用户名: 密码: 验证码:
绿色新能源铝/水基燃料燃烧特性研究和绿色生物质材料的制备
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
发展绿色环保新能源和新材料技术是当今化学研究的一大任务,而“绿色新能源、环保新材料”这类新兴产业也将成为我国下一轮经济发展的新引擎。铝/水(Al/H_2O)基燃料是一种采用金属铝作为燃烧剂,水作为氧化剂的新型高能燃料,具有可观的能量密度。另外,由于其燃烧产物污染非常小,它也是一种新概念的绿色环保型燃料。
     生物质作为可再生资源由于其生物降解性和具有在某些领域能够替代石油化学产品的特性而日益引人注目。纤维素和壳聚糖是生物质的主要组成部分,也是世界上储量最丰富的两类生物质高聚物原料,以纤维素和壳聚糖制备各类具有环境友好性和生物适应性的高强度的绿色材料已成为研究者关注的热点。
     本论文由两大部分组成。第一部分为新型浆态铝/水基燃料的主要组分对燃烧特性的影响,分析了粘合剂聚丙烯酰胺促进燃料燃烧的机理。考察了高能氧化剂六硝基六氮杂异戊兹烷(CL-20)和奥克托金(HMX)、纳米非晶态B-Co合金助燃剂、添加剂MMA等对铝/水燃料燃烧性能的影响。此外,对聚丙烯酰胺水溶液在300 oC、450 oC、600 oC时的闪速裂解机理也进行了详细探讨。第二部分是生物质类材料的制备及其功能性质的表征。本论文成功制备出纤维素/氧化石墨复合材料、壳聚糖/氧化石墨复合材料以及全纤维素薄膜材料,并对材料的结构进行了分析,对其特殊性能进行了测试。
     通过上述研究,本论文得到了如下的研究结果:
     (1)对铝/水基燃料和生物质材料的研究进展进行了综述——阐述了铝/水基燃料的基本性质、燃烧特性、提高燃料燃烧性能的方法以及生物质材料的结构性质和处理方法等。
     (2)研究了在氩气和空气环境中,铝/水基燃料的燃烧行为。实验结果表明,粘合剂聚丙烯酰胺和助燃剂纳米B-Co合金粉的加入,可以显著改善燃料燃烧性能;加入高能氧化剂HMX比加入CL-20更有利于燃料燃烧温度的提高。
     (3)对聚丙烯酰胺水溶液的闪速裂解生成物进行了离线GC/MS检测分析,提出了其裂解的机理,指出产物中的很多易燃物质是促进铝/水基燃料点火和持续燃烧的主要原因。
     (4)以碱性水溶液为溶剂,成功制备出纤维素/氧化石墨复合膜和丝质材料。该方法操作过程简单,用料低廉,可以说是一种制备纤维素/氧化石墨复合材料的绿色的方法。在氧化石墨含量低于7.5 wt%的复合物中,氧化石墨作为填充剂通过插层复合与纤维素基质均匀混合,界面间结合紧密,氧化石墨通过氢键作用与纤维素链联接起来,提高了复合材料的力学性能。此外,复合材料比纯纤维素材料在耐热性方面有很大的提高,在较高温度下复合材料仍然有良好的机械强度。
     (5)采用醋酸水溶液为溶剂,制备了壳聚糖/氧化石墨复合膜和水凝胶。研究发现无论是处于干态还是湿态的复合材料,其力学性能均有大幅度的提高,并复合材料具有良好的抗水溶胀性能。
     (6)以普通的滤纸为原料,采用新发现的绿色纤维素溶剂——PEG/NaOH为溶剂体系,通过对滤纸选择性溶解再填充压膜的处理方法制备出全纤维素薄膜。由于基质和填充材料均是滤纸纤维素,所制备的全纤维素具有很好的界面相容性,宏观上表现出很好的力学性能。全纤维素结构成型所需的浸泡处理时间为6个小时以上,通过自身纤维素的溶解和再生,纤维素的基质和填充材料有效地结合在一起。同时,发现全纤维素薄膜具有良好的透光性和防水性,有广阔的实际应用前景。此外,由于全纤维素材料完全由纤维素构成,所以材料具有环境友好性,是一种绿色的新材料。
The new green material and new green energy become the propulsion of the economic development in China with global warming.
     Al/H_2O based fuel is one kind of new high-energy fuels, which adopts H_2O as the oxidant and Al as the fuel. The energy density of Al/H_2O based fuel is quite large. In addition, Al/H_2O based fuel is one kind of green fuels, whose combustion products have low pollution and are very friendly to the surroundings.
     As an alternative resource, biomass has been attracted a lot of attention recently for its potential application in both regenerated energy and substitutes for petroleum product. Cellulose and chitosan are the major component of the biomass and the most affluent biopolymer in the world, and they are also a potential feedstock for preparing different kinds of novel polymers and material which are environmentally friendly and biocompatible.
     The dissertation can be logically divided into two parts. Part I pays much attention to experimental investigations of Al/H_2O based fuel. The influences of some other addition agents, including nano amorphous state B-Co alloy, CL-20, HMX, MMA, etc., were studied, and some basic parameters were obtained. At 300 oC, 450 oC, 600 oC, the flash pyrolysis of the key addition agent polyacrylamide were carried out in argon, respectively. Moreover, the formation mechanism for liquid and gas products, as well as the effects on improving the characteristics of Al/H_2O propellant were discussed. Part II focuses on the preparation of cellulose/graphite oxide composites, chitosan/graphite oxide composites and all-cellulose composites. The morphology of the prepared composites were investigated, and the special properties of these composites were examed.
     The findings obtained from the above researches are summarized as following.
     (I) Research progresses on Al/H_2O based fuels and biomass, including some basic properties, the combustion behaviors, the improvement methods for fuels’characteristics, the structure and treatment for the biomass, and so forth, were reviewed.
     (II) A variety of experimental methods were employed to study Al/H_2O based fuels detailed. Nano amorphous state B-Co alloy was prepared. B-Co alloy was used as an addition agent for basic Al/H2O based propellant. The addition of PAM evidently improved the energy release and burning rate of propellants, as well as decreased the pressure exponent. Besides, HMX addition not only had better effect in increasing the temperature of burning surface but also made Al powders burn much thoroughly, compared with CL-20 addition.
     (III) At 300 oC, 450 oC and 600 oC, the flash pyrolysis investigation of polyacrylamide (PAM) solution was carried out in an off-line furnace-type pyrolyzer with Ar as the carrier gas. There were a few flammable small molecules, which were believed to favor the combustion of the propellants and improved the energy release. (IV) Regenerated cellulose (RC)/graphite oxide (GO) blend films and fibers were prepared in 6wt%NaOH/4wt%urea aqueous solution via a simple and low cost pathway. The results revealed a certain miscibility, good thermostability and mechanical properties of the regenerated-cellulose composites blending with less than 7.5 wt% of GO. All the results demonstrated that GO was well-dispersed in the cellulose matrix, and there were strong H-bonding between hydroxy groups of the cellulose and hydroxy groups of the GO. The obtained composites own higher mechanical strength than the pure regenerated cellulose film, especially at high temperature.
     (V) Chitosan/graphite oxide composite films and Hydrogel have been prepared in which graphite oxide (GO) is used as filler and diluted acetic acid is used as solvent for dissolving and dispersing chitosan and GO, respectively. The results revealed that chitosan and graphite oxide mixed with each other homogeneously and the mechanical properties were improved significantly compared with the pure chitosan. Interestingly, with an increase ratio of chitosan to GO from 1.5/0.1 (wt/wt) to 1.5/0.3 (wt/wt), the tensile strength of the films at dry and wet states increased from 80.3 to 137.5MPa and 14.6 to 43.9 MPa, respectively. All the results demonstrated that GO was crosslinker in the composites, and there were strong H-bonding between hydroxy groups of the chitosan and hydroxy groups of the GO. The obtained composited films owned higher mechanical strength than the pure chitosan film, especially at wet state.
     (VI) PEG/NaOH aqueous solution, a recently reported solvent system for cellulose was utilized to prepare an all-cellulose composite. The composite was produced from commercial filter paper by converting a selective dissolved fiber surface into a matrix. When the filter paper was immersed in the pre-cooling solution more than six hours, the all-cellulose composites are molding. Such composite has possessed a nice interface between the remaining fibers and the surrounding matrix from the selectively dissolved and re-solidified fiber surface, which results in an excellent bonding, a high mechanical performance and an optical transparency. In addition, the all-cellulose composite is totally composed of sustainable cellulosic resources, so it is biodegradable after service.
引文
Alcock B, Cabrera NO, Barkoula NM, Loos J, Peijs T. 2006. The mechanical properties of unidirectional all-polypropylene composites [J]. Compos. Pt. A-Appl. Sci. Manuf. 37:716-26.
    Alves KD, Vidal RRL, Balaban RD. 2009. Chitosan derivatives with thickening properties obtained by reductive alkylation [J]. Materials Science & Engineering C-Biomimetic and Supramolecular Systems 29:641-6.
    Araujo L. 1994. Thermochemical Characteristics of AN/AP Based Composite Propellants. 25th International Annul Conference ICT 51-1-51-11.
    Aumann CE, Skofronic GL, Martin JA. 1995. Oxidation Behavior of Aluminum Nanopowders [J]. The Journal of Vacuum Science and Technology B 13:1178-83.
    Becerril HA, Mao J, Liu Z, Stoltenberg RM, Bao Z, Chen Y. 2008. Evaluation of solution-processed reduced graphene oxide films as transparent conductors [J]. ACS Nano 2:463-70.
    Bhatnagar A, Sillanpaa M. 2009. Applications of chitin- and chitosan-derivatives for the detoxification of water and wastewater - A short review [J]. Advances in Colloid and Interface Science 152:26-38.
    Bissessur R, Liu PKY, Scully SF. 2006a. Intercalation of polypyrrole into graphite oxide [J]. Synthetic Metals 156:1023-7.
    Bissessur R, Liu PKY, White W, Scully SF. 2006b. Encapsulation of polyanilines into graphite oxide [J]. Langmuir 22:1729-34.
    Bledzki AK, Gassan J. 1999. Composites reinforced with cellulose based fibres [J]. Prog. Polym. Sci. 24:221-74.
    Cabrera N, Alcock B, Loos J, Peijs T. 2004. Processing of all-polypropylene composites for ultimate recyclability [J]. Journal of Materials Design and Applications 218:145-55.
    Cai J, Zhang L. 2005. Rapid dissolution of cellulose in LiOH/Urea and NaOH/Urea aqueous solutions [J]. Macromolecular Bioscience 5:539-48.
    Cai J, Zhang L. 2006. Unique gelation behavior of cellulose in NaOH/Urea aqueous solution [J]. Biomacromolecules 7:183-9.
    Chen WF, Yan LF, Bangal PR. 2010. Preparation of graphene by the rapid and mild thermal reduction of graphene oxide induced by microwaves [J]. Carbon 48:1146-52.
    Chermant JL, Fantozzi G, Naslain R. 2000. Composite materials for aeronautical and aerospace applications - Introduction [J]. Ann. Chim.Sci. Mat. 25:515-6.
    Coleman JN, Cadek M, Blake R, Nicolosi V, Ryan KP, et al. 2004. High-performancenanotube-reinforced plastics: Understanding the mechanism of strength increase [J]. Advanced Functional Materials 14:791-8.
    Costa ES, Barbosa-Stancioli EF, Mansur AAP, Vasconcelos WL, Mansur HS. 2009. Preparation and characterization of chitosan/poly(vinyl alcohol) chemically crosslinked blends for biomedical applications [J]. Carbohydr. Polym. 76:472-81.
    Cuculo JA, Smith CB, Sangwatanaroj U, Stejskal EO, Sankar SS. 1994. A study on the mechanism of dissolution of the cellulose/NH3/NH4SCN system [J]. J. Polym. Sci. Pol. Chem. 32:229-39.
    de Menezes AJ, Pasquini D, Curvelo AAD, Gandini A. 2009. Effect of catalyst on the mechanical and dynamic mechanical properties [J]. Cellulose 16:239-46.
    Dokhan A, Price E, Seitzman J. 2002. The effects of bimodal aluminum with ultrafine aluminum on the burning rates of solid propellants [J]. Proceedings of the Combustion Institute 29:2939-46.
    Durlak SK, Biswas P. 1998. Characterization of polycyclic aromatic hydrocarbon particulate and gaseous emissions from polystyrene combustion [J]. Environmental Science & Technology 32:2301-9.
    Edward A. 2006. Optimum design of a supercavitating torpedo considering overall size, shape and structural configuration [J]. International Journal of Solids and Structures 43:624-57.
    Egusa S, Kitaoka T, Goto M, Wariishi H. 2007. Synthesis of cellulose in vitro by using a cellulase/surfactant complex in a nonaqueous medium [J]. Angew. Chem. Int. Edit. 46:2063-5.
    El Seoud OA, Koschella A, Fidale LC, Dorn S, Heinze T. 2007. Applications of ionic liquids in carbohydrate chemistry: A window of opportunities [J]. Biomacromolecules 8:2629-47.
    Evgeny S, Victor D, Arvind V. 2006. Combustion of novel chemical mixtures for hydrogen generation [J]. Combustion and Flame 144:415-8.
    Evgeny S, Victor D, Arvind V. 2007. Combustion-assisted hydrolysis of sodium borohydride for hydrogen generation [J]. International Journal of Hydrogen Energy 32:207-11.
    Fang C, Li SF. 2002. Experimental research of the effects of superfine aluminum powders on the combustion characteristics of NEPE propellants [J]. Propellants Explosives Pyrotechnics 27:34-8.
    Fang M, Wang KG, Lu HB, Yang YL, Nutt S. 2009. Covalent polymer functionalization of graphene nanosheets and mechanical properties of composites [J]. Journal of Materials Chemistry 19:7098-105.
    Foote J, lineberry J, Thompson B. 1996. Investigation of aluminum particles combustion for underwater propulsion [R]. AIAA 1996-23086.
    Gindl W, Keckes J. 2005. All-cellulose nanocomposite [J]. Polymer 46:10221-5.
    Gindl W, Martinschitz KJ, Boesecke P, Keckes J. 2006. Structural changes during tensile testing of an all-cellulose composite by in situ synchrotron X-ray diffraction [J]. Composites Science and Technology 66:2639-47.
    Gorbunov VV. 1977. Combustion of mixtures high-calorific metal powders and water [R]. AD-771789.
    Gross RA, Kalra B. 2002. Biodegradable polymers for the environment [J]. Science 297:803-7.
    Hans JF. 1998. Intrinsic instability and entropy stabilization of grain boundaries [J]. Physics Review Letters 65:610-3.
    Hattori M, Koga T, Shimaya Y, Saito M. 1998. Aqueous calcium thiocyanate solution as a cellulose solvent [J]. Polym. J. 30:43-8.
    Heinze T, Dicke R, Koschella A, Kull AH, Klohr EA, Koch W. 2000. Effective preparation of cellulose derivatives in a new simple cellulose solvent [J]. Macromolecular Chemistry and Physics 201:627-31.
    Helling RK, Tester JW. 1988. Oxidation of simple compounds and mixtures in supercritical water carbon monoxide ammonia and ethanol [J]. Environmental Science & Technology 22:1319-24.
    Holgate HR, Tester JW. 1994. Oxidation of H2 and CO in sub- and supercritical water: reaction kinetics, pathways, and water-density effect [J]. The Journal of Physical Chemistry 98:800-9.
    Hu YH, Li SF. 2007. The effects of magnesium hydroxide on flash pyrolysis of polystyrene [J]. Journal of Analytical and Applied Pyrolysis 78:32-9.
    Hult EL, Iversen T, Sugiyama J. 2003. Characterization of the supermolecular structure of cellulose in wood pulp fibres [J]. Cellulose 10:103-10.
    Ingenito A, Bruno C. 2004. Using aluminum for space propulsion [J]. Journal of Propulsion and Power 20:1056-63.
    Isogai A, Atalla RH. 1998. Dissolution of cellulose in aqueous NaOH solutions [J]. Cellulose 5:309-19.
    Ivanov VG. 1994. Combustion of mixtures of ultra disperse aluminum and gel-like water [J]. Combustion, Explosion, and Shock Waves 30:569-70.
    Ivanov VG, Gavrilyuk OV, Glazkov OV. 2000. Specific features of the reaction between ultrafine aluminum and water in a combustion regime [J]. Combustion Explosion & Shock Waves 36:213-9.
    Ivanov VG, Gavtilyuk OV. 1999. Oxidation and self-ignition of electro-explosive ultrafine metal powders in air [J]. Combustion, Explosion, and Shock Waves 35:53-60.
    Ivanov VG, Tepper F, Piehler H. 1996. Self propagating sintering of nanosize powders advances in powder [J]. Metal Particulate Material 3:445-51.
    Jayakumar R, Prabaharan M, Reis RL, Mano JF. 2005. Graft copolymerized chitosan - present status and applications [J]. Carbohydr. Polym. 62:142-58.
    Kim EH, Lee BJ. 2009. Size dependency of melting point of crystalline nano particles and nano wires: A thermodynamic modeling [J]. Metals and Materials International 15:531-7.
    Klemm D, Heublein B, Fink HP, Bohn A. 2005. Cellulose: Fascinating biopolymer and sustainable raw material [J]. Angew. Chem. Int. Edit. 44:3358-93.
    Klemm D, Schumann D, Kramer F, Hessler N, Hornung M, et al. 2006. Nanocelluloses as innovative polymers in research and application [M]. pp. 49-96. Springer-Verlag Berlin.
    Kol J, Fuhs AE. 1985. Experimental investigation of aluminum combustion in steam [R]. AIAA-8520323.
    Kong BS, Yoo HW, Jung HT. 2009. Electrical conductivity of graphene films with a poly(allylamine hydrochloride) supporting layer [J]. Langmuir 25:11008-13.
    Kruse TM, Woo OS. 2002. Mechanistic modeling of polymer degradation: A comprehensive study of polystyrene [J]. Macromolecules 35:7830-44.
    Kruse TM, Woo OS, Broadbelt LJ. 2001. Detailed mechanistic modeling of polymer degradation: Application to polystyrene [J]. Chemical Engineering Science 56:971-9.
    Kumar M. 2000. A review of chitin and chitosan applications [J]. Reactive & Functional Polymers 46:1-27.
    Kumar S, Nigam N, Ghosh T, Dutta PK, Yadav RS, Pandey AC. 2009. Preparation, characterization, and optical properties of a chitosan-anthraldehyde crosslinkable film [J].
    Journal of Applied Polymer Science 115:3056-62.
    Kuo KK, Summerfild M. 1984. Summerfild M. Fundamentals of solid-propellant combustion [R]. AIAA:190.
    Laszkiewicz B. 1998. Solubility of bacterial cellulose and its structural properties [J]. Journal of Applied Polymer Science 67:1871-6.
    Lee DW, Yun KS, Ban HS, Choe W, Lee SK, Lee KY. 2009. Preparation and characterization of chitosan/polyguluronate nanoparticles for siRNA delivery [J]. Journal of Controlled Release 139:146-52.
    Lee WW. 1996. Aluminum powder/water reaction ignited by electrical pulsed power [R]. AD- A269323.
    Liang JJ, Huang Y, Zhang L, Wang Y, Ma YF, et al. 2009. Molecular-level dispersion of graphene into poly(vinyl alcohol) and effective reinforcement of their nanocomposites [J]. Advanced Functional Materials 19:2297-302.
    Lu X, Zhang MQ, Rong MZ, Shi G, Yang GC. 2002. All-plant fiber composites. I: Unidirectional sisal fiber reinforced benzylated wood [J]. Polymer Composites 23:624-33.
    Lu X, Zhang MQ, Rong MZ, Yue DL, Yang GC. 2004. Environmental degradability of self-reinforced composites made from sisal [J]. Composites Science and Technology 64:1301-10.
    Marr LC, Kirchstetter TW, Harley RA, Miguel AH, Hering SV, Hammond SK. 1999. Characterization of polycyclic aromatic hydrocarbons in motor vehicle fuels and exhaust emissions [J]. Environmental Science & Technology 33:3091-9.
    Mascal M, Nikitin EB. 2008. Direct, high-yield conversion of cellulose into biofuel [J]. Angew. Chem. Int. Edit. 47:7924-6.
    Master GM. 1997. Introduction to Environmental Engineering and Science [M]. New Jersey: Prentice Hall.
    McAllister MJ, Li JL, Adamson DH, Schniepp HC, Abdala AA, et al. 2007. Single sheet functionalized graphene by oxidation and thermal expansion of graphite [J]. Chemistry of Materials 19:4396-404.
    McCormick CL, Callais PA, Hutchinson BH. 1985. Solution studies of cellulose in lithium-chloride and N,N-dimethylacetamide [J]. Macromolecules 18:2394.
    Miravete A. 1997. Composite materials in building: Introduction [J]. Mater. Constr. 47:5-9. Modell M. 1985. Processingmethods for the oxidation of organics in supercriticalwater [R]. U.S. Patent 4543190.
    Moharram MA, Mahmoud OM. 2007. X-ray diffraction methods in the study of the effect of microwave heating on the transformation of cellulose I into cellulose II during mercerization [J]. Journal of Applied Polymer Science 105:2978-83.
    Nagahama H, Maeda H, Kashiki T, Jayakumar R, Furuike T, Tamura H. 2009. Preparation and characterization of novel chitosan/gelatin membranes using chitosan hydrogel [J]. Carbohydr. Polym. 76:255-60.
    Nelson LS. 1995. Steam explosions of single drops of pure and alloyed molten aluminum [J]. Nuclear Engine Design 155:413-25.
    Nishino T, Arimoto N. 2007. All-cellulose composite prepared by selective dissolving of fiber surface [J]. Biomacromolecules 8:2712-6.
    Nishino T, Matsuda I, Hirao K. 2004. All-cellulose composite [J]. Macromolecules 37:7683-7.
    Nishio Y. 2006. Material functionalization of cellulose and related polysaccharides via diverse microcompositions [M]. pp. 97-151. Springer-Verlag Berlin.
    Nishiyama Y, Langan P, Chanzy H. 2002. Crystal structure and hydrogen-bonding system in cellulose I beta from synchrotron X-ray and neutron fiber diffraction [J]. Journal of the American Chemical Society 124:9074-82.
    Niyogi S, Bekyarova E, Itkis ME, McWilliams JL, Hamon MA, Haddon RC. 2006. Solution properties of graphite and graphene [J]. Journal of the American Chemical Society 128:7720-1.
    Nogi M, Yano H. 2008. Transparent nanocomposites based on cellulose produced by bacteria offer potential innovation in the electronics device industry [J]. Advanced Materials 20:1849-55.
    O’Hayre RP, Cha SW, Colella W. 2006. Fuel cell fundamentals [M]. New York, Wiley. Okuyama K, Noguchi K, Miyazawa T, Yui T, Ogawa K. 1997. Molecular and crystal structure of hydrated chitosan [J]. Macromolecules 30:5849-55.
    Ostmark H, Bemm U, Bergman H. 2002. N-guanylurea-dinitramide: a new energetic material with low sensitivity for propellants and explosives applications [J]. Thermochimica Acta 384:253-9.
    Parr T. 2003. Evaluation of advancedfuels for underwater propulsion [R]. JANNAF Combustion Subcommittee.
    Qin C, Soykeabkaew N, Xiuyuan N, Peijs T. 2008. The effect of fibre volume fraction and mercerization on the properties of all-cellulose composites [J]. Carbohydr. Polym. 71:458-67.
    Ragauskas AJ, Williams CK, Davison BH, Britovsek G, Cairney J, et al. 2006. The path forward for biofuels and biomaterials [J]. Science 311:484-9.
    Read SM, Bacic T. 2002. Plant biology - Prime time for cellulose [J]. Science 295:59-60. Revesz A, Lendvai J. 1998. Thermal properties of ball-milled nanocrystalline Fe, Co, Cr powders [J]. Nanostruct Mater 10:13-24.
    Risha GA, Ulas A, Kuo KK. 1999. Combustion behavior of TAL-1308 composite solid propellant for airbag applications [R]. AIAA:2632.
    Risha GA, Ying H. 2005. Experimental investigation of aluminium particle dust cloud combustion [R]. AIAA.
    Sanshiro S, Kazunari O. 1990. Tetsuo F. Surface oxidation film of metallic small particle [J]. Journal of the Physical Society of Japan 59:662-6.
    Scully SF, Bissessur R, MacLean KW, Dahn DC. 2009. Inclusion ofpoly[bis(methoxyethoxyethoxy)phosphazene] into layered graphite oxide [J]. Solid State Ionics 180:216-21.
    Shafirovich E, Mukasyan AS, Varma A. 2002. Mechanism of combustion in low-exothermic mixtures of sodium chlorate and metal fuel [J]. Combustion & Flame 128:133-44.
    Sharma RK, Wooten JB. 2002. Characterization of char from the pyrolysis of tobacco [J]. Journal of Agricultural and Food Chemistry 50:771-83.
    Shen JY, Hu Z, Zhang Q. 1992. Investigation of Ni-P-B ultrafine amorphous alloy particle produced by chemical reduction [J]. Journal of Applied Physics 71:5217-21.
    Shevchenko VG, Kononenko VI, Latosh IN. 1994. Effect of the size factor and alloying on oxidation of aluminum powders [J]. Combustion Explosion and Shock Waves 30:635-7.
    Shih CM, Shieh YT, Twu YK. 2009. Preparation and characterization of cellulose/chitosan blend films [J]. Carbohydr. Polym. 78:169-74.
    Soykeabkaew N, Arimoto N, Nishino T, Peijs T. 2008. All-cellulose composites by surface selective dissolution of aligned ligno-cellulosic fibres [J]. Composites Science and Technology 68:2201-7.
    Soykeabkaew N, Nishino T, Peijs T. 2009. All-cellulose composites of regenerated cellulose fibres by surface selective dissolution [J]. Compos. Pt. A-Appl. Sci. Manuf. 40:321-8.
    Stankovich S, Dikin DA, Dommett GHB, Kohlhaas KM, Zimney EJ, et al. 2006. Graphene-based composite materials [J]. Nature 442:282-6.
    Stankovich S, Dikin DA, Piner RD, Kohlhaas KA, Kleinhammes A, et al. 2007. Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide [J]. Carbon 45:1558-65.
    Tanuma H, Saito T, Nishikawa K, Dong T, Yazawa K, Inoue Y. Preparation and characterization of PEG-cross-linked chitosan hydrogel films with controllable swelling and enzymatic degradation behavior [J]. Carbohydr. Polym. 80:260-5.
    Tsai SW, Hahn HT. 1980. Introduction to composite materials [M]. x+455 pp.
    Van W, Morup S, Koch C. 1986. Formation of ultra-fine amorphous alloy particles by reduction in aqueous solution [J]. Nature 322:622-3.
    Vasilev AV. 1974. The effect of certain additives on critical diameter and combustion rates of mixtures of aluminum with gelled water [R]. AD-A000210.
    Vickery JL, Patil AJ, Mann S. 2009. Fabrication of graphene-polymer nanocomposites with higher-order three-dimensional architectures [J]. Advanced Materials 21:2180-4.
    Vovelle C. 2000. Pollutants from combustion: formation and impact an atmospheric chemistry [M]. Dordrecht/Boston/London: Kluwer Academic Publisher 1-16.
    Wakabayashi K, Pierre C, Dikin DA, Ruoff RS, Ramanathan T, et al. 2008. Polymer-graphite nanocomposites: Effective dispersion and major property enhancement via solid-state shear pulverization [J]. Macromolecules 41:1905-8.
    Wang SR, Tambraparni M, Qiu JJ, Tipton J, Dean D. 2009. Thermal expansion of graphene composites [J]. Macromolecules 42:5251-5.
    Wang T, Li S. 2008. Experimental study of laminar lean premixed Methylmethacrylate/Oxygen/Argon flame at low pressure [J]. The Journal of Physical Chemistry A 112:1219-27.
    Wang ZK, Hu QL, Dai XG, Wu H, Wang YX, Shen JC. 2009. Preparation and characterization of cellulose fiber/chitosan composites [J]. Polymer Composites 30:1517-22.
    Warnatz J, Maas U, Dibble RW. 2001. Combustion: physical and chemical fundamentals, modeling and simulation, experiments, pollutant formation [M]. Berlin, Heidelberg, New York.
    Watanabe M, Osada M, Lnomata H. 2003. Acidity and basicity of metal oxide catalysts for formaldehyde reaction in supercritical water at 673 K [J]. Applied Catalysis A: Genera 8490:1-9.
    Weng LH, Zhang LN, Ruan D, Shi LH, Xu J. 2004. Thermal gelation of cellulose in a NaOH/thiourea aqueous solution [J]. Langmuir 20:2086-93.
    William S, Hummers J, Richard E. 1958. Preparation of graphitic oxide [J]. Journal of the American Chemical Society 80:1339-42.
    Yan LF, Gao ZJ. 2008. Dissolving of cellulose in PEG/NaOH aqueous solution [J]. Cellulose 15:789-96.
    Yang MH. 1998. The two-stages thermal degradation of polyacrylamide [J]. Polymer Testing 17:191-8.
    Yang MH. 2000. The thermal degradation of polyacrylamide with adsorbed metal ions as stabilizers [J]. Polymer Testing 19:85-91.
    Yang P, Liber C. 1996. Nanorod-superconductor composites: a path way to materials with high critical current densities [J]. Science 273:1836-40
    Yang QL, Lue A, Qi HS, Sun YX, Zhang XZ, Zhang LN. 2009. Properties and bioapplications of blended cellulose and corn protein films [J]. Macromolecular Bioscience 9:849-56.
    Yun S, Kim J. 2008. Characteristics and performance of functionalized MWNT blended cellulose electro-active paper actuator [J]. Synthetic Metals 158:521-6.
    Zhang H, Wang ZG, Zhang ZN, Wu J, Zhang J, He HS. 2007.
    Regenerated-cellulose/multiwalled-carbon-nanotube composite fibers with enhancedmechanical properties prepared with the ionic liquid 1-allyl-3-methylimidazolium chloride [J]. Advanced Materials 19:698-702.
    Zhang LN, Ruan D, Zhou JP. 2001. Structure and properties of regenerated cellulose films prepared from cotton linters in NaOH/Urea aqueous solution [J]. Ind. Eng. Chem. Res. 40:5923-8.
    Zhao Q, Yam R, Zhang BQ, Yang YK, Cheng XJ, Li R. 2009. Novel all-cellulose ecocomposites prepared in ionic liquids [J]. Cellulose 16:217-26.
    Zhou JP, Zhang LN, Cai J. 2004. Behavior of cellulose in NaOH/urea aqueous solution characterized by light scattering and viscometry [J]. Journal of Polymer Science Part B-Polymer Physics 42:347-53.
    Zhu SD, Wu YX, Chen QM, Yu ZN, Wang CW, et al. 2006. Dissolution of cellulose with ionic liquids and its application: a mini-review [J]. Green Chemistry 8:325-7.
    王天放. 2008.新型高能燃料叠氮缩水甘油聚醚/硼和铝/水基燃料的燃烧特性研究[D].合肥:中国科学技术大学.
    王明辉,李和兴,邓景发. 1999.超细Co-B非晶态合金的制备及其催化乙腈加氢性能[J].催化学报. 20:548-51.
    王勤,杨海霞,朱建. 2002.超声处理对非晶态Co-B催化性能的促进作用[J].上海师范大学学报. 31:56-8.
    朱清时,闫立峰,郭庆祥. 2002.生物质洁净能源[M].北京:化学工业出版社.
    岑可法. 1990.工程气固多相流动的理论与计算[M].杭州:浙江大学出版社.
    李芳,张为华. 2005.水反应金属燃料能量特性分析[J].固体火箭技术. 28:256-9.
    李疏芬. 1995.含硼的固体燃料[J].含能材料. 3:1-8.
    李疏芬,金乐骥. 1996.铝粉粒度对含铝推进剂燃烧特性的影响[J].含能材料. 4:68-74.
    周阳,龙新平,王欣. 2006.高氮含能化合物的研究新进展[J].含能材料. 4:315-20.
    林振坤. 2009.高能固体燃料和铝/水基燃料的燃烧特性及机理研究[D].合肥:中国科学技术大学.
    梁文平,唐晋. 2000.当代化学的一个重要前沿—绿色化学[J].化学进展. 12:121-30.
    詹怀宇. 2005.纤维化学与物理[M].科学出版社.
    冯端. 1987.金属物理学(第一卷)[M].科学出版社.
    孙运兰. 2007.新型含能材料的燃烧机理研究[D].合肥:中国科技大学.
    张仁. 1992.固体推进剂的燃烧与催化[M].长沙:国防科技大学出版社.
    张俐娜. 2007.天然高分子科学与材料[M].科学出版社.
    赵卫兵,史小锋. 2006.水反应金属燃料在超高速鱼雷推进系统中的应用[J].火炸药学报. 29:53-6.
    郑邯勇. 2003.铝水推进系统的现状与发展前景[J].舰船科学技术. 25:24-5.
    郑邯勇,王永昌. 2005.铝水反应机理的试验研究与分析[J].舰船科学技术. 21:81-3.
    郑剑. 1994.新型含能材料-CL-20[J].推进技术. 15:65-72.
    钟国清,蒋琪英. 2005.室温固相反应制备非晶态Co-B纳米合金[J].现代化工. 7:44-5.
    闫立峰. 2007.绿色化学[M].合肥:中国科学技术大学出版社.
    陈嘉川,谢益民,李彦春. 2008.天然高分子科学[M].科学出版社.
    陈鲁英,杨培进,张林军. 2003. CL-20炸药性能研究[J].火炸药学报. 26:65-7.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700