用户名: 密码: 验证码:
电子式电流互感器传变特性及适应性保护原理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
电流、电压互感器作为电力系统电量测量设备,承担着监测一次设备运行状态、为二次设备提供真实、可靠的电气量等任务。以电子式电流互感器为代表的新型电子式互感器具有与被测电流回路没有直接的电的联系、频带宽、输出功率低、结构简单、线性特性良好等显著优点,解决了传统电磁式电流互感器的饱和以及暂态精度低等问题。随着电力系统的不断发展,新一代电子式互感器取代传统互感器,已是不可逆转的趋势。
     由于电子式互感器的输出是数字信号,与传统互感器输出的模拟信号有着本质的不同,这对与之相联的保护等二次设备及其测试系统将产生深刻的影响。论文以电子式互感器特性作为研究主线,系统地分析了以下几个方面的重要内容:论文提出了电子式互感器数字建模的思想,研究了电子式电流互感器整个传感系统各部分的构成、传变特性、频域特性的分析方法,构建了几种典型的ECT建模方案,并完成了模型的仿真研究与实验验证。论文研究了基于电子式互感器相关的接口技术,探索二次测控保护设备对电子式互感器获取的电流电压信号的新应用,促进保护新原理的研究,提出了直接利用电子式互感器的微分信号做为保护系统的输入的思想,提出基于微分输入信号的R-L模型距离保护新原理和差动保护新原理,并进行了理论分析与仿真研究,获得了一些重要的研究成果。针对适应电子式互感器的数字化保护仿真实验测试手段研究方面的空白,论文提出基于IEC61850标准的新型实时仿真测试系统的思想,并构建实现了兼容电子式互感器的新型动态模拟系统及RTDS数字实时仿真系统。论文在新型实时仿真系统环境下,进行了电子式互感器与传统互感器的特性对比实验,深入分析了电子式互感器对于传统保护原理的改善作用。论文所做的主要工作如下:
     1、完成了基于Rogowski线圈的电子式电流互感器的仿真数字建模,论文详细研究了包括罗氏线圈测量回路的整个传感系统的仿真模型的分析方法和设计思路。利用PSCAD进行仿真测试,通过对系统稳态及故障的暂态过程进行仿真分析,论证了所建立的数字模型对于一次信号的波形具有良好的跟随作用;应用PSCAD建立的仿真系统作为互感器数字模型的数据源,将其输出数据和实际互感器装置的动模录波数据导入到MATLAB中进行对比分析,实验结果证明了建模方法的正确性。
     2、在传统动态模拟实验系统的基础上进行改造升级,构建了兼容数字化动模测试与传统动模测试的新型物理模拟系统。在新型物理模拟实验环境下,以继电保护为应用对象,进行了传统电磁式互感器和电子式互感器的性能对比测试实验。分析了电子式互感器的应用对于传统保护原理的影响。针对输电线路的差动保护,重点研究不同故障情况下,采用电子式互感器后的保护的动作特性曲线。结果表明,由于电子式互感器在大电流情况下无饱和现象,能够显著提高线路差动保护的安全性、可靠性和灵敏性。
     3、讨论了电子式互感器与继电保护系统的两种接口方案即:其一,在电子式互感器传感系统增加外积分环节,反映被测电压、电流的变化,实现两者的对接;其二,省去互感器的积分环节,建立基于电子式互感器微分输入信号的保护算法,实现电子式互感器与保护系统的对接。
     4、本文在分析两种不同接口方案特点的基础上,针对第二种接口方案,结合传统保护原理提出了基于电子式互感器微分输入信号的R-L模型距离保护新原理以及线路差动保护新原理,并进行了理论分析与仿真验证,结果表明所提出的保护原理是正确的和可行的。
     5、提出了基于IEC61850标准的实时数字仿真测试方法,构建了新型实时数字仿真测试系统。采用电子式互感器后,实时数字仿真系统不再需要D/A转换和功率放大等环节,可以直接将仿真产生的数据经格式转换后加以使用。本文研究了基于IEC61850标准的新型数字仿真测试系统的构成和实现,介绍了连接实时数字仿真系统RTDS与全数字二次设备的测试模型,并且通过对110kV线路数字化保护的实验验证了新型测试系统的实用性。
     论文最后对上述研究成果进行了总结,提出了进一步的研究方向。
Current and voltage transducers as the power measurement equipment, are responsible for monitoring a primary device and providing true and reliable electric quantities to the secondary equipment. Electronic current transducer (ECT) as the representative of the new electronic transducer circuit has no electrical contact with the measured current circuit, has the frequency bandwidth, low output, simple structure, good linearity and other significant advantages, which solves the traditional electromagnetic transient current transducer saturation and low accuracy problem. With the continuous development of power system, it is an irreversible trend that a new generation electronic transducer replaces the traditional transducer.
     The output of the electronic transducer is a digital signal, which is essentially different with the analog signal output of the traditional transducers. This will have a profound impact on the secondary equipment and its test system. This paper takes properties of electronic transducer as a main research and analyzes the important content of the following aspects:this paper proposed the digital modeling idea of electronic transducer and studied the sensor system composition of the electronic current transducer and frequency domain characteristics, and constructed several typical ECT modeling program, and complete the model simulation and experimental verification. The thesis researched on the interface technology based on electronic transducer, explore measuring and protective equipment to make a new applications of current and voltage signals from the electronic transducer, promoted research on the new protection principles, proposed a idea that directly use electronic transducer differential signal as a protection input, put forward the new RL models principles and the new differential protection principle based on the differential input signal, and made the theoretical analysis and simulation studies, and acquired a number of important research results. In allusion to the blankness which test means of protection is adapted to electronic transducer, the paper proposed a new thought of real-time simulation test system based on IEC61850, and built the new dynamic simulation systems and real-time digital simulation of RTDS system compatibile with electronic transducer. In a new real-time simulation environment, the paper made a comparative characterizer experiments between the electronic transducer and the traditional transducer, analyzed the importation made by the electronic transducer to the traditional protection principle. The main work of this paper is following:
     1, Digital simulation modeling is completed of electronic current transducer based on Rogowski coil, the paper made a detailed study on simulation model of the entire sensor system in Rogowski coil measuring circuit. Using PS CAD to make a simulation test and through analysis of the process of steady state and transient fault simulation, this paper demonstrated that the digital model followed the primary signals well; Using PSCAD simulation system as a data source of digital transducer model, its output data and the actual dynamic model data of transducer was exported into MATLAB to make a comparative analysis. The experimental results prove the correctness of the modeling approach.
     2, To upgrade the traditional dynamic simulation experimental system and to build a new type of physical simulation system compatible with digital dynamic simulation and traditional dynamic simulation. In the new physical simulation environment, taking the protection as a application object, a performance comparing test was made between the conventional electromagnetic transducer and the of electronic transducer. It is analyzed that the application of electronic transducer effects on traditional protection principle. It is focused on the operating characteristic curve of line differential protection in the different fault conditions after using electronic transducer. The research results show that the safety and the reliability of line differential protection is observably improved because the electronic transducer has no saturation in case of high current.
     3, Two interface modes of the electronic transducer and relay protection system is discussed, namely:Firstly, in order to reflect the voltage and current, the outside integral circuit is increased in the sensor system of electronic transducer to achieve connection; Secondly, omits the transducer integral part and modify the traditional protection algorithm, the differential signals from electronic transducer are used in protection algorithm directly.
     4, This paper analyzes the characteristics of two different interfaces and proposes the R-L protection principle and the differential protection principle based on the differential input signals. The theory is correct and feasible through theoretical analysis and simulation. The electronic current transducer differential signals are applied to protection algorithm directly. It can give full play to the advantages of electronic transducer and improves the reliability and accuracy of protection.
     5, A new digital simulation test method is proposed based on electronic transducer and a new simulation test system is constructed. After using electronic transducer, the real-time digital simulation system no longer need to D/A conversion and power amplification and so on, generated directly to the simulation data can be used after format conversion. This paper discusses the new digital simulation system structure and implementation based on the IEC61850 standard, describes the test model connecting RTDS and full digital secondary equipment, and verifies the practicality of the new test system through 110kV line digital protection experiment.
     Finally this paper summarizes the research results above and proposed the further research direction.
引文
[1]贺家李.电力系统继电保护技术的现状与发展[J].中国电力,1999,32(10):38-40.
    [2]Maffetone T D, Mcclelland T M.345kV Substation optical current measurement for revenue metering and protective relaying[J]. IEEE Trans.On Power Delivery,1991,6(4):1430-1437.
    [3]李莉,张心天.光纤电流传感器及其研究现状[J].光电子技术与信息,2002,15(2):37-41.
    [4]Cease T W, Driggars J G, Weikel S J. Optical voltage and current sensor used in a revenue mertering syetem. IEEE Trans.On Power Delivery,1991,6(4):1374-1379.
    [5]易本顺,刘延冰,等.光学电流传感器现场运行性能分析[J].中国电机工程学报,1997,(2).33-36.
    [6]罗苏南,叶妙元,李开成等.光学电压互感器的研究进展[J].电工电能新技术,2000,(1):32-35.
    [7]王廷云,罗承沐,田玉鑫.电力系统中光电电流互感器研究[J].电力系统自动化,2000,(1):38-41.
    [8]陈金令,谢腊堂,宋建和.光学电压互感器研究现状[J].中国测试技术,2004,30(3):18-20.
    [9]Kobayashi A, Higaki M, Mori E, et al. Development and field test evaluation of optical current and voltage transducer for gas insulated sweachear.IEEE Trans. On Power Delivery,1992, 7(2):815-821.
    [10]张贵新,赵清姣,罗承沐.电子式互感器的现状与发展前景[J].电力设备,2006,7(4):108-109.
    [11]IEC/TC 38-23. IEC 60044-7. Standard for electronic voltage transducer(EVT).1999.
    [12]IEC/TC 38-27. IEC 60044-8. Standard for electronic current transducer(ECT).2002.
    [13]张明明,李红斌,刘延冰.基于纵向Pockels效应的光学电压互感器[J].传感器技术,2005,24(6):58-64.
    [14]张赛德,罗道军,彭剑等.国内外光电式电流互感器德研究现状[J].四川电力技术,1999(2):53-55.
    [15]Zhang Gang, Li Shaohui, Zhangzhipeng, et al. A novel electro-optic hybrid current measurement instrument for high-voltage power lines. On Instrument and Measurement.2001,50(1):59-62.
    [16]张志鹏,聂一雄.偏振态调制的光纤电流传感器[J].电测与仪表,1989,26(8):6-8.
    [17]Katsukawa H, Ishhikawa H, Okajuma H, et al. Development of an optical currenttransducer with a bulk type Faraday sensor for metering. IEEE Trans.On Power Delivery,1996,11(2):702-707.
    [18]尚秋峰,王仁洲.杨以涵.光学电流互感器及其在电力系统中的应用[J].华北电力大学学报,2001,28(2):14-18.
    [19]Schwarz H, Hudasch M. Optical current transducers-successful first fields test in a 380 kV system. ABB Review,1994,3:12-18.
    [20]Emerging Technology Working Group. Power System Instrumentation and Measurement Committee, et al. Optical current transducer for power system.IEEE Trans.On Power Delivery, 1994,9(4):1778-1788.
    [21]Ning Y N, Lin T Y, Jackson D A. Two Low Cost Robust Electrooptic Hybrid Current Sensors Capable Of Operation At Extremely High Potential.Review Of Scientific Instruments,1992, 63(2):5771-5773.
    [22]刘青,王增平,徐岩,等.光学电流互感器对继电保护系统的影响研究[J].电网技术,2005,29(1):11-14.
    [23]袁荣湘,陈德树,张哲.耐受电流暂态分量影响的新型差动保护[J].电力系统自动化,2000,24(3):14-18.
    [24]李岩,陈德树,袁荣湘,等.基于相关分析的暂态差动保护原理改进及仿真研究[J].继电器,2003,31(2):64-68.
    [25]郭征.特高压长线路分相电流差动保护新原理[D].博士学位论文.天津:天津大学,2004.
    [26]罗苏南,田朝勃,赵希才.空心线圈电流互感器性能分析[J].中国电机工程学报,2004,3(24):108-113.
    [27]王卉,陈楷,彭哲.数字仿真技术在电力系统中的应用及常用的几种数字仿真工具[J].继电器,2004,32(21):71-75.
    [28]李国久.电力系统动态模拟原理与指导[M].华中理工大学.1997.
    [29]Ljubomir Kojovic. Rogowski coils suit relay protection and measurement. IEEE Computer Application in Power,1997,10(3):47-52.
    [30]邱大为,游大海,尹项根,等.一种带光纤数字接口的继电保护装置的研究[J].继电器,2003,31(5):33-36.
    [31]J. D. Ramboz. Machinable Rogowski Coil, Design, and Calibration. IEEE Trans. on Instru.&Meas., Apr.1996,45(2):511-515.
    [32]Ray W F, Hewson C R, Rogowski trasducers for measuring large magnitude short duration pulses. Symposium Pulsed Power,2000,8(3):23-25.
    [33]乔卉,刘会金,王群峰等.基于Rogowski线圈传感的光电电流互感器的研究[J].继电器,2002,30(7):40-43.
    [34]D. A. Ward, J. La T.Exon, Using Rogowski coils for transient current measurements. Engineering science and education journal.1993,18(7):105-113.
    [35]Turner G.R. Hofsajer I.W. Rogowski coils for short duration (<10μs) pulsed current (>10 kA) measurements. IEEE Industry Applications Conf. African,28 Sept.1999(2):759-764.
    [36]G. D. Antona, E. Carminati, M. Lazaroni, AC current measurement via digital processing of Rogowski coils signal. Proceedings of the 19th IEEE Instrumentation and measurement technology conference. Anchorage, AK, USA, May 2002:693-698.
    [37]揭秉信.大电流测量[M].北京:机械工业出版社,1987.
    [38]W. F. Ray, R. M. Davis, Wide band width Rogowski current transducers Part II:the integrator. European power electronics and drives journal,1993,3(2):116-122.
    [39]聂一雄,尹项根,张哲.模拟积分器应用探讨[J].电子测量技术.2000,13(4):3-6.
    [40]D'Antona G, Lazzaroni M, Ottoboni R, et al. AC current-to-voltage transducer based on digital processing of Rogowski coils signal. Sensors for Industry Conference,2002,2nd ISA/IEEE, 2002,19-21:72-77.
    [41]张可畏,王宁,段雄英,等.用于电子式电流互感器的数字积分器[J].中国电机工程学报,2004,24(12):104-107.
    [42]Mohamad Adnan Al-Alaoui.A novel approach to designing a non-inverting integrator with built-in low frequency stability, high frequency compensation, and high Q. IEEE Trans. Instrum. Meas,1999:1116-1121.
    [43]钱政,申烛,罗承沐.电子式光电组合电流/电压互感器中的相位补偿技术[J].电力系统自动化,2002,26(24):40-44.
    [44]阿瑟.B.威廉斯.电子滤波器设计手册[M].北京:电子工业出版社,1986.
    [45]康华光.电子技术基础模拟部分[M].北京:高等教育出版社,1999.
    [46]吴竞昌.供电系统谐波[M].北京:中国电力出版社,1998.
    [47]A rrillaga J, Bradley D A, Bodger PS. Power System Harmonics. New York:John Wiley and Sons Ltd,1985.
    [48]陈思.巴特沃斯低通滤波器的简化快速设计[J].信阳师范学院学报,1997,10(3):64-67.
    [49]姚福安,徐衍亮.高性能多阶有源低通滤波器设计[J].电子测量与仪器学报,2005,19(2):20-25.
    [50]A. H. Marshak, D. E. Johnson, J. R. Johnson. A Bessel rational filter. IEEE Trans.Circuits and System.1974, CAS-22:794-799.
    [51]D.E.约翰逊,J.R.约翰逊,H.P.穆尔.有源滤波器精确设计手册[M].李国荣.北京:电子工业出版社,1984.
    [52]吴在军,胡敏强.基于IEC61850标准的变电站自动化系统研究[J].电网技术,2003,27(10):61-65.
    [53]王强.电力系统动态模拟技术[J].高电压技术,2005,31(9):81-83.
    [54]梁军,李欣唐,孙勇智等.动模实验室微机监控系统.电力系统及其自动化学报,1998,10(2):46-52.
    [55]王葵,王新超.PLC在电力系统静模实验室中的应用.实验技术与管理,2001,18(1):39-42.
    [56]数字化变电站解决方案-X7000系统产品手册[M].南京新宁光电自动化有限公司.
    [57]Mare Desjardine, Paul Forsyth, Ralph Maekiewiez. Real time simulation testing using IEC 61850. International Conference on Power Systems Transients, France, June 4-7,2007.
    [58]李晓朋,赵成功,李刚.基于IEC61850的数字化继电保护GOOSE功能测试[J].继电器,2008,36(7):59-61.
    [59]陈建玉,孟宪民,张振旗等.电流互感器饱和对继电保护影响的分析及对策[J].电力系统自动化,2000,24(6):54-56.
    [60]Cesareo Fernandez, An Impedance-Bsaed CT Saturation Detection Slgorithm for Bus-Bar Differential Protection, IEEE Transactions on Power Delivery, Vol.16, No.4, pp:468-472.
    [61]罗承廉.继电保护及自动化新原理、新技术研究及应用.武汉:华中科技大学出版社,2005.
    [62]陈德树.计算机继电保护原理及技术[M].北京:水利电力出版社,1992.
    [63]及洪泉,张健,杨以涵,等.计及电子式电流互感器的差动保护性能分析[J].电网技术,2006,30(23):61-66.
    [64]顾黄晶,张沛超.光学电流互感器对线路差动保护的影响[J].电力自动化设备,2007,27(5):61-64.
    [65]韩小涛,李伟,尹项根,等.应用电子式电流互感器的变压器差动保护研究[J].中国电机工程学报,2007,27(4):47-53.
    [66]E. F. Donaldson, J. R. Gibsion, G. R. Jones, et al. Hybrid Optical Current Transducer with Optical and Power-Line Energisation. IEE Proc.Transm. Distrib.,2000,147(5):304-329.
    [67]Brunner C. The Impact of IEC 61850 on Protection. Developments in Power System Protection (DPSP),2008,14-19.
    [68]刘青,王增平,徐岩,等.光学电流互感器对继电保护系统的影响研究[J].电网技术,2005,29(1):11-14.
    [69]刘青,王增平,徐岩,等.电子式互感器与继电保护接口的实现[J].高电压技术,2005,31(4):4-5.
    [70]A Postolov A, Tholomier D. Impact of IEC 61850 on Power System Protection. Power Systems Conference and Exposition, Oct29-Novl,2006,1053-1058.
    [71]邱大为,游大海,尹项根,等.一种带数字接口的继电保护装置的研究[J].继电器,2003,31(5):33-36.
    [72]李红斌,余春雨,叶国雄,等.电子式互感器数字输出的研究,高电压技术,2004,30(2):10-11.
    [73]杨奇逊.微型机继电保护基础[M].北京:中国电力出版社,1998.
    [74]许正亚.输电线路新型距离保护[M].北京:中国水利电力出版社,2002.
    [75]葛耀中.新型继电保护与故障测距原理与技术[M].西安:西安交通大学出版社,1996.
    [76]李瑞生,路光辉,王强.用于线路差动保护的电流互感器饱和判据[J].电力自动化设备,2004,24(4):70-73.
    [77]张保会,尹项根.电力系统继电保护[M].北京:中国电力出版社,2005.
    [78]郭立娟,陈乃添,刘南平.实时数字仿真装置RTDS介绍[J].广西电力,2004(1):62-64.
    [79]梁志成,马献东,王力科.实时数字仿真器RTDS及其应用[J].电力系统自动化,1997,21(10): 33-35.
    [80]Mclaren P G, Kuffel R, Wierckx R, et al. A real time digital simulator for testing relays. IEEE Trans.on Power Delivery,1992,7(1),207-212.
    [81]余春雨,李红斌,叶国雄,等.电子式互感器数字输出特性与通讯技术[J].高电压技术,2003,29(6):28-31.
    [82]冯小玲,郭袅,谭建成.实时数字仿真系统(RTDS)在继电保护上的应用研究[J].电网技术,2005,19(4):43-47.
    [83]李保福,李营,王芝茗,等.RTDS应用于线路保护装置的动模实验[J].电力系统自动化,2000(15),69-70.
    [84]毛鹏,杨立,杜肖功,等.基于RTDS的超高压线路保护装置的实验研究[J].继电器,2004,32(3),55-59.
    [85]RTDS USER'S MANUAL SET, November 2007.
    [86]高翔,张沛超.数字化变电站的主要特征和关键技术[J].电网技术,2006,30(23):67-71.
    [87]韩小涛,尹项根,张哲,等.光电传感器在变电站通信控制系统中的应用探讨[J].电力系统及其自动化学报,2003,15(3):93-96.
    [88]任雁铭,秦立军,杨奇逊.IEC61850通信协议体系介绍和分析[J].电力系统自动化,2000,24(8):62-64.
    [89]张结.IEC61850目标内涵分析[J].电网技术,2004,28(23):76-80.
    [90]Mackiewiez R E. Overview of IEC61850 and Benefits[J]. Power Systems Conference and Exposition,2006,623-630.
    [91]曹津平,李伟,秦应力,等.数字化变电站过程层的通信技术研究[J].电力系统保护与控制,2008,36(12):60-63.
    [92]殷志良.基于IEC61850的变电站过程总线通信的研究[D].博十学位论文.北京:华北电力大学.2005.
    [93]IEC61850.变电站通信网络和系统—第9-1部分:特殊服务映射(SCSM)—映射到单向多点对电串行连接,2006.
    [94]IEC61850.变电站通信网络和系统—第9-2部分:特殊服务映射(SCSM)—映射到过程总线,2007.
    [95]Andersson L, Brunner C, Engler F.Substation Automation based on IEC61850 with New Proeess-close Technologies. Proeeedings of Power Tech Conference, Vol2, Bologna, IEEE, 2003.
    [96]孙军平,盛万兴,王孙安.基于以太网的实时发布者/订阅者模型研究与实现[J].西安交通大学学报,2002.
    [97]Niewczas P, Cruden A, Michie W C, et al. Error analysis of an optical current transducer operating with a digital signal processing system. IEEE Transactions on Instrumentation and Measurement,2000,49(6):1254-1259.
    [98]范建忠,马千里.GOOSE通信与应用[J].电力系统自动化,2007,31(19):85-90.
    [99]童晓阳,王晓茹,汤俊.基于IEC61850的变电站智能电子设备的统一建模语言设计及改进[J].电网技术,2006,30(3):85-88.
    [100]徐立子.IEC 61850对变电站自动化系统报文性能的要求[J].电网技术,2002,26(11):17-19.
    [101]郑新才,施鲁宁,杨光,等.IEC 61850标准下采样值传输规范9-1、9-2的对比和分析[J].电力统保护与控制,2005,36(15):47-50.
    [102]高湛军,潘贞存,卞鹏,等.基于IEC 61850标准的微机保护数据通信模型[J].电力系统自动化,2003,27(18):43-46.
    [103]徐雁,向珂,肖霞.一种基于FPGA&DSP的电子式互感器数字接口实现方案[J].高压电器,2006,42(3):208-210.
    [104]操丰梅,任雁铭,王照,等.变电站自动化系统互操作实验建议[J].电力系统自动化,2005,29(3):86-89.
    [105]何卫,王永福,缪文贵,等.IEC 61850深层次互操作试验方案[J].电力系统自动化,2007,31(6):103-107.
    [106]张结.用IEC61850实现产品互操作性的思考.电力系统自动化,2005,29(3):90-93.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700