24: 27~34
    Pfanz H, Vodnik D, Wittmann C, Aschan G, Batic F, Turk B, Macek I. 2007. Photosynthetic performance (C
    O2-compensation point, carboxylation efficiency, and net photosynthesis) of timothy grass (Phleum pratense L.) is affected by elevated carbon dioxide in post-volcanic mofette areas. Environmental and Experimental Botany, 61(1): 41~48
    Pielke R A. 2005. Land use and climate change. Science, 310: 1625~1626
    Prado C H B A, Zhang W H, Rojas M H C, Souza G M. 2004. Seasonal leaf gas exchange and water potential in a woody cerrado species community. Brazilian Journal of Plant Physiology, 16(1): 7~16
    Prior L D, Eamus D, Duff G A. 1997. Seasonal and diurnal patterns of carbon assimilation, stomatal conductance and leaf water potential in Eucalyptus tetrodonta saplings in a wet-dry savanna in northern Australia. Australian Journal of Botany, 45(2): 241~ 258
    Prioul J L, Chartier P. 1977. Partitioning of transfer and carboxylation components of intracellular resistance to photosynthetic CO2 fixation: A critical analysis of the methods used. Annals of Botany, 41(174): 789~800 Raines C A, Lloyd J C, Dyer T A. 1991. Molecular biology of the C3 photosynthetic carbon reduction cycle.
    Photosynthesis Research, 27: 1~14 Rebetske G J, Condon A G, Richards R A. 2002. Selection for reduced carbon isotope discrimination increases aerial biomass and grain yield of rain fed bread wheat. Crop Science, 42(3): 739~745
    Richardson A D, Berlyn G P, Ashton P M S, Thadani R, Cameron I R. 2000. Foliar plasticity of hybrid spruce in relation to crown position and stand age. Canadian Journal of Botany, 78(3): 305~317
    Rieger M, Bianco R L, Okie W R. 2003. Responses of Prunus ferganensis, Prunus persica and two interspecific hybrids to moderate drought stress. Tree Physiology, 23(1): 51~58
    Roderick M L, Farquhar G D, Berry S L, Noble I R. 2001. On the direct effect of clouds and atmospheric particles on the productivity and structure of vegetation. Oecologia, 129(1): 21~30
    Running S W, Nemani R R, Heinsch F A, Zhao M, Reeves M C, Hashimoto H. 2004. A continuous satellite~derived measure of global terrestrial primary production. Bio Science, 54(6): 547~560
    Sakai T, Saigusa N, Yamamoto S, Akiyama T. 2005. Microsite variation in light availability and photosynthesis in a cool-temperate deciduous broadleaf forest in central Japan. Ecological Research, 20: 537~545
    Salvucci M E, Portis A R J, Ogren W L. 1986. Purification of ribulose-1, 5-bisphosphate carboxylase/oxygenase with high specific activity by fast protein liquid chromatography. Analytical Biochemistry, 153(1): 97~101
    Schimel D, Ives D. 1996. CO2 and carbon cycle. Cambridge: Cambridge University Press, 65~131
    Schonua A P G, Coetzee J. 1989. Initial spacing, stand density, and thinning in eucalypt plantations. Forest Ecology and Management, 29: 245~266
    Schreiber U, Bilger W, Neubauer C. 1994. Chlorophyll fluorescence as a non-destructive indicator for rapid assessment of invivo photosynthesis. Ecological Studies, 100: 49~70
    Sellers P J, Bounoua L, Collatz G J, Randall D A, Dazlich D A, Los S O, Berry J A, Fung I, Tucker C J, Field C B, Jensen T G. 1996. Comparison of radiative and physiological effects of doubled atmospheric CO2 on climate. Science, 271: 1402~1406
    Sellin A, Kupper P. 2005. Variation in leaf conductance of silver birch: effects of irradiance, vapour pressure deficit, leaf water status and position within a crown. Forest Ecology and Management, 206: 153~166
    Seppo K, Wang K Y. 1996. Photosynthetic responses to needle water potentials in Scots pine after a four-year exposure to elevated CO2 and temperature. Tree Physiology, 16(9):765~772
    Shen H H, Tang Y H, Muraoka H, Washitani I. 2008. Characteristics of leaf photosynthesis and simulated individual carbon budget in Primula nutans under contrasting light and temperature conditions. Journal of Plant Research, 121: 191~200
    Shiratsuchi H, Yamagishi T, Ishii R. 2006. Leaf nitrogen distribution to maximize the canopy photosynthesis in rice. Field Crops Research, 95(2-3): 291~304
    Sims D A, Luo Y, Seemann J R. 1998. Comparison of photosynthetic acclimation to elevated CO2 and limited nitrogen supplying soybean. Plant, Cell & Environment, 21: 945~952
    Singh P P. 2008. Exploring biodiversity and climate change benefits of community-based forest management. Global Environmental Change, 18(3): 468~478
    Staehr P A, Sand-Jensen K. 2006. Seasonal changes in temperature and nutrient control of photosynthesis, respiration and growth of natural phytoplankton communities. Fresh water Biology, 51(2): 249~262
    Stirling C M, Heddell-Cowie M, Jones M L. 1998. Effects of elevated CO2 and temperature on growth and allometry of five native fast-growing annual species. New Phytologist, 140: 343~354
    Stupak I, Nordfjell T, Gundersen P. 2008. Comparing biomass and nutrient removals of stems and freshand predried whole trees in thinnings in two Norway spruce experiments. Canadian Journal of Forest Research, 38(10): 2660~2673
    Tang Z M, Chambers J L, Guddanti S, Barnett J P. 1999. Thinning, fertilization, and crown position interact to control physiological responses of loblolly pine. Tree Physiology, 19(2): 87~94
    Tang Z M, Chambers J L, Sword M A, Barnett J P. 2003. Seasonal photosynthesis and water relations of juvenile loblolly pine relative to stand density and canopy position. Trees, 17(5): 424~ 430
    Tateno R, Tokuchi N, Yamanaka N, Du S, Otsuki K, Shimamura T, Xue Z D, Wang S Q, Hou Q C. 2007. Comparison of litterfall production and leaf litter decomposition between an exotic black locust plantation and an indigenous oak forest near Yan’an on the Loess Plateau, China. Forest Ecology and Management, 241(1-3): 84~90
    Tezara W, Mitchell V J, Driscoll, S D, Lawlor D W. 1999. Water stress inhibits plant photosynthesis by decreasing coupling factor and ATP. Nature, 401: 914~917
    Tharakan P J, Volk T A, Nowak C A, Ofezu G J. 2008. Assessment of canopy structure, light interception, and light-use efficiency of first year regrowth of shrub willow (Salix sp.). BioEnergy Research, 1(3-4): 229~238
    Thompson T G, Rothstein D E. 2009. Effects of preceding stand age on nutrient availability in postharvest jack pine (Pinus banksiana) stands. Northern Journal of Applied Forestry, 26(1): 28~30
    Thornley J H M. 1998. Dynamic model of leaf photosynthesis with acclimation to light and nitrogen. Annals of Botany, 81: 421~430
    Tuittila E S, Vasander H, Laine J. 2004. Sensitivity of C sequestration in reintroduced Sphagnum to water level variation in a Cutaway peatland. Restoration Ecology, 12(4): 483~493
    Turner H, Hasler R, Schronenberger W. 1982. Contrasting microenvironments and their effects on carbon uptake and allocation by young conifers near alpine treeline in Switzerland. In: Waring R H (ed), Carbon uptake and allocation in subalpine ecosystems as a key to management. Proc of an IUFRO workshop, Ecology of subalpine zones. Corvallis: Oregon State University Press: 22~30
    Uemura A, Ishida A, Matsumoto Y. 2005. Simulated seasonal changes of CO2 and H2O exchange at the top canopies of two Fagus trees in a winter-deciduous forest, Japan. Forest Ecology and Management, 212: 230~242
    Ueyama M, Harazono Y, Kim Y, Tanaka N. 2009. Response of the carbon cycle in sub-arctic black spruce forests to climate change: Reduction of a carbon sink related to the sensitivity of heterotrophic respiration. Agricultural and Forest Meteorology, 149(3-4): 582~602
    Urban O. 2003. Physiological impacts of elevated CO2 concentration ranging from molecular to whole plant responses. Photosynthetica, 41(1): 9~20
    Urban O, Janous D, Acosta M, Czerny R, Markova I. 2007. Ecophysiological controls over the net ecosystem exchange of mountain spruce stand. Comparison of the response in direct vs. diffuse solar radiation. Global Change Biology, 13(1): 157~168
    Vierling L A, Wessman C A. 2000. Photosynthetically active radiation heterogeneity within a monodominant Congolese rain forest canopy. Agricultural and Forest Meteorology, 103(3): 265~278 von Caemmerer S. 2000. Biochemical models of leaf photosynthesis. Collingwood: CSIRO Publishing
    Wang C R, Han S J, Luo X B. 2000. Photosynthetic response of Pinus sylvestriformis to elevated carbon dioxide and its influential factor analysis. Journal of Forestry Research, 11(3): 167~172
    Wang M C, Wang J X, Shi Q H, Zhang J S. 2007. Photosynthesis and water use efficiency of Platycladus Orientalis and Robinia Pseudoacacia saplings under steady soil water stress during different stages of their annual growth period. Journal of Integrative Plant Biology, 49(10): 1470~1477
    Wang S S, Yang Y, Trishchenko A P. 2009b. Assessment of canopy stomatal conductance models using flux measurements. Ecological Modelling, 220(17): 2115~2118
    Wang Y J, Xie Z K, Malhi S S, Vera C L, Zhang Y B, Wang J N. 2009a. Effects of rainfall harvesting and mulching technologies on water use efficiency and crop yield in the semi-arid Loess Plateau, China. Agricultural Water Management, 96: 374~382
    Wang Y P, Leuning R. 1998. A two-leaf model for canopy conductance, photosynthesis and partitioning of available energy. I. Model description and comparison with amulti-layered model. Agricultural and Forest Meteorology, 91(1-2): 89~111
    Wei G H, Chen W M, Zhu W F, Chen C, Young J P W, Bontemps C. 2009. Invasive Robinia pseudoacacia in China is nodulated by Mesorhizobium and Sinorhizobium species that share similar nodulation genes with native American symbionts. FEMS Microbiology Ecology, 68(3): 320~328
    White D A, Crombie D, Stuart K J, Battaglia M, McGrath J F, Mendhama D S, Walker S N. 2009. Managing productivity and drought risk in Eucalyptus globulus plantations in south-western Australia. Forest Ecology and Management, 259(1): 33~44
    Woodrow I E, Berry J A. 1988. Enzymatic regulation of photosynthesis CO2 fixation in C3 plants. Annual Review Plant Physiology and Plant Molecular Biology, 39: 533~594
    Wu H N, Ma Y Z, Feng Z D, Sun A Z, Zhang C J, Li F, Kuang J. 2009. A high resolution record of vegetation and environmental variation through the last~25,000 years in the western part of the Chinese Loess Plateau. Palaeogeography, Palaeoclimatology, Palaeoecology, 273(1-2): 191~199
    Wullschleger S D. 1993. Biochemical limitations to carbon assimilation in C(3) plants-a retrospective analysis of the A/Ci curves from 109 species. Journal of Experimental Botany, 44(262): 907~920
    Xu D Q, Shen Y K. 2005. External and internal factors responsible for midday depression of photosynthesis. In: Pessarakli M (ed), Handbook of Photosynthesis. 2nd. Boca Raton: CRC Press: Taylor & Francis Group, 287~297
    Xu F, Guo W H, Wang R Q, Xu W H, Du N, Wang Y F. 2009. Leaf movement and photosynthetic plasticity of black locust (Robinia pseudoacacia) alleviate stress under different light and water conditions. Acta Physiologiae Plantarum, 31(3): 553~563
    Yang H B, An S Q, Sun O J X, Shi Z M, She X S, Sun Q Y, Liu S R. 2008. Seasonal variation and correlation with environmental factors of photosynthesis and water use efficiency of Juglans regia and Ziziphus jujube. Journal of Integrative Plant Biology, 50(2): 210~220
    Yu S F, Chambers J L, Tang Z M, Barnett J P. 2003. Crown characteristics of juvenile loblolly pine 6 years after application of thinning and fertilization. Forest Ecology and Management, 180(1-3): 345~352
    Zhang J W, Feng Z, Cregg B M, Schumann C M. 1997. Carbon isotopic composition, gas exchange, and growth of three populations of ponderosa pine differing in drought tolerance. Tree Physiology, 17(7): 461~466
    Zhang Q Y, Middleton E M, Margolis H A, Drolet G G, Barr A A, Black T A. 2009a. Can a satellite-derived estimate of the fraction of PAR absorbed by chlorophyll (FAPARchl) improve predictions of light-use efficiency and ecosystem photosynthesis for a boreal aspen forest? Remote Sensing of Environment,113(4): 880~888
    Zhang X C, Liu W Z, Li Z, Zheng F L. 2009b. Simulating site-specific impacts of climate change on soil erosion and surface hydrology in southern Loess Plateau of China. CATENA, 79(3): 237~242
    Zhang X Q, Xu D Y. 2003. Eco-physiological modelling of canopy photosynthesis and growth of a Chinese fir plantation. Forest Ecology and Management, 173(1-3): 201~211
    Zhang Y B, Duan B L, Qiao Y Z, Wang K Y, Korpelainen H, Li C Y. 2008. Leaf photosynthesis of Betula albosinensis seedlings as affected by elevated CO2 and planting density. Forest Ecology and Management, 255(5-6): 1937~1944
    Zhao H, Zhang Z B, Shao H B, Ping X, Foulkes M J. 2008. Genetic correlation and path analysis of transpiration efficiency for wheat flag leaves. Environmental and Experimental Botany, 64(2): 128~134
    Zheng Y, Zhao Z, Zhou J J, Zhou H, Liang Z S, Luo Z B. 2010. The importance of slope aspect and stand age on the photosynthetic carbon fixation capacity of forest: a case study with black locust (Robinia pseudoacacia) plantations on the Loess Plateau. Acta Physiologiae Plantarum, doi: 10.1007/s11738-010-0561-3 (Online)
    Zhou H H, Chen Y N, Li W H, Chen Y P, Fu L X. 2009. Photosynthesis of Populus euphratica and its response to elevated CO2 concentration in an arid environment. Progress in Natural Science, 19(4): 443~451

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700