用户名: 密码: 验证码:
经典式Spar平台非线性耦合动力响应研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
海洋油气的勘探与开采活动正在向越来越深的水域发展。作为深水和超深水海域中极具竞争力的平台类型,Spar平台在常规海况下表现出良好的运动特性。然而近期一些的实验结果与数值模拟显示:由于耦合非线性因素的存在,使得当平台遭遇到长周期涌浪时将出现复杂的非线性耦合共振现象,导致平台主体运动的失稳和系缆张力的突然增大,危及平台的作业安全。目前对于Spar平台非线性运动稳定性与耦合动力响应方面的研究已成为海洋工程界关注的焦点。本文依据非线性动力学理论,研究经典式Spar平台主体运动的非线性稳定性问题;采用数值模拟方法,计算在规则波浪下主体-系泊系统的耦合动力响应。本文的主要工作与结论如下:
     (1)概述了Spar平台的结构形式和总体性能,回顾了Spar平台的发展历程,综述了国外Spar平台的应用现状与发展趋势,介绍了国内外关于Spar平台的最新研究成果,确定了本文的主要研究方向与关键问题。
     (2)计算经典式Spar平台主体所受到的波浪载荷。根据刚体动力学理论推导出Spar主体垂荡、纵荡、纵摇三自由度的运动方程。根据绕射辐射理论,以一座实验Spar平台为算例,计算了该平台主体所受到的一阶波浪激励力、一阶辐射阻尼力,二阶纵荡波浪力,为之后的理论分析打下了基础。
     (3)研究Spar平台纵摇运动的Mathieu不稳定性。考虑垂荡运动对于纵摇稳性高度的影响,建立了Spar平台非线性参-强联合激励纵摇运动方程。应用摄动法求得了主参数共振时方程的近似解析解,根据李雅普诺夫稳定性定理对方程解的稳定性与局部分岔特性进行分析,揭示了纵摇运动出现参激失稳的机理,做出了发生大幅值纵摇运动的不稳定参数域,进而建立了预报平台发生参数激励纵摇运动的方法,分析了不同参数激励与纵摇阻尼对于纵摇运动响应的影响。
     (4)研究Spar平台垂荡与纵摇运动的耦合内共振特性。考虑瞬时波面和一阶波浪激励力的影响,建立了两自由度耦合非线性方程。针对垂荡与纵摇固有频率间的准2:1关系,采用多尺度法导出了当波浪频率接近垂荡固有频率时耦合方程的近似解析解并数值验证,根据Floquet理论对定常周期解的稳定性进行分析。研究发现:当出现耦合内共振现象时垂荡运动存在能量饱和现象,当垂荡激励力继续增大时,多余的垂荡能量将向纵摇模态转移,导致出现不稳定纵摇运动。增加垂荡阻尼可降低垂荡共振幅值,而增加纵摇阻尼或扩大垂荡与纵摇固有频率间的差距将削弱两自由度间的耦合关系,从而避免耦合内共振运动的发生。
     (5)研究Spar平台垂荡与纵摇运动的组合共振特性。采用摄动法导出当波浪频率接近垂荡与纵摇固有频率之和时响应方程的近似解析解并数值验证,根据Routh-Hurwitz判据对零解的稳定性和局部分岔特性进行了分析。研究发现:较大的纵摇激励力矩将导致解曲线发生局部分岔行为从而衍生出稳定的亚谐分量,是导致两自由度响应出现倍周期与幅值跳跃现象的根本原因。提高系统阻尼可减小零解的不稳定区从而提高此时平台运动的稳定性。
     (6)计算规则波浪下Spar平台主体-系泊系统的耦合动力响应。应用集中质量法模拟系泊系统,考虑系泊缆绳所受到的流体载荷和其与主体之间的相互作用,建立了系泊-主体全耦合分析模型,根据龙格库塔法在MATLAB语言环境下开发大型耦合计算程序ANCMS。以一座实验Spar作为算例,得到了不同系缆长度时缆绳的静态预张力与缆绳水中构型,测出了缆绳的非线性系泊刚度,对比了在规则波浪下有无系泊系统时平台的运动响应,研究了系泊缆绳的粘性阻尼与质量惯性力对于平台运动响应的影响,得到了以波浪频率为分岔参数的主体运动幅值与系缆张力分岔图。
Offshore oil and gas drilling and production activities are being pushed into deeper and deeper waters. As the most attractive types of deep and ultra deep water production platforms, Spars have exhibited excellent dynamic characteristic in normal conditions. But some recent numerical research and experiments results showed that the compliant coupled resonant response appeared when the platform experiencing long periodic ground swell because of some nonlinear factors, which may cause unstable motion and tension increasing quickly in the cable. This phenomenon may endanger the security and production of the platform. More and more attention has been attracted to the motion stability and coupled dynamic response of the Spar platforms in the ocean engineering field presently.
     In this paper the nonlinear dynamics theory is adopted to study the motion stability of a classic Spar platform and the hull-mooring coupled dynamic response is calculated in regular waves by using the numerical method. The main contents and contribution are summarized as follows:
     (1) The structure form and general characteristic of the Spar platforms are presented, the development process is reviewed, the application status and the development tendency at abroad are introduced, some recent research achievements of the Spars are summarized synthetically, the study direction and key problems of the thesis are presented.
     (2) The wave loadings on the hull of a Classic Spar platform are calculated. The coupled differential equations for surge, heave and pitch of a Spar platform are deduced according to the rigid body dynamics theory. The first order wave exciting forces and the radiation damping forces of an experimental Spar model are calculated according to the diffraction/radiation theory, the second order wave exciting force of surge is also obtained which lay a foundation for the further theoretical analysis.
     (3) The Mathieu instability of pitch motion of a Spar platform is studied. The nonlinear parametric and forcing excited equation for pitch motion is established with considering the effect of heave motion on the metacentric height of pitch. The approximate analytical solution of the differential equation is obtained for the prime parametric by using perturbation method. The stability and the local bifurcation characteristic of the solution are studied according to the Lyapunov's laws so as to reveal the mechanism of instable parametric pitch motion. The parametric field for the large amplitude pitch motion is obtained and the method is founded for predicting the instable pitch movement. The factors of different excited parameters and pitch damping for the response are also analyzed.
     (4) The internal resonant characteristic of heave-pitch motion is studied. The nonlinear coupling equations for heave and pitch are established considering the effect of time-varying incident wave elevation and first order wave exciting forces. The steady-state response of the equations are solved by the method of multiple scales and validated by the numerical method in the presence of the quasi 2:1 internal relationship when the wave frequency get close to the natural heave frequency. The stabilities steady-state periodic solutions are analyzed according to the Floquet theory. It is observed that the heave motion exhibits saturation when the internal resonance occurs, as the heave exciting force increases further, the extra energy of heave mode is transferred to the pitch mode and induces unstable pitch response. Increasing heave damping can decrease the heave resonant amplitude, Increasing pitch damping or enlarge the disparity of the natural frequencies between heave and pitch motion can weaken the coupled relationship of the two modes, which can suppress the internal resonance response.
     (5) The combination resonance response of heave-pitch motion is studied. The steady-state response of the equations are obtained when the incident wave frequency approaching to the sum of heave natural frequency and pitch natural frequency. The stabilities and the local bifurcation characteristic of the trivial solution are analyzed according to the Routh-Hurwitz criterion. The result shows that large pitch exciting moment can induce bifurcation behavior in two solution curves and trips stable sub-harmonic component, which leads to period doubling and jumping phenomena in both modes. Increasing system damping can reduce the instability domain of the trivial solution so as to improve the stability of Spar platform.
     (6) The coupled dynamic response for the hull-mooring system of a Spar platform is calculated under regular waves. The mooring system is modeled by using the lumped masses method, the fluid loads and the coupled effects are taken into account so that a full coupled analysis model of hull/mooring system is established. The large computer program ANCMS is developed adopting Runge-Kutta method with MATLAB. By taken an experimental Spar model for example, the pretension at the fairlead and configuration underwater are obtained with different cable lengths, the mooring stiffness are calculated. The dynamic responses under regular waves with/without mooring lines are compared. The viscous damping and mass inertia effects of the mooring lines on the responses are analyzed, the bifurcation diagram of motion and tension is obtained with the wave frequency as the bifurcation parameter.
引文
[1]张帆,杨建民,李润培.Spar平台的发展趋势及其关键技术[J],中国海洋平台,2005,20(2):6~11
    [2]李润培,谢永和,舒志.深海平台技术的研究现状与发展趋势[J],中国海洋平台,2003,18(3):1~5
    [3]王芳.强化海洋资源开发与促进社会经济可持续发展[J],国土资源,2002,(7):2~24
    [4]洪菲,胡天跃.深海油气地震勘探进展和展望[J],地球物理学进展,2002,17(2):230~236
    [5]李玉成.海洋工程技术的新发展[J],中国海洋平台,1998,13(1):9~12
    [6]张智,董艳秋,芮光六.一种新型的深海采油平台Spar[J],中国海洋平台,2004,19(6):29~35
    [7]黄维平,白兴兰,孙传栋.国外Spar平台研究现状及中国南海应用前景分析[J],中国海洋大学学报,2008,38(4):675~680
    [8]杨雄文,樊洪海.Spar平台结构型式及总体性能分析[J],石油矿场机械,2008,37(5):32~35
    [9]石红珊,柳存根.Spar平台及其总体设计中的考虑[J],中国海洋平台,2007,22(2):1~4
    [10] Hang S Choi.The motion characteristics of spar platforms of 3 Generations,International Forum on Systems and Mechatronics,2006
    [11]徐琦.Truss Spar平台简介[J],中国造船,2002,43(增刊),125~131
    [12]董艳秋.深海平台波浪载荷及响应[M],天津:天津大学出版社,2005
    [13]王颖,杨建民,肖龙飞.Spar平台与刚性立管及浮力罐耦合动力研究综述[J],海洋工程,2008,26(2):140~146
    [14]吴应湘,李华,曾晓辉.深海采油平台发展现状和设计中的关键问题[J],中国造船,2002,43(增刊):80~86
    [15]唐友刚,张素侠,张若瑜.深海系泊系统动力特性研究进展[J],海洋工程,2008,26(1):120~126
    [16]曾晓辉,沈晓鹏,吴应湘.深海平台分析和设计中的关键力学问题[J],船舶工程,2005,27(5):18~21
    [17] M H Kim,D K P Yue.The complete second-order diffraction solution for an axisymmetric body.Part l:monochromatic incident waves[J],Journal of Fluid Mechanic,1989,200:235~264
    [18] M H Kim,D K P Yue.The complete second-order diffraction solution for an axisymmetric body.Part 2:bichromatic incident waves[J],Journal of Fluid Mechanics,1990,211:557~593
    [19] Bhatta D D,Rahman M.Wave loadings on a vertical cylinder due to heave motion[J],International Journal of Mathematics & Mathematic science,1995,18(1):151~170
    [20] Oguz Yilmaz.Hydrodynamic interactions of waves with group of truncated vertical cylinder[J],Journal of Waterway, Port, Coastal and Ocean Engineering,1998,1:272~279
    [21] Oguz Yilmaz,Atilla Incecik.Analytical solutions of the diffraction problem of a group of truncated vertical cylinder[J],Ocean Engineering,1998,25(6): 385~394
    [22] Haslum H A,Faltinsen O M.Alternative shape of Spar platform s for use in hostile areas,Offshore Technology Conference,OTC 10953,Houston,Texas,1999
    [23]胡志敏,董艳秋,张建民.张力腿平台波浪载荷计算[J],中国海洋平台,2002,17(3):6~11
    [24] Thiagarajan K P,Datta I,Ran A Z.Influence of heave plate geometry on the heave response of Classic Spars[C],Proceedings of the International Conference on Offshore Mechanics and Arctic Engineering,2002,1:621~627
    [25] Anam I,Roesset J M.Slender body Approximations of hydrodynamic forces for spar platforms[J],International Journal of Offshore and Polar Engineering,2004,14(2):104~109
    [26] Zhang F,Li R P,Yang J M.Effects of heave plate on the hydrodynamic behaviors of cell spar platform[C],Proceedings of the International Conference on Offshore Mechanics and Arctic Engineering,2006,1:185~197
    [26] Mekha B B,Johnson C P,Roesset J M.Nonlinear response of a spar in deep water:different hydrodynamic and structural models[C],Proceeding of 5th the International Offshore and Polar Engineering Conference,1995,462~469
    [27] Kim M H,Roesset J M,Zhang J.Nonlinear dynamic analysis methods for spar platforms,Proceedings of the Society of Naval Architect and Marin EngineerConference (Gulf Section).1997.
    [28] Ma W,Lee M Y,Zou J,Huang E W.Deepwater nonlinear coupled analysis tool,Offshore Technology Conference,OTC 12085.2000
    [29] Sang soo Ryu.Hull/mooring/riser coupled motion simulations of thruster assisted moored platforms,[PHD],Texas,Texas A&M University,2003
    [30] Boo Jun Koo.Evaluation of the effect of contact between risers and guide frames on offshore Spar platform motions,[PHD],Texas,Texas A&M University,2003
    [31] Basil Theckum Purath.Numerical simulation of the truss Spar‘HORN MOUNTAIN’using couple:[master degree thesis],Texas,Texas A&M University,2006
    [32] Himanshu Gupta,Lyle Finn,Tim Weaver.Effects of Spar Coupled Analysis[C],Proceedings of the Annual Offshore Technology Conference,2000,OTC 12082,629~638
    [33] Cao P,Zhang J.Slow motion responses of compliant offshore structures[C], Proceedings of the 6th International Offshore and Polar Engineering Conference,1996,296~303
    [34] Mekha B B,Weggel D C,Johnson C P.Effect of second order diffraction forces on the global response of spars[C],Proceedings of the 6th International Offshore and Polar Engineering Conference,1996:273~280
    [35] Ran Z,Kim M H.Nonlinear coupled responses of a tethered spar platform in waves[C],Proceedings of the 7th International Journal of Offshore and Polar Engineering,1997,2:111~118
    [36] Garrett D L.Dynamic analysis of slender reds[J],Journal Energy Resources Technology,1982,104:302~307
    [37] Ran Z,Kim M H,Zheng W.Coupled dynamic analysis of a moored spar in random waves and current(time-domain Vs.frequency-domain analysis)[J],Journal of Offshore Mechanics and artic Engineering,1999,121:194~199
    [38] Petter Andreas Berthelsen.Dynamic response analysis of a truss spar in waves: [Master degree thesis],Newcastle,University of Newcastle,2000
    [39] Xiaohong Chen,Jun Zhang,Wei Ma.Dynamic coupling effects between a spar and its mooring lines,Ocean Engineering,2001,28(7),863~887
    [40] Tahar A,Ran Z,Kim M H,Hull/Mooring/riser coupled spar motion analysis with buoyancy-can effect,Proceedings of the International Offshore and PolarEngineering Conference,2002,12:223~230
    [41] Zhang X,Zou J.Coupled effects of rise/supporting guide frame on spar responses,Proceedings of the 12th International Offshore and Polar Engineering Conference.2002,231~236
    [42] Chen Xiaohong,Huang Ken.Impacts of different riser models on global responses of a truss spar[J],Deepwater Mooring Systems Concepts,Design Analysis and Materials,2003,183~197.
    [43] A K Agarwal,A K Jain.Nonlinear coupled dynamic response of offshore Spar platforms under regular sea waves,Ocean Engineering,2003, 30(4):517~551
    [44] A K Agarwal,A K Jain.Dynamic behavior of offshore spar platforms under regular sea waves[J],Ocean Engineering,2003,30(4):487~516
    [45] D L Garrett.Coupled analysis of floating production systems[J],Ocean Engineering,2005,(32):802~816
    [46]易从.Spar平台系缆张力及垂荡运动响应分析:[硕士学位论文],天津,天津大学,2007
    [47]赵文斌.Spar平台水动力载荷及垂荡-纵摇耦合运动分析:[硕士学位论文],天津,天津大学,2007
    [48] J B Rho,Hang S.A study on Mathieu-type instability of conventional spar platform in regular waves[J],International Journal of Offshore and Polar Engineering,2005, 15(2): 104~108
    [49] Cavaleri L,Mollo Christensen E.Wave response of a spar buoy with and without a damping plate[J],Ocean Engineering,1981,8(1):7~24
    [50] Rho J B,Choi H S.Vertical motion characteristics of truss Spars in waves[C],Proceedings of the International Offshore and Polar Engineering Conference,2004,662~665
    [51] K Sadeghi,Atilla Incecik,M J Downie.Response analysis of a truss spar in the frequency domain[J],Journal of marine science and technology,2004,8:126~137
    [52] Tao L B,Lim K Y,Thiagarajan K.Heave response of classic spar with variable geometry[J],Journal of Offshore Mechanics and Arctic Engineering,2004,126(1):90~95
    [53]石山,冉志煌,漆春茂.海洋工程深水开发浮式系统的耦合计算方法[J],中国造船,2005,46(4):47~51
    [54] Ma W,Webster W C.An Analytical Approach to Cable Dynamics: Theory andUser Manual,Sea Grant Project R/OE- 26,1994
    [55] X H Chen,J Zhang,P Johnson.Dynamic analysis of mooring lines with inserted spring[J],Applied Ocean Research,2001,23(5):277~284
    [56] X H Chen,X B.Approximation on the Quadratic Transfer Function of Low frequency Loads,Proceeding of International Offshore and Polar Engineering Conference,2001,289~302
    [57] W C Webster.Mooring induced damping[J],Ocean Engineering,1995,22(6):571~591
    [58] O Yilmaz , A Incecik . Extreme motion response analysis of moored semi-submersibles[J],Ocean Engineering,1996,23(6):497~517
    [59] W R Nair,R E Baddour.Three-Dimensional Dynamics of a Flexible Marine Riser Undergoing Large Elastic Deformations[J],Multi-body System Dynamics,2003,10:393~423
    [60]张智.Spar平台系泊系统计算及波浪载荷研究:[硕士学位论文],天津,天津大学,2005
    [61] Y M Low,R S Langleyb.Time and frequency domain coupled analysis of deepwater floating production systems[J],Applied ocean research,2006(28):371~385
    [62]肖越.系泊系统时域非线性计算分析:[博士学位论文],大连,大连理工大学,2007
    [63]张素侠.深海系泊系统松弛-张紧过程缆绳的冲击张力研究:[博士学位论文],天津,天津大学,2008
    [64]张若瑜.深海Spar平台系泊系统有限元分析:[博士学位论文],天津,天津大学,2009
    [65] S R Munshi,V J Modi.Drag reduction and vibration control of a Spar-type cylindrical structure through boundary layer control [C],Proceedings of the International Offshore and Polar Engineering Conference,1998,415~423.
    [66] Ro-Sik Park,Sang-Dong Kim.A study on kinematical stabilities of the cylinder type Spar buoy,Proceeding of the International Offshore and Polar Engineering Conference,2002,202~208
    [67] Radboud van D,Allan Magee, Steve Perryman.Model test experience on vortex induced vibrations of Truss Spars,Offshore Technology Conference,OTC 15242,2003
    [68] Finn L D,Maher J V,Gup ta H.The Cell Spar and Vortex Induced Vibrations,Offshore Technology Conference,OTC 15244,2003
    [69] Allan M agee,A nil Sablok,Joe Gebara.Mooring design for directional spar hull VIV[C],Offshore Technology Conference,OTC 15243,2003,307~315
    [70] Radboud R T,van D ijk,Arjan Voog.The effect of moo ring system and sheared currents on vortex induced motions of Truss Spars[C],Proceedings of Offshore Mechanics and Arctic Engineering(OMAE), 2003,1:285~292
    [71] Fischer F J,Liapis S I.Mitigation of current driven, vortex-induced vibrations of a spar platform via“SMART”thrusters[J],Journal of offshore Mechanics and Arctic Engineering,2004,126(1):96~104
    [72] Finnigan T,Irani M.Truss Spar VIM in waves and currents[C], Proceedings of the International Conference on Offshore Mechanics and Arctic Engineering,2005,475~482
    [73] Halkyard J,Simives S.Benchmarking of truss spar vortex induced motions derived from CFD with experiments , Proceedings of the International Conference on offshore Mechanics Arctic Engineering,2005,895~902
    [74]盛振邦.船舶静力学[M],国防工业出版社,1979
    [75]李积德.船舶耐波性[M],哈尔滨工程大学出版社,2007
    [76]贾启芬,刘习军.工程动力学[M],天津大学出版社,1999
    [77] J R Paulling,W C Webster.A consistent large-amplitude analysis of the coupled response of a TLP and tension system[C],Proceedings of offshore mechanics and arctic engineering(OMAE),1986(3):126~133
    [78] C H Lee,J N Newman.Second order wave effects on offshore structures[C],Proceedings of BOSS’94 behavior of offshore structures,Massachusetts institute of technology,1994(2):133~145
    [79] Chen XiaoHong.Studies on dynamic interaction between deep-water floating structures and their mooring/tendon systems,Phd thesis,USA,Texas A&M University,2002
    [80] Ran ZhiHuang.Coupled dynamic analysis of floating structures in waves and currents,Phd thesis,USA,Texas A&M University,2000
    [81] Nayfeh A H.Introduction to perturbation technique[M],Wiley,New York,1981
    [82]闻邦椿,李以农,韩清凯.非线性振动理论中的解析方法及工程应用[M],东北大学出版社,2001
    [83]陈予恕.非线性振动[M],高等教育出版社,2002
    [84]褚亦清,李翠英.非线性振动分析[M],北京理工大学出版社,1996
    [85]陈予恕.非线性系统的分岔与混沌理论[M],高等教育出版社,1993
    [86]竺艳蓉.海洋工程波浪力学[M],天津大学出版社,1991
    [87]李远林.近海结构水动力学[M],华南理工大学出版社,1999
    [88]黄祥鹿,陆鑫森.海洋工程流体力学及结构动力响应[M],上海交通大学出版社,1992
    [89] Chakrabrt S K.Wave forces on vertical circular cylinder[J],Journal of water ways,Harbors and Coastal Engineering Division,1976,102(2):203~221
    [90] Sabunca T,Calisal S.Hydrodynamic of coefficients for vertical circular cylinders at finite depth[J],Ocean engineering,1981,8(1):25~63
    [91] Wu G X.Hydrodynamic forces on a submerged cylinder advancing in water waves of finite depth[J],Journal of Fluid Mechanics,1991,224:645~659
    [92] Incecik A.(1999b) Lecture notes:Wave forces on large diameter cylinder,Department of marine technology, University of Newcastle, UK
    [93] Weggel D,Roesset J.Vertical hydrodynamic forces on truncated cylinders, Proceedings of the fourth international offshore and polar engineering conference,Osaka,Japan 1994(3):210~217
    [94] Chitrapu A S,Ertekin R C.Time domain simulation of large amplitude response of floating platforms,Ocean Engineering,1995,22(4):367~385
    [95] de Boom W C,Pinkster J A and Tan S G..Motion and tether prediction for a deepwater tension leg platform[C],OTC 4487,1983:377~388.
    [96] Ran Z,Kim M H,Niedzwecki J M.Responses of a spar platform in random waves and currents (experiment VS theory)[C],Proceedings of international offshore and polar engineering conference,1995,3:363~371
    [97] Zhao C T.Theoretical investigation of springing-ringing problem in tension leg platform:[PhD],Texas,Texas A&M university,1996
    [98]张海燕.Spar平台垂荡-纵摇耦合非线性运动特性研究:[博士学位论文],天津,天津大学,2007
    [99] O M Faltinsen.船舶与海洋工程环境载荷[M],上海交通大学出版社,2008
    [100]邹志利,戴遗山.直立圆柱二阶波浪力解析解[J],应用数学和力学,1994,15(9):807~818
    [101] Yong-Yong Pyo,Lee Dong Yeon.An experimental study on the extreme motion responses of a SPAR platform in the heave resonant waves[C],Proceedings of International Offshore and Polar Engineering Conference,2005:286~293
    [102] Haslum H A,Faltinsen O M.Alternative shape of spar platforms for use inhostile areas[C],OTC 10953,1999:217~228
    [103] Rho J B,Choi H S,Lee W C.Heave and pitch motion of a spar platform with damping plate[C] , Proceedings of the International Offshore and Polar Engineering Conference,2002,1:198~201
    [104] Zhang L,Zou J,Huang E W.Mathieu instability evaluation for DDCV/SPAR and TLP tendon design[C],Proceeding of the Offshore Symposium, Society of Naval Architect and Marin Engineer,2002:41~49
    [105] B J Koo,M H Kim,R E Randall.Mathieu instability of a Spar platform with mooring and risers[J],Ocean Engineering,2004,31,2175~2208
    [106]张海燕,唐友刚,谢文会.用改进的变形参数法求解强参数激励Mathieu方程[J],天津大学学报,2006,39(11):1289~1292
    [107]谢文会,唐友刚,周满红.深水铰接塔平台的非线性动力特性分析[J],工程力学,2006,23(9):36~41
    [108]李红霞,唐友刚.船舶随浪中参数激励非线性横摇运动计算[J],哈尔滨工程大学学报,2007,28(3):247~252
    [109]张伟.含有参数激励的非线性动力系统的高余维和复杂动力学:[博士学位论文],天津:天津大学,1997
    [110]唐友刚,田凯强,张泽盛.船舶参数激励非线性横摇运动方程[J],船舶工程,1998,6,16~19
    [111]唐友刚,林维学,董艳秋.船舶参数激励和强迫激励作用下的非线性运动响应[J],中国造船,2001,42(2):34~39
    [112]唐友刚,李红霞.随机斜浪中船舶参—强激励横摇运动计算[J],中国舰船研究,2008,3(1):5~8
    [113]陶明德.有阻尼Mathieu方程的渐近解[J],应用数学和力学,1992,13(2):187~191
    [114] Rijken O R,Niedzwecki J M.Dynamic response and run up on spar platform[C],Proceedings of the International Offshore and Polar Engineering Conference,1996,289~295
    [115] Rho J B,Choi H S,Lee W C.An experimental study for mooring effects on the stability of spar platform[C],Proceedings of the 13th International Offshore and Polar Engineering Conference,2003,1:285~288
    [116] P D Spanos,R Ghosh,L D Finn.Coupled Analysis of a Spar Structure:Monte Carlo and Statistical Linearization Solutions[J], Journal of Offshore Mechanics and Arctic Engineering,2005,127,11~16
    [117] Nayfeh A H.Nonlinear coupling of pitch and roll modes in ship motions[J], Journal of hydronautics,1973,7(4):65~78
    [118] Nayfeh A H.Stability and complicated rolling responses of ships in regular beam seas[J],International Shipbuilding Progress,1990,37(412):331~353
    [119] Nayfeh A H and Khdeir A A.Nonlinear rolling of biased ships in regular beam seas[J], International Shipbuilding Progress, 1986, 33(381):84~93
    [120]郑俊武.船舶内共振动力学行为的研究:[硕士学位论文],天津:天津大学,1998
    [121]唐友刚,郑俊武,董艳秋.船舶内共振动力学行为的研究[J],中国造船,1998,39(143):19~26
    [122]唐友刚,马网扣,张伟.船舶超谐共振响应运动[J],中国造船,2002,43(4):19~23
    [123]唐友刚,姜大宁,郑宏宇.舰船横摇-纵摇耦合运动的亚谐共振分析[J],天津大学学报,2003,3(2):183~186
    [124]冯志华,胡海岩.内共振条件下直线运动梁的动力稳定性[J],力学学报,2002,34(3):389~400
    [125] J Chantrel,P Marol.Sub-harmonic response of articulated loading platform, Proceedings of the Conference on Offshore Mechanics and Arctic Engineering,1987,35~45
    [126] C Y Liaw.Bifurcations of sub-harmonic and chaotic motions of articulated towers[J],Engineering Structures,1988,2(1):117~124
    [127]谢文会,唐友刚,陈予恕.波流联合作用下深水铰接塔平台的组合共振[J],海洋技术,2005,25(2):48~51
    [128]谢文会,唐友刚,周满红.深水顺应式铰接塔平台的非线性运动特性分析[J],工程力学,2005,23(9):36~41
    [129] Kamel M M.Bifurcation analysis of a nonlinear coupled pitch–roll ship[J],Mathematics and Computers in Simulation,2007,73:300~308
    [130]周满红,唐友刚,胡楠.深水顺应式铰接塔平台的非线性运动特性分析[J],中国海洋平台,2004,19(6):16~19
    [131]天津大学.土力学与地基[M],人民交通出版社,1985
    [132]赵冬岩,李秀峰.海底管道拖管法分析与研究[J],海洋技术,2008,27(3):84~89

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700