用户名: 密码: 验证码:
基于回旋谐振机制的特殊电真空器件研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
运动电子在恒定导引磁场与交变电磁场中的回旋谐振是一种十分重要的物理现象,这种现象在自然界中广泛存在,而且也已被人们广泛利用。直到今天,人们仍在不断努力,研发新型的基于回旋谐振机制的电子器件。在已经开发的这类器件中,最广为人知的是回旋管。实际上,还有一些工作机理与回旋管不同的同样基于回旋谐振现象的电子器件也是值得我们关注的。
     回旋波整流器和潘尼管就是两种基于与回旋管不同机理的特殊回旋波器件,它们不依赖相对论效应,而且所有电子都同时处于加速或减速状态,因此具有很高的注波互作用效率。回旋波整流器是无线输电技术和空间太阳能电站的关键技术之一,可以高效地把微波能变成电能。潘尼管具有在高次回旋谐波高效工作的潜力,有利于发展永磁包装高效率的大中功率毫米波、亚毫米波源,在雷达、通信、电子战、波束武器与新能源研发等多个领域有广泛的应用前景。俄罗斯、美国以及美国、日本都分别对这两种器件有深入的理论与实验研究,但到目前为止,除少数理论研究文章和综述性报道外,国内还没有人从真正意义上深入研究这两种特殊的电真空器件。本论文根椐实验室的安排,以建立实验系统、研制实用器件为最终目标,对这两种器件开展系统的理论研究。
     本论文采用了等效电路与CST电磁仿真,粒子模拟相结合的快速、实用的设计方法,较好地处理了注波互作用,腔体结构设计,阻抗匹配与互作用系统效率等问题。采用数值计算方法优化了能量转换区的磁场分布,以及降压收集极的电极形状、电势分布。在此基础上系统地设计了一只2.85GHz的回旋波整流器,其器件总效率达83%。首次研究了回旋波整流器的场分布不均匀和空间电荷力对注波互作用的影响,给出了选择电流参数的指导;并分析了板间距、引导磁场、场强以及频率等因素对提高电压的影响,指出,研制厘米波段兆瓦级的回旋波整流器是可能的。
     利用小信号理论和自洽非线性理论对Ka波段三次回旋谐波潘尼管进行较为深入的研究,分析了电子引导中心漂移以及能量分布规律,提出了通过优化磁场分布提高效率的方法,研究了影响互作用效率的因素,表明在实验可达到的电子注质量下,研制实用的高效高次谐波潘尼管是可行的。为解决目前由cusp电子枪产生的大回旋电子注质量较差,各参数不易调节的现状,提出了采用Cuccia耦合器产生线状大回旋电子注的方法。采用数值计算以及PIC仿真分析了这种新型的大回旋电子注特性,证明了这种新型的电子注源不仅参数易于调节,而且通过优化设计,线状电子注激励的三次谐波潘尼管可获得8kW的输出功率,微波能量转换效率为50%,器件效率为43%,证明了电子注质量完全满足潘尼管的要求,为高次谐波,低磁场潘尼管的实际应用提供了一种有效的解决途径。
Moving electrons cyclotron resonance in a constant guiding magnetic field and an alternating electromagnetic field is a very important physical phenomenon, which exists widely in nature, and has been widely used. Until now, people still continue the effort to develop electronic devices of new mechanisms based on cyclotron resonance. In such devices developed, the most well know is the gyrotron. In fact, some other mechanisms different with gyrotron also based on cyclotron resonance phenomenon is well worth our attention.
     Cyclotron-wave rectifier and peniotron are based on mechanisms which are different from gyrotron. They do not rely on relativistic effects, and all electrons are in the acceleration or deceleration state, so high wave interaction efficiency can easy be obtained. As one of those key technologies in a wireless transmission technology and space solar power station; cyclotron-wave rectifier can efficiently convert microwave energy into DC. Peniotron has high capability of working effectively at high-harmonics, it can be develop to a high and medium power millimeter wave and sub-millimeter wave source packed by permanent magnet, and be widely applied in radar, communications, electronic warfare, beam weapons, and new energy development. Russia, the United States and Japan have deeply research the two devices by method of theoretical and experimental, but up to now, except for a few theoretical research articles and reviews of reports, it has not been truly and deeply studied at home. According to the laboratory plans, taking establishing experimental system and developing practical devices as the ultimate goals, this paper carries out systematic theoretical research of the two devices.
     A fast and practical design method of cyclotron-wave rectifier design is proposed in this paper, which combines the equivalent circuit, CST electromagnetic simulation and PIC simulation. It can better handle the problems such as beam-wave interaction, cavity design, impedance matching and interaction system efficiency. The magnetic field distribution of conversion region is optimized by using numerical computation, the collector electrode shape, electric potential distribution are designed by using EGUN and CST. On this basis, a 2.85GHz rectifier with a high system efficiency of 84% is design. The wave-bean efficiency influenced by the uneven field distribution and space charge are firstly studied, and the factors affecting voltage such as the plate spacing, guide magnetic field, field strength and frequency are respectively analyzed, the final results point out that it is possible to development MW level cyclotron-wave rectifiers operating at cm band.
     In this paper, the Ka-band third harmonics peniotron is deeply studied by method of the small signal theory and the self-consistent nonlinear theory, the rules of the electron guiding center drift and the energy distribution are analyzed, a method of improving efficiency by optimizing the magnetic field distribution is proposed, and the factors that affect the interaction efficiency is studied. It indicates that the development of practical and efficient high-harmonic peniotron is feasible under the case of real quality of beam. To solve the problems in a cusp electron gun such as a poor electron quality and difficult adjustment parameters,a novel large-orbit electron beam generated by a Cuccia coupler is proposed. And the properties of such beam are investigated by numerical computation and 3D-PIC simulation, it indicate that the large-orbit beam accelerated by the Cuccia coupler has evident characteristics such as the relative velocity spread low and the high velocity ratio, moreover, other electron beam parameters including transverse velocity, longitudinal velocity and the deviation of guiding center could be adjusted independently, which fully satisfy the special requirements of the high-harmonic peniotron. The simulation results also prove that the Ka-band third-harmonic slotted peniotron can be successfully driven by a 37 kV, 0.5 A, large-orbit electron beam produced by the Cuccia coupler and predicted to achieve an 8kW power output as well as a microwave energy conversion efficiency is 50% and a corresponding device efficiency up to 43%. It proves that such large-orbit beam beam quality meet the requirements of peniotron, and provides an effective solution for practical high-harmonic, low magnetic field peniotron
引文
[1] R. Twiss. Radiation transfer and the possibility of negative absorption in radio astronomy [J]. Australian Journal of Physics, 1958, 11(l):567-579.
    [2] R. Twiss, J. Roberts. Electromagnetie radiation from electrons rotating in an ionized under the action of a uniform magnetie field [J]. Australian Journal of Physics, 1958, 11(1):424-432.
    [3] A. Gaponov. Interaction between electron fluxes and electromagnetic waves in Waveguides[J」.Izv Vyssh Uchebn Zaved Radiofiz, 1959, 2(1):450.
    [4] J. Hirshfield, J. Watchtel .Electron cyclotron maser [J].Physical Review Letters,1964,12 (19):533-536.
    [5] L. Elias, W. Fairbank, J. Madey, et al. Observation of stimulated emission of radiation by relativistic electrons in a spatially periodic transverse magnetic field[J]. Physical Review Letters, 1976, 36(13): 717-720.
    [6] V. Flyagin, A. GaPonov, I. Petelin, et al. The Gyrotron [J]. IEEE Transactions on microwave. Theory and Techniques, 1977, 25(6):514-521.
    [7] J. Hirshfield, V. Granatstein. The electron cyclotron maser and historical survey [J]. IEEE Transactions on microwave Theory and Techniques, 1977, 25(6):522-527.
    [8] K. Chu Theory of electron cyclotron maser interaction in a cavity at the harmonic Frequeneies [J]. Physics of Fluids, 1978, 21(12):2354-2364.
    [9] A. Gaponov, M. Petelin, V. YulPatov. The indueed radiation of exeited classicial oscillators and its use in high-frequency electronics [J]. Radiophysics and Quantum Electronics, 196, 10(9):794-813.
    [10] J. Sehneider. Stimulated emission of radiation by relativistic electrons in a Magnetic Field [J]. Physical Review Letters, 1959, 2(12):504-505.
    [11]刘盛纲.电子回旋脉塞和回旋管的进展[M].成都:四川教育出版社, 1988, 1-16.
    [12] W. M. Manheimer, G. Mesyats, M. l. Petelin. Applications of high power microwave sources to enhanced radar systems [J]. Applications of high power microwaves, 1994:169-208.
    [13] J. Benford, J. Swegle,E. Sehamiloglu. High power microwaves [M]. Inst of Physics Pub Inc, 2007.
    [14] J. Seftor, V. Granatstein, K. Chu, et al. The electron cyclotron maser as a high-power travelingwave amplifier of millimeter waves [J]. IEEE Journal of Quantum Electronics, 1979, 15(9).
    [15] I. Blog. Applications of high power microwave catalysis in chemistry [J]. Research on Chemical Intermediates, l990, 13(3):221-236.
    [16] S. Gold, G. Nusinovieh. Review of high-power microwave source research [J]. Review of Scientific Instruments, 1997, 68(11):3945-3974.
    [17] W. Lawson, W. Destler, C. Striffier. High power microwave generation from a large orbit gyrotron [J]. IEEE Transactions on Nuclear Science, 1985, 13(6):444-453.
    [18] K. Felch, B. Danly, H. Jory, et al. Characteristics and applications of fast-wave gyrodevices[J]. Proceedings of the IEEE, 1999, 87(5):752-781.
    [19] I.M.Bleyvas, V.A.Vanke, L.M.Rybnikova and V.L.Savvin. Numerical simulaton of recuperation processes for cyclotron converter. Radiotechnique & Electronics, 1982, 27(5):1009.
    [20]王秩雄,王挺,乔斌.无线输电技术与卫星太阳能电站的发展前景.空间电子技术, 2006, (2):6-12.
    [21]王秩雄,李强,乔斌.快回旋电子束波微波整流器及其应用.空间电子技术, 2005, (2):57-64.
    [22]王挺,王秩雄.快回旋电子束波吸收微波能量过程的分析和计算.微波学报. 2005, 21:62-65.
    [23]王秩雄,胡劲蕾,梁俊,王长华.无线输电技术的应用前景.空军工程大学学报(自然科学版),2003, 4(1):82-85.
    [24] B. Strassner, K. Chang. 5. 8GHz circularly polarized rectifying antenna for wireless microwave power transmission [J]. IEEE Trans on Microwave Theo ry andTechniques, 2002, 50(8):1870
    [25] W.C.Brown. History of power transmission by radio waves. IEEE Trans.Microwave Theroy & Tech, vol.MTT-32, 1984, (9):1230-1242.
    [26] S. Ono, K. Yamanouchi, Y. Shibata et al. Cyclotron fast-wave tube using spatial harmonic interaction-the traveling wave peniontron. Proc of 4th International Congress on Microwave Tube, 1962:355-363.
    [27] K. Yamanouchi, S. Ono, and Y. Shibata. Cyclotron fast wave tube: The double ridged travelling wave peniotron. In Proc. 5th Int. Congr. Microw.Tubes (Paris), 1964: 91-102.
    [28] T. Ishihara, H. Tadano, H. Shimawaki et al. Space harmonic peniotron in a magnetron waveguide resonator. IEEE T on ED, 1996:827-833.
    [29] Gallagher David A, Barsanti Marc, Sscfuree Frederick. High Power Cusp Gun for Harmonic Gyro Device Applications [J]. IEEE Transactions on Plasma Science, 2000, 28(3): 695-699.
    [30] David Gallagher, Philip Frawley, Kenneth Kreische.High power cusp gun [J] .IEEE Transactions on Plasma Science.2000:271-272.
    [31] V. O. Heinen, K. E. KREISCHER, M. A. Basten. Vacuum electronics development at Northrop Grumman [J]. IEEE Transaactions on Plasma Science, 2003:319.
    [32] P. Sprangle. Excitation of electromagnetic waves from a rotating annular relativistic E-beam. J. Appl. Phys, 1976, 47(7):2935-2940.
    [33] G. Dohler, D. Gallagher, and R. Moats. The peniotron: A fast wave device for efficient high-power mm-wave generation. Tech. Dig. IEEE IEDM, 1978: 400-403.
    [34] S. P. Kuznetsov, D. I. Trubetskov, and A. P. Chetverikov. Nonlinearanalytical theory of the peniotron. Sov. Tech. Phys. Lett, 1980, 6(10):498-499.
    [35] G. Dohler. Peniotron interactions in gyrotrons: II. Quantitative analysis. Int. J. Electron, 1984, 56(5):617-627.
    [36] -.Peniotron interactions in gyrotrons II. Quantitative analysis. Int.J. Electron, 1984, 56(5): 629-640.
    [37] G. Dohler, B. G. Wilson. A Small signal theory of the peniotron. IEDM, 1980: 810-813.
    [38] G. Dohler, D. Gallagher, R. Moats, F. Scafuri. Peniotron oscillator operating performance. IEDM.Technical Digest, 1981:328-331.
    [39]黄日隆.潘尼管-一种新的高效率毫米波器件的技术发展.真空电子技术. 1999: (4):21-29.
    [40]黄日隆.潘尼管和回旋管的比较.真空电子技术. 2003, (1):35-38.
    [41] G. Dohler, D. Gallagher, C. Lowrie, et al. Peniotron amplifier result. IEDM, 1984:845-848.
    [42] G. Dobhler, D. Gallagher, R. Moats, et al. Recent peniotron results at 45GHz. IEDM, 1987:311-314.
    [43] Dobhler G, Gallagher D, R ichards J et al. Harmonic High Power 95 GHz Peniotron. IEDM, 1993: 363-366.
    [44] Dobhler G, Gallagher D, J. Richards and F. Scaffuri. Peniotron oscillator operating performance. Tech. Dig. IEEE IEDM, 1981:328-331.
    [45] Dohler G, Peniotron Interaction in Gyrotrons Int.J Electronics. 1984:629-640.
    [46] K. Yokoo, H. Shimawaki, T. Ishihara, et al. Design and experiments of higher cyclotron harmonic peniotron oscillators. Conf Digest of 17th Int Conf on IR and MM Waves, Pasadena, 1992: 498-499.
    [47] M. Razeghi, N. Sato, T. Suzuki, et al. Modified peniotron using a TE11 rectangular waveguidecavity. Int J Electronics, 1985:533-542.
    [48] S. Ono, K. Tsutaki, T. Kageyama. Proposal of a high efficiency tube for high power millimeter or submillimeter wave generation: The Gyropeniotron. Int J Electronics, 1984:507-519.
    [49] K. Yokoo, T. Suzuki, M.Razeghi, et al. Experimental study of the modified peniotron using TE11 rectangular waveguide cavity. Int J Electronics, 1988: 645-651.
    [50] K. Yokoo, M. Razeghi, N. Sato, et al. Experiments on the high efficiency operation of the modified peniotron oscillator. Int J Electronics, 1989:485-490.
    [51] H. Shimawaki, K.Sagae, N. Sato, et al. 2nd cyclotron harmonic peniotron experiments. IEDM, 1991:787-790.
    [52] K. Yokoo, N. Sato, S. Ono. Auto-resonant peniotron oscillator for generation of millimeter and submillimeter waves. Int J Electronics, 1990: 461-470.
    [53] S. Musyoki, K. Yokoo, N. Sato, et al. Auto-resonant peniotron oscillator using a magnetron type cavity. Int J Electronics, 1991:715-722.
    [54] S. Musyoki, K. Sagae, N. Sato, et al. Experiments on highly efficient operation of the auto-resonant peniotron oscillator. Int J Electronics, 1992:1067-1077.
    [55] H.Shimawaki, K. Sagae, N. Sato, et al. Experiments on 2nd cyclotron harmonic peniotron. Int J Electronics, 1994:143-151.
    [56] T. Ishihara, H. Tadano, H. Shimawaki, et al. Space harmonic peniotron in a magnetron waveguide resonator. IEEE T on ED, 1996:827-833.
    [57] D. B. McDermott, Y. Hirata, L. J. Dressman, David A. Gallagher, and N. C. Lhmann. Efficient Ka-band second-harmonic slotted peniotron. IEEE Trans on Plasma Sci, 2000, 28(3): 953-957.
    [58] D. B. McDermott, Y. Hirata, L. J. Dressman, David A. Gallagher, and N. C. Lhmann. Efficient Ka-band second-harmonic slotted peniotron. IEEE Trans on Plasma Sci, 2000, 28(3): 695-.670.
    [59] L. J. Dressman, D. B. McDermott and N. C. Luthman, Jr. UCD Ka-band harmonic peniotron status. Eighth IEEE International Vacuum Electronics Conference, Kitakyushu, 2007, edited by Manabu Arai, New JRC, Yong Ho Chin and KEK(Kitakyushu, 2007):1.
    [60] L. J. Dressman, D. B. McDermott, N. C. Luthman, Jr, and D. A. Gallagher. UCD Ka-band harmonic peniotron status.Vacuum Electronics Conference, 2006 held jointly with 2006 IEEE International Vacuum Electron Sources., IEEE International, 2006:275-276.
    [61]刘盛纲.微波电子学导论[M].北京:国防工业出版社, 1983.
    [62] D.C.Watson, R.W.Grow, and C.C.Johnson. A cyclotron wave rectify for S-band and X-band. J. Microwave Power, 1970, 5(2):72.
    [63]ЭЛЕКТРОННАЯТЕХНИКА.СЕР.ЭЛЕКТРОНИКАСВЧ.ВЫП. 1985,(2):374.
    [64]刘盛纲.相对论电子学.科学出版社, 1987
    [65] M. J. Rhee, W. W. Destler. Relativistic electron dynamics in a cusped magnetic field. The Physics of Fluids, 1974, 17(8):1574-1581.
    [66]孙治国.回旋波整流器能量转换区和收集极的理论分析与仿真.[硕士论文],成都:电子科技大学, 2008.
    [67]赵国骏.电子光学.北京:国防工业出版社, 1985.
    [68]龚善初,朱秀阁.载流圆线圈在空间任意一点的磁场分布.商丘师范学院学报,2005,2(2):162-164.
    [69]中国科学院沈阳计算技术研究所:电子计算机常用算法, 1976:474.
    [70]李家胤.回旋管磁场计算方法的研究.成都电讯工程学院学报, 1983, 3: 33-48.
    [71]李宏福.回旋管自洽大信号理论[讲义].成都:电子科技大学高能电子研究所,1995.
    [72]赵国庆,王文祥.轴对称电子光学系统空间的自动网格划分.电子科技大学学报.2002, 31(1): 44-47.
    [73]贺庆.多级降压收集极中次级电子的研究.真空电子技, 2004, 1:25-28.
    [74]贺庆.行波管多级降压收集极技术研究:[硕士学位论文].济南:山东大学, 2003.
    [75] N .Stankiewicz. Refocusing porperties of periodic magnet Field. NASA Lewis research center, Cleveland,Ohio,1975, 10:506-20.
    [76] Kou Jianyong, Sun Yu, Liao Fujiang. Optimization on the efficiency of MDC. Vacuum Electronics Technology, 2004(1):29-331.
    [77] Kou jianyong, Liao Fujiang. Study on initial condition of MDC, 14th Biannual Conference on Vacuum electronics Section, Chinese Institute of Electronics, Aug, 2003:98-101.
    [78]寇建勇,孙瑜,廖复强.多级降压收集极效率的优化.真空的电子技术, 2004,(1):25-28.
    [79]廖燕. MPM用小型化行波管的研究和设计:[硕士学位论文].成都:电子技大学, 2005.
    [80]邹继斌,刘宝延,崔淑梅等.磁路与磁场.哈尔滨:哈尔滨工业大学出版社. 1998:19-40.
    [81]王秩雄,李强,乔斌.快回旋电子束波微波整流器及其应用.空间电子技术, 2005, (2):57-64.
    [82] A.V. Vladimir. Cyclotron wave converter of microwaves into DC. IEICE Trans Elextron, 1998, JULY, E81-C(7):1136-1296.
    [83] V. A. Vanke. Transverse electron-beam waves for microwave electronics. Sov. Phys. Usp, 2005, 48(9):917-937.
    [84] A. K. Ganguly, S. Ahn, and S. Y. Park.Three dimensional theory of the gyropeniotron amplifier.Int. J. Electron., 1988, 65(3):597-618.
    [85] Y. Y. Lau and L. R. Barnett. Theory of a low magnetic field gyrotron (gyromagnetron). Int. J. Infrared Millimeter Waves, 1982, 3(5):619-643.
    [86] K. R. Chu and D. Dialetis,“Kinetic theory of harmonic gyrotron oscillationwith slotted resonant structure,”in Infrared and Millimeter Waves. New Yorl, NY: Academic Press, 1985, 13:45-75.
    [87] P. Vitello. Cyclotron maser and peniotron-like interactions in a whispering gallery mode gyrotron. IEEE Trans. Microwave Theory Tech., 1984, Aug, 32:917-921.
    [88] P. Vitello and K. KO. Mode competition in the gyro-peniotron oscillator. IEEE Trans. Plasma Sci., 1985, Dec, PS-13:454-463.
    [89] G. F. Brand. Slow equations of motion for gyrotron and peniotron interactions. Phys. Fluids B, 1992. 4(9):2983-2991.
    [90] D. B. McDermott, N. C. Luhmann Jr., A. Kupiszewski, and H. R. Jory.Small-signal theory of a large-orbit electron-cyclotron harmonic maser. Phys. Fluids, 1983, 26(7):1936-1441.
    [91] G. F. Brand. The gyrotron electron transfer equation. Int. J. Infrared and MillimeterWaves, 1983, 4(2): 247-255.
    [92] G. F. Brand. Energy transfer equation for high-harmonic cyclotron maser and peniotron interactions. Int. J. Infrared and MillimeterWaves, 1984, 5(6): 853-858.
    [93] U. A. Shrivastava and R. W. Grow.Gyrotron and peniotron modes in rotating-beam devices. Int. J. Electron., 1984, 57(6):1077-1095.
    [94] P. S. Rha, L. R. Barnett, J. M. Baird, and R. W. Grow,“Self-consistentlarge signal theory and simulation of high harmonic gyrotron andpeniotron oscillators operating in a magnetron type cavity.Tech. Dig.IEEE IEDM, 1985:525-528.
    [95] A. K. Ganguly, S. Ahn, and S. Y. Park. Three dimensional theory of the gyropeniotron amplifier. Int. J. Electron, 1988, 65(3):597-618.
    [96] A. K. Ganguly, S. Ahn, E. G. Zaidman, and A. S. Gilmour Jr. Design parameters of a high efficiency 1.7-GHz gyropeniotron amplifier. IEEE Trans. Electron Devices, 1991, Oct, 38: 2229-2233.
    [97] A. K. Ganguly, Y. Y. Lau, and S. Ahn. Absolute instabilities in gyropeniotronamplifiers. Phys. Fluids B, 1992, 4(11): 3800-3805.
    [98] A. T. Lin and C. C. Lin. Peniotron forward-wave self-oscillation. Applied Phys. Lett, 1994, 64(9):1088-1090.
    [99] A. T. Lin and C. C. Lin. Pulsating mode in peniotron backward wave oscillations. Phys. Plasma, 1994, 1, (12):4094-4098.
    [100] A. T. Lin and C. C. Lin. Gyro peniotron forward wave oscillators. IEEE Trans. Plasma Sci., 1994, Oct, 22: 889-894.
    [101] K. R. Chu and D. Dialetis.Theory of harmonic gyrotron oscillatorwith slotted resonant structure. Int. J. Infrared and MillimeterWaves, 1984, 5(1): 37-56.
    [102] D. A. Gallagher, M. Barsanti, F. Scafuri, and C. Armstrong. Highpower cusp gun for harmonic gyro-device applications. IEEE Trans Plasma Sci., 2000, June, 28:695-699.
    [103] M. J. Rhee and W. W. Destler.Relativistic electron dynamics in acusped magnetic field. Phys. Fluids, 1974, 17(8):1574-1581.
    [104] W.W. Destler, R. L.Weiler, and C. D. Striffler.High-power microwavegeneration from a rotating e layer in a magnetron-typewaveguide.Appl. Phys. Lett., 1981, 38(7):570–572.
    [105] W. Lawson, W. W. Destler, and C. D. Striffler. High-power microwavegeneration from a large orbit gyrotron in vane and hole-in-slot conductingwall geometries. IEEE Trans. Plasma Sci., 1985, June, PS-13:444-453.
    [106] N. R. Vanderplaats, H. E. Brown, and S. Ahn. Magnetically shieldedelectron guns with a center magnetic post. Tech. Dig. IEEE IEDM, 1981:336-338.
    [107] G. P. Scheitrum and R. B. True. A triple pole piece magnetic field reversalelement for generation of high rotational energy beams. Tech.Dig. IEEE IEDM, 1981:332-335.
    [108] W. Namkung, J. Y. Choe, H. S. Uhm, and V. Ayres. Operation of cusptronat fundamental and harmonic cyclotron frequencies. IEEE Trans.Plasma Sci., 1988, Apr, vol: 149-154.
    [109] G. P. Scheitrum, R. S. Symons, and R. B. True.Low velocity spreadaxis encircling electron beam forming system. Tech. Dig. IEEE IEDM, 1989:743-746.
    [110] K. T. Nguyen, D. N. Smithe, and L. D. Ludeking.The double-Cuspgyro-gun. Tech. Dig. IEEE IEDM, 1992:219-222.
    [111] A.T. Lin, C. K. Chong, D. B.McDermott, et al. slotted third-harmonic peniotron forward-wave oscillator. Proceedings of the SPIE - The International Society for Optical Engineering, USA, 1994, 2154:327-32.
    [112] D. B. McDermott, D. S. Furuno, and N. C. Luhmann,Jr. N .Stankiewicz. Production of relativistic rotating electron beams by gyroresonant RF acceleration in a TE111 cavity. J. Appl.Phys. 1985, 58(12):4501-4508.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700