用户名: 密码: 验证码:
纳米银(钯)在晶态碳上的负载及其表面增强拉曼效应
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
表面增强拉曼(SERS)技术能够极大地提高表面物种的检测灵敏度,在实时研究分子表面吸、脱附及取向等方面都有独到优势。为深入研究SERS效应的机理、拓宽SERS基底的范畴和SERS技术的应用领域,构筑金属/半导体、金属/金属等复合物作为SERS基底成为SERS研究的热点。
     单壁碳纳米管(SWNTs)依据其导电性不同,可以分为金属性碳管(met-SWNTs)和半导体性碳管(sem-SWNTs)。本文借鉴传统的制备银胶的方法,将SWNTs的胆酸钠水溶液与硝酸银水溶液混合,以柠檬酸钠为还原剂,采用液相原位还原的方法将银纳米粒子沉积在SWNTs外壁,制备了不同C、Ag原子比的Ag/SWNTs复合体。分析了金属与碳材料间的界面作用对Ag/SWNTs复合体基底的SERS效应的影响。SWNTs与Ag之间的电子转移对Ag/SWNTs的SERS活性有重要的加强作用。为深入研究SWNTs与Ag之间的电子转移对Ag/SWNTs的SERS活性的影响,在成功分离met-SWNTs和sem-SWNTs的基础上,分别制备了Ag/met-SWNTs和Ag/sem-SWNTs。对比研究了Ag/met-SWNTs和Ag/sem-SWNTs的SERS活性。结果表明met-SWNTs较之于sem-SWNTs更易于Ag发生电子转移,因而Ag/met-SWNTs具有更强的SERS活性。
     采用原位还原的方法在铜箔上制备了不同形貌的银、钯纳米结构,研究表明,通过调控前驱体浓度、表面活性剂种类和浓度可有效控制银、钯纳米结构的形貌。SERS研究表明,这种有序的银、钯纳米结构具有较高的SERS活性,且钯纳米立方体的SERS增强因子可达到3.4×107。立足于铜箔上原位制备不同形貌银钯纳米结构的前期实验,基于原位自生模板法制备的graphene在水中具有较好分散性的特点,将Ag(Pd)负载于graphene上,制备了Ag(Pd)/graphene。即首先将铜纳米粒子负载于graphene片层上,尽管沉积的铜纳米粒子无序、尺寸无规律且团聚程度比较大,但在第二步反应过程中,利用铜与Ag(Pd)离子之间温和的置换反应,graphene片层上沉积的大的铜纳米粒子分别被置换为分散十分均匀、粒径为2nm左右Ag纳米粒子和粒径为3nm的Pd纳米粒子。SERS研究表明,这种Ag(Pd)/graphene具有不同于纯Ag(Pd)纳米结构的SERS效应,推测这可能是由于Ag(Pd)的超小尺寸对介电常数的影响,导致Ag(Pd)本身电磁场的变化引起的,同时与graphene与Ag(Pd)之间的电子转移有关。此外,实验还表明牺牲铜模板制备的Pd/graphene不但具有较强的SERS活性,而且对甲酸有比采用直接还原法制备的Pd/graphene和Pd/Vulcan更强的电催化活性,这使得牺牲铜模板制备的Pd/graphene有望应用于原位电化学拉曼研究。
Surface-enhanced Raman scattering (SERS) has greatly improved the detection limits of surface species, which has a unique advantages to study molecular absorption, desorption and orientations in real time. In order to discuss the SERS mechanism furtherly, extend variety of SERS substrates and widen application area of SERS technique, the design and fabrication of a variety of nanoparticles and nanostructures as new SERS substrates are hot topics. Recently, high-quality SERS signals have been observed in composite systems such as metal core/shell nanoparticles and metal-semiconductor composite.
     Single-walled carbon nanotubes (SWNTs) can be classified into metallic ones (met-SWNTs) and semiconducting ones (sem-SWNTs). The Ag/SWNTs with different ratio of C: Ag was synthesized by a facile one-step approach using the sodium citrate as reducing agent, developing the classical preparing method of silver-sol system. The effect of interfacial action between Ag and SWNTs on SERS activity of Ag/SWNTs was analyzed. It was concluded that the charge-transfer between Ag and SWNTs enhanced SERS activity of Ag/SWNTs. To deepen the study of the effect of charge-transfer between Ag and SWNTs on SERS activity, Ag/sem-SWNTs and Ag/met-SWNTs were fabricated, respectively. The effect of charge-transfer between Ag and SWNTs on SERS activity of composite was verified via the contrastive studies of them.
     Ag dendrites, size-controlled Pd nanocubes, hexagonal prism and Pd dendrites nanostructures were synthesized by a simple galvanic displacement process between Ag (Pd) ion and Cu. The sizes and morphology of Pd nanostructures could be controlled by simply regulating the reaction parameters, such as concentration of palladium dichloride, reaction time and types of surfactant. A possible formation mechanism of Pd nanocubes was also briefly discussed. Furtherly, SERS investigation demonstrated the nanostructures on copper foils were SERS-active. The SERS enhancement factor (EF) values for PATP on Pd nanocubes was about 3.4×107. Based on the excellent dispersion of the graphene obtained by“in situ self-generating template”route and the previous studies of fabrication of Ag dendrites, Pd nanocubes and Pd dendrites were obtained on Cu plate. Ag (Pd) was supported on graphene via Sacrifice Cu templet. Firstly, Cu was supported on graphene sheets, and it was negligible, whether the CuNPs shall be aggregated or not. Then, Ag (Pd) NPs supported on graphene sheet were fabricated via galvanic displacement process between Ag (Pd) ion and the Cu. In his way, though Cu nanoparticles (Cu NPs) on graphene sheets were aggregated in the first step, the obtained Ag (Pd) NPs on graphene sheets should be in good dispersions via a moderate replacement reaction. Successfully, something expected and unexpected has turned up, that the big-sized Cu NPs have magically been transformed into small-sized and high-dispersed Ag(Pd)NPs supported on graphene nanosheets in the absence of stabilizers. The study showed the small-sized Ag (Pd) NPs possess SERS activity which is different from Ag nanostucture. The electromagnetic field of small-sized Ag NPs is different from big-sized Ag (Pd) NPs, for the small-sized Ag NPs would lead to the change of dielectric constant of Ag (Pd) NPs. Moreover, the SERS activity of Ag (Pd)/graphene hybrid is relevant to the charge-transfer between Ag (Pd) and graphene. The obtained Pd/graphene hybrid exhibited more significant catalytic activity for formic acids oxidation than Pd/graphene and Pd/Vulcan obtained by one-step procedure that Pd ions were reduced with NaBH4 directly. Thus, the Pd/graphene hybrid should be applied to in-situ electrochemical SERS promisingly.
引文
1 D. Tasis, N. Tagmatarchis, A. Bianco, et al. Chemistry of Carbon Nanotubes. Chem. Rev. 2006, 106: 1105~1136.
    2 F. Giacalone, N. Martin. Fullerene Polymers: Synthesis and Properties. Chem. Rev. 2006, 106: 5136~5190.
    3 S. Iijima, T. Ichihashi. Single-Shell Carbon Nanotubes of 1-nm Diameter. Nature. 1993, 363: 603~605.
    4 A. Peigney, C. Laurent, F. Dobigeon, et al. Carbon Nanotubes Nrown in Situ by a Novel Catalytic Method. J. Mater. Res. 1997, 12 (3): 613~615.
    5 D. L. Carroll, P. Redlich, P. M.Ajayan. Electronic Structure and Localized States at Carbon Nanotube Tips. Phys. Rev. Lett. 1997, 78 (14): 2811~2814.
    6韩向宇,胡陈果,冯斌.金属型与半导体型碳纳米管的分离方法.材料导报. 2006, 20: 118~120.
    7 N. Hamada, S. Sawada, A. Oshiyama. New One Dimensional Conductors: Graphite Microtubles. Phys. Rev. Lett. 1992, 68: 1579~1581.
    8 Z.Yao, C. H. W. Postma, L. Balents, et al. Carbon Nanotube Intramolecular Junctions. Nature. 1999, 402: 273~275.
    9 L. Chico, Vincent H. Crespi, Lorin X. Benedict, et al. Pure Carbon Nanoscale Devices: Nanotube Heterojunctions. Phys. Rev. Lett. 1996, 76: 971~974.
    10 J. C. Charlier, T. W. Ebbesen, P. H. Lambin Ground-state Description of Quasi-one-dimensional Polarons with Arbitrary Electron-phonon Coupling Strength. Phys. Rev. 1996, B53: 11108~11112.
    11 R. Saito, G. Dresselhaus, M. S. Dresselhaus. Tunneling Conductance of Connected Carbon Nanotubes. Phys. Rev. 1996, B53: 2044~2053.
    12 L. Qin, X. Zhao, H. Kaori, et al. The Smallest Carbon Nanotubes. Nature. 2000, 408: 50~54.
    13 V. H. Crespi. Relations between Global and Local Topology in Multiple Nanotube Junctions. Phys. Rev. B. 1998, 58: 12671~12678.
    14 S. Iijima. Holical Microtubeles of Graphitic Carbon. Nature. 1991, 354: 56~58.
    15 D. S. Bethume, C. H. Kiang, M. S. Vries, et al. Colbalt-catalyzed Growth of Carbon Nanotubes with Single-atomic-layerwalls. Nature, 1993, 363: 605~606.
    16郭连权,马常祥,张玉洁等.碳纳米管的制备及形貌研究.沈阳工业大学学报. 2004, 26: 353~356.
    17刘小康,覃文,张亚非. Y/Ni催化剂中FeS的添加对SWNTs制备的影响.材料科学与工程学报. 2006, 24 (2): 215~217.
    18赵宗彬,邱介山,王同华.以煤为碳源直流电弧法制备单壁纳米碳管绳.新型炭材料. 2006, 21: 19~23.
    19成会明.碳纳米管制备、结构、物性及应用.北京:化学工业出版社. 2002, 102~105.
    20 E. Flahaut, A. Govindaraj, A. Peigney, et al. Synthesis of Single-walled Carbon Nanotubes Using Binary (Fe, Co, Ni) Alloy Nanoparticles Prepared in Situ by Neduction of Oxide Solid Solutions. Chem. Phys. Lett.. 1999, 300: 236~242.
    21 P. Nikolaev, M. Bronikowski, R. Smally. Gas-phase Catalytic Granth of Single-walled Carbon Nanotubes from Carbon Monoxide. Chem. Phys. Lett. 1999, 313 (1~2): 91~97.
    22 E. Mizoguti, F. Nihey, M.Yudasaka, et al. Purification of Single-wall Carbon Nanotubes by Using Ultrafine Gold Particles. Chem. Phys. Lett. 2000, 321 (3~4): 297~301.
    23 J. Kong, C. Zhou, A. Morpurgo, et al. Synthesis in Togation and Electrical Properties of Individual Single-walled Carbon Nanotubes. Appl. Phys. A. 1999, 69: 305~308.
    24 F. Kokai, K. Takakashi, D. Kasuya, et al. Synthesis of Single-wall Carbon Nanotubes by Mllisecond-Pulsed CO2 Laser Vaporization at Room Temperature. Chem. Phys. Lett.. 2000, 332 (5-6): 449~454.
    25 F. Kokai. K. Takakashi, M. Yudasaka, et al.Growth Dynamics of Single-walled Carbon Nanotubes Synthesized by CO2 Laser Vaporization.J. Phys. Chem. B. 1999, 103: 4346~4351.
    26 H. Zhang, K. Chen, Y. He, et al. Formation and Raman Spectroscopy of Single Wall Carbon Nanotubes Synthesized by CO2 Continuous Laser Vaporization.J. Phy. Chem. Solids. 2001, 62 (11): 2007~2010.
    27张海燕,伍春燕,张坚,丁宁,陈易明,等.激光功率对连续CO2激光制备SWNTs的影响.中国激光. 2004, 31 (2): 241~244.
    28 E. Dujardin, C. Meny, P. Panissod, et al. Interstitial Metallic Residues in Purified Single-wall Carbon Nanotubes. Solid State Commol/Lun. 2000, 114: 543~546.
    29 A. G. Rinzler, J. H. Hafner, P. Nikolaer, et al. Large-Scale Purification of Single-wall Carbon Nanotube under Ambient Pressure and Moderate Temperature. Appl. Phys. A. 1998, 67: 29~31.
    30杨占红,李星海,王红强等.碳纳米管的提纯-重铬酸钾氧化法.化学世界. 1999, 12: 627~630.
    31 M. R. Smith, S. W. Hedges, R. Lacount, et al. Selective Oxidation of Single-walled Carbon Nanotubes Using Carbon Dioxide. Carbon. 2003, 4 (6): 1221~1230.
    32 H. Ago, T. Kugler, F. Cacialli, et al. Work Functions and Surface Functional Groups of Multi-wall Carbon Nanotubes. J. Phys. Chem. B. 1999, 103 (38): 8116~8121.
    33 K. B. Shelimov, R. O. Esenaliev, A. G. Rinzler, et al. Purification of Single-wall Carbon Nanotubes by Ultrasonicallassisted Filtration. Chem. Phys. Lett. 1998, 282 (5~6): 429~434.
    34 S. Bandow, S. Asaka, X. Zhao, et al. Purification and Magnetic Properties of Carbon Nanotubes. Appl. Phys. A, Materials Science & Processing. 1998, 67 (1): 23~27.
    35 K. Amamoto, S. Akita, Y. Nakayama, Onentation of Carbon Nanotubes Using Electro-Phoresis. Japanese J. Appl. Phys, Part 2. 1996,35 (7B): L917~918.
    36 G. S. Duesberg, J. Muster, V. Krstic, et al. Chromatographic Size Separation of Single-wall Carbon Nanotubes. Appl. Phys. A. 1998, 67 (1): 117~119.
    37 S. J. Tans, A. R. M. Verschueren, C. Dekker. Room-temperature Transistor Based on a Single Carbon. Nature. 1998, 393: 49~52.
    38 V. Derycke, R. Martel, J. Appenzeller, et al. Controlling Doping and Carrier Injection in Carbon Nanotubes Transistors. Appl. phys. Lett. 2002, 80: 2773~2775.
    39 S. J. Wind, J. Appenzeller, R. Martel, et al. Vertical Scaling of Carbon Nanotube Field-effect Transistors Using Top Gate Electrodes. Appl. lett. 2002, 80: 3817~3819.
    40 S. J. Tans, M. H. Devoret, H. Dai, et al. Individual Single Wall Carbon Nanotubes as Quantum Wires. Nature. 1997, 386: 474~477.
    41 M. S. Strano, C. A. Dyke. Electronic Structure Control of Single-walled Carbon Nanotube Functionalization. Science, 2003, 301: 1519~1522
    42 Z. Chen, X. Du, M. Du, C. et al. Bulk Separative Enrichment in Metallic orSemiconducting Single-walled Carbon Nanotubes. Nano. Lett. 2003, 3 (9):1245~1249.
    43 C. M. Yang, K. H. An, Jin SPark, et al. Preferential Etching of Metallic Single-walled Carbon Nanotubes with Small Diameter by Fluorine Gas. Phys. Rev. B. 2006, 73(7): 75419~75426.
    44 P. J. Boul, J. Liu, E. T. Mickelson, et al. Reversible Sidewall Functionalization of Buckytubes. Chem. Phys. Lett. 1999, 310(3-4): 367~372.
    45 K. H. An, K. A. Park, K. K. Heo, et al. Structural Transformation of Fluorinated Carbon Nanotubes Induced by in Situ Electron-beam Irradiation. J. Am. Chem. Soc. 2003, 125(10): 3057~3061.
    46 S. Nagasawa, M. Yudasaka, K. Hiahara, et al Effect of Oxidation on Single-wall Carbon Nanotubes. Chem. Phys. Lett. 2000, 328(1-2): 374~380.
    47 C. M. Yang, J. S. Park, K. H. An, et al. Selective Removal of Metallic Single-walled Carbon Nanotubes with Small Diameters by Using Nitric and Sulfuric Acids. J. Phys. Chem. B. 2005, 109(41): 19242~19248.
    48 E. Menna, F. D. Negra, M. D. Fontana, et al. Selectivity of Chemical Oxidation Attack of Single-wall Carbon Nanotubes in Solution. Phys. Rev. B. 2003, 68(19): 193412~193416.
    49 J. G. Wiltshire, A. N. Khlobystov, L. Li, et al. Comparative Studies on Acid and Thermal Based Selective Purification of HiPCO Produced Single-walled Carbon Nanotubes. Chem. Phys Lett. 2004, 386(4-6): 239~243.
    50 J. Liu, A. G. Rinzler, H. Dai, et al. Fullerene Pipes. Science. 1998, 280 (5367): 1253~1256.
    51 F. A. Carey, Organic Chemistry McGraw-Hill: New York, 1996, 9:10287.
    52 Y. Miyata, Y. Maniwa, H. Kataura. Selective Oxidation of Semiconducting Single-wall Carbon Nanotubes by Hydrogen Peroxide. J. Phys. Chem. B, 2006, 110 (1): 25~29.
    53 O. Connell, M. J. Bachilo, S. M. Huffman, et al. Band Gap Fluorescence from Individual Single-walled Carbon Nanotubes. Science. 2002, 297(5581): 593~596.
    54 M. Zheng, A. Jagota, O. G. Bibiana, et al. Understanding the Nature of the DNA-assisted Separation of Single-walled Carbon Nanotubes Using Fluorescence and Raman Spectroscopy. Nano Lett. 2004, 4(4): 543~550.
    55 E. Joselevich. Electronic Structure and Chemical Reactivity of Carbon Nanotubes: A Chemist's View. Chem.Phys. Chem. 2004, 5(5): 619~624.
    56 C. Debjit, G. Lzabela, P. Fotio, et al. A Route for Bulk Separation of Semiconducting from Metallic Single-wall Carbon Nanotubes. J. Am. Chem. Soc. 2003, 125(11): 3370~3375.
    57 J. Lu, S. Nagase, X. W. Zhang, et al. Selective Interaction of Large or Charge-transfer Aromatic Molecules with Metallic Single-wall Carbon Nanotubes: Critical Role of the Molecular Size and Orientation. J. Am. Chem. Soc. 2006, 128(15): 5114~5118.
    58 V. Georgakilas, K. Kordatos, M. A. Prato, et al. Organic Functionalization of Carbon Nanotubes. J. Am. Chem. Soc. 2002, 124(5): 760~761.
    59 C. Menard-Moyon, N. Izard, E. Doris, et al. Separation of Semiconducting from Metallic Carbon Nanotubes by Selective Functionalization with Azomethine Ylides. J. Am. Chem. Soc. 2006, 128(20): 6552~6553.
    60 Y. Maeda, S. Kimura, M. Kanda, et al. Large-Scale Separation of Metallic and Semiconducting Single-walled Carbon Nanotubes. J. Am. Chem. Soc. 2005, 127(29): 10287~10290.
    61 Y. Maeda, M. Kanda, M. Hashimoto, et al. Dispersion and Separation of Small-diameter Single-walled Carbon Nanotubes. J. Am. Chem. Soc. 2006, 128(37): 12239~12242.
    62 Y. Maeda, Y. Takano, A. Sagara, et al. Simple Purification and Selective Enrichment of Metallic SWCNTs Produced Using the Arc-discharge Method. Carbon. 46 (12):1563~1569.
    63 P. E. Lammert, P. Zhang, V. H. Crespi. Gapping by Squashing: Metal-insulator Transitions in Collapsed Carbon Nanotubes. Phys. Rev. Lett. 2000, 84: 2453.
    64 V. H. Crespi, M. L. Cohen, A. Rubio, et al. In Situ Band gap Engineering of Carbon Nanotubes. Phys. Rev. Lett. 1997, 79:2093~2096.
    65 E. D.minot, Y. Yaish, V. Sazonova. Tuning Carbon Nanotube Band Gaps with Strain. Phys. Rev. Lett. 2003, 90(15): 156401~156405.
    66 K. Ralph, H. Frank, L. Hilbert, et al. Separation of Metallic from Semiconducting Single-walled Carbon Nanotubes. Science. 2003, 301: 344~347.
    67 L. X. Benedict, S.G. Louie, M. L. Cohen. Static Polarizabilities of Single-wall Carbon Nanotubes. Phys. Rev. B 1995, 52: 8541~8549.
    68韩高荣.纳米复合薄膜的制备及其应用研究.材料科学与工程. 1999, 17(4): 1~5.
    69 Mie. Beitrage Zur Optik Truber Medien, Speziell Kolloidaler Metallosungen.Anal. Phys. 1908, 25: 377~445.
    70 K. S. Nvoselov, A. K. Geim, S. V. Morozov, et al. Electric Field Effect in Atomically Thin Carbon Films. Science. 2004, 306 (5696): 666~669.
    71 A. K. Geim, K. S. Novoselov. The Rise of Graphene. Nature Mater. 2007, 6: 183~191.
    72 K. S. Novoselov, et al. Two-dimensional Atomic Crystals. Proc. Natl. Acad. Sci. U. S. A. 2005 (30), l02: 10451~10453.
    73 J. S. Bunch, Y. Yaish, M. Brink, el al. Coulomb Oscillations and Hall Effect in Quasi-2D Graphit-equantum Dots. Nano. Lett. 2005, 5: 287~290.
    74 K. V. Emtsev, A. Bostwick, K. Horn, et al. Towards Wafer-size Graphene Layers by Atmospheric Pressure Graphitization of Silicon Carbide. Nat. Mater. 2009, 8: 203~207.
    75 C. Berger, Z. Song, T. Li, et al. Ultrathin Epitaxiai Graphite: 2D Electron Gas Properties and a Route toward Graphene-Based Nanoelectronics. J. Phys. Chem. B. 2004, 108: 19912~19916.
    76 C. Berger, Z. M. Song, X. B. Li, el al. Electron Confinement and Coherence in Patterned Epitaxial Graphene. Science. 2006, 312: 1191~1196.
    77 B. C. Brodie. Surle Poids Atomique Du Graphite. Ann. Chim. Phys. 1860, 59: 466~72.
    78 W. Hummers, R. Offeman. Preparation of Graphitic Oxide. J. Am. Chem. Soc. 1 958, 80: 1339.
    79 B. J. Jiang, C. G, Tian, H.G. Fu, et al. Facile Fabrication of High Quality Graphene from Expandable Graphite: Simultaneous Exfoliation and Reduction. Chem. Commun. 2010, 46: 4920~4922.
    80 X. Li, W. Cai, J. An, et al. Large-Area Synthesis of High-quality and Uniform Graphene Films on Copper Foils. Science. 2009, 324: 1312~1314.
    81王蕾.利用基团相互作用合成石墨化纳米碳及碳基复合体材料黑龙江大学硕士学位论文2010年6月44~45.
    82 Y. B. Tang, C. S. Lee, Z. H. Chen, et al. High-quality Graphenes via a Facile Quenching Method for Field-Effect Transistors. Nano. Lett. 2009, 9: 1374~1377.
    83 K. S. Kim, Y. Zhao, H. Jang, et al. Large-scale Pattern Growth of Graphene Films for Stretchable Transparent Electrodes. Nature. 2009, 457: 706~710.
    84 K. S. Subrahmanyam, L. S. Panchakarla, A. Govindaraj, et al. Simple Method of Preparing Graphene Flakes by an Arc-Discharge Method. J. Phys. Chem. C.2009, 113: 4257~4259.
    85 I. Janowska, K. Chizari, O. Ersen, et al. Microwave Synthesis of Large Few-Layer Graphene Sheets in Aqueous Solution of AmmLonia. Nano. Res. 2010, 3: 126~137.
    86郭鹏石墨烯的制备.组装及应用研究.北京化工大学博士学位论文. 2010年6月4~5.
    87田中群.中国基础科学. 2001, 3: 4~10.
    88 M. Fleischmann, P. J. Hendra, A. J. McQuillan. Raman Spectra of Pyridine Adsorbed at a Silver Electrode. Chem. Phys. Lett. 1974, 26: 163~166.
    89 D. L. Jeanmaire, R. P. Van Duyne. Surface Raman Spectroelectrochemistry. Part1. Heterocyclic, Aromatic and Aliphatic Amines Adsorbed on the Anodized Silver Electrode. Electroanal. Chem. 1977, 84: 1~20.
    90 M. Moskovits. Surface-enhanced Spectroscopy. Rev. Mod. Phys. 1985, 57: 783~826.
    91骆智训,方炎.表面增强拉曼散射光谱的应用进展.光谱学与光谱分析. 2006, 26: 358~362.
    92 G. N. Tripathi. p-Benzosemiquinone Radical Anion on Silver Nanoparticles in Water. J. Am. Chem. Soc. 2003, 125 (5): 1178~1179.
    93 X. X. Han, Y. Kitahama, Y. Tanaka, et al. Simplified Protocol for Detection of Protein?ligand Interactions via Surface-enhanced Resonance Raman Scattering and Surface-enhanced Fluorescence. Anal. Chem. 2008, 80 (17): 6567~6572
    94 S. E. J. Bell, N. M. S. Sirimuthu. Surface-enhanced Raman Spectroscopy (SERS) for Sub-Micromolar Detection of DNA/RNA Mononucleotides. J. Am. Chem. Soc. 2006, 128 (49): 15580~15581.
    95刘燕楠,邹祖全,刘燕青等.肺正常组织与癌变组织的表面增强拉曼光谱.光谱学与光谱分析. 2007, 27: 2045~2048.
    96 E. Smith, G. Dent. Modern Raman Spectroscopy-a Practical Approach. Wiley Blackwell. 2005, 58~60.
    97 C. J. Johnson, E. Dujardin, S. A. Davis, et al. Growth and Form of Gold Nanorods Prepared by Seed-mediated, Surfactant-directed Synthesis. J. Mater. Sci. 2002, 12 (6): 1765~1770.
    98 S. Efrima, H. Metiu. Classical Theory of Light Scattering by an Adsorbed Molecule. Theory. J. Chem. Phys. 1979, 70 (4): 1602~1613.
    99 K. L. Kliewer, R. Fuchs. Anomalous Skin Effect for Specular ElectronScattering and Optical Experiments at Non-normal Angles of Incidence. Phys. Rev. 1968, 172: 607~624.
    100才志成.纳米结构Ag和ZnO对表面增强拉曼散射强化机制的研究.黑龙江大学硕士论文2009年6月1~2.
    101 M. S. Sibblad, C. G. Cotton. Reduction of Cytochromec by Halide-modified, Laser-ablated Silver Colloids. J. Phys. Chem. 1996, 100 (11): 4672~4678.
    102宋薇.几种纳米结构材料的表面增强拉曼光谱及浸润性质研究.吉林大学博士学位论文. 2007年6月.
    103 A. Otto. The Chemical (Electronic) Contribution to Surface-enhanced Raman Scattering. J. Raman Spectrosc. 2005, 36: 497~509.
    104 J. R. Lombardi, R. L. Birke, T. Lu, et al. Charge-Transfer Theory of Surface Enhanced Raman Spectroscopy: Herzberg-Teller Contributions. J. Chem. Phys. 1986, 84: 4174~4180.
    105 P. Kambhampati, C. M. Child, M. C. Foster, et al. On the Chemical Mechanism of Surface Enhanced Raman Scattering: Experiment and Theory. J. Chem. Phys. 1998, 12: 5013~5026.
    106 J. J. Mock, M. Barbic, D. R. Smith, et al. Shape Effects in Plasmon Resonance of Individual Colloidal Silver Nanoparticles. J. Chem. Phys. 2002, 116: 6755~6759.
    107阮芳雄,张顺平,李志鹏等.钯纳米粒子体系中的近场耦合与SERS效应.科学通报. 2010, 55 (21):2078~2085.
    108 H. X. Xu. Comment on“Theoretical Study of Single Molecule Fluorescence in a Metallic Nanocavity”Appl. Phys. Lett. 80, 315 (2002) Appl. Phys. Lett. 2005, 87, 066101.
    109杨志林.金属纳米粒子的光学性质及过渡金属表面增强拉曼散射的电磁场机理研究厦门大学博士学位论文2006年6月38~40.
    110 Z. Q. Tian, B. Ren, D. Y. Wu. Surface-enhanced Raman Scattering: from Noble to Transition Metals and from Rough Surfaces to Nanostructure. J. Phys. Chem. B. 2002, 106 (37), 9463~9483.
    111 Z. C. Cai, C. G Tian, H. G Fu, et al. One-pot Synthesis of Silver Particle Aggregation as Highly Active SERS Substrate. J. Raman Spectrosc. 2010, doi 10.1002/jrs.2640.
    112 P. N. Bartlett, P. R. Birkin, M. A. Ghanem. Electrochemical Deposition of Macroporous Platinum, Palladium and Cobalt Films Using Polystyrene LatexSphere Templates. Chem. Commun. 2000, 1671~1672.
    113 K. C. Grabar, P. C. Smith, M. D. Musick, et al. Kinetic Control of Interparticle Spacing in Au Colloid-Based Surfaces: Rational Nanometer-Scale Architecture. J. Am. Chem. Soc. 1996, 118 (5): 1148~1153.
    114 N. Félidj, S. L. Truong, J. Aubard, et al. Gold Particle Interaction in Regular Arrays Probed by Surface Enhanced Raman Scattering. J. Chem. Phys. 2004, 120: 7141~7146.
    115 L. B. Yang, X. Jiang, W. D. Ruan, et al. Observation of Enhanced Raman Scattering for Molecules Adsorbed on TiO2 Nanoparticles: Charge-transfer Contribution. J. Chem. Phys. C. 2008, 112 (50): 20095~20098.
    116 Z. H. Sun, Z. Bing, J. R. Lombardi. ZnO Nanoparticle Size-dependent Excitation of Surface Raman Signal from Adsorbed Molecules; Observation of a Charge-Transfer Resonance. Appl. Phys. Lett. 2007, 91: 221106.
    117 L. B. Yang, J. Xin, W. D. Ruan, et al. Charge-transfer Induced Surface-enhanced Raman Scattering on Ag-TiO2 Nanocomposites. J. Phys. Chem. C. 2009, 113 (36)16226~16231.
    118 L. B. Yang, W. D. Ruan, X. Jiang, et al. Contribution of ZnO to Charge-Transfer Induced Surface-enhanced Raman Scattering in Au/ZnO/PATP Assembly. J. Phys. Chem. C 2009, 113: 117~120.
    119 K. Zhang, Y. Xiang, X. C. Wu, et al. Enhanced Optical Responses of Au@Pd Core/Shell Nanobars. Langmuir. 2009, 25 (2)1162~1168.
    120 C. M. Cobley,D. J. Campbell,Y. N. Xia, et al. Tailoring the Optical and Catalytic Properties of Gold-silver Nanoboxes and Nanocages by Introducing Palladium. Adv. Mater. 2008, 20: 748~752.
    121 S. J. Guo, J. Li, W. Ren, et al. Carbon Nanotube/Silica Coaxial Nanocable as Three-dimensional Support for Loading Diverse Ultra-high-density Metal Nanostructures: Facile Preparation and Use as Enhanced Materials for Electrochemical Devices and SERS. Chem. Mater. 2009, 21: 2247~2257.
    122 Y. C. Chen, R. J. Young, J. V. Macpherson, et al. Single-walled Carbon Nanotube Networks Decorated with Silver Nanoparticles: A Novel Graded SERS Substrate. J. Phys. Chem. C. 2007, 111 (44): 16167~16173.
    123 X. Ling, L. M. Xie, Y. Fang, et al. Can Graphene Be Used as a Substrate for Raman Enhancement?. Nano. Lett. 2010, 10: 553~561.
    124 S. Sun, C. B. Murray, D. Weller, et al. Monodisperse FePt NanoparticlesFerromagnetic FePt Nanocrystal Superlattices. Science. 2000, 287 (5486): 1989~1992.
    125 J. D. Driskell, S. Shanmukh, Y. J. Liu, et al. The Use of Aligned Silver Nanorod Arrays Prepared by Oblique Angle Deposition as Surface Enhanced Raman Scattering Substrates. J. Chem. Phys. C. 2008, 112 (4): 895~901.
    126 Y. G. Sun, Y. D. Yin, B. T. Mayers, et al. Uniform Silver Nanowires Synthesis by Reducing AgNO3 with Ethylene Glycol in the Presence of Seeds and Poly (Vinyl Pyrrolidone). Chem. Mater. 2002, 14: 4736~4745.
    127 Y. Sun, Y. Xia. Transmation of Silver Nanospheres into Nanobelts and Triangular Nanoplates through a Thermal Process. Nano. Lett. 2003, 3 (5): 675~679.
    128 R. C. Jin, E. Cao, et al. Controlling Anisotropic Nanoparticle Growth through Plasmon Excitation. Nature. 2003, 425 (6957): 487~490.
    129 A. R. Siekkinen, J. M. McLellan, J. Chen, et al. Rapid Synthesis of Small Silver Nanocubes by Mediating Polyol Reduction with a Trace Amount of Sodium Sulfide or Sodium Hydrosulfide. Chem. Phys. Lett. 2006, 432 (4~6): 491~496.
    130 X. Wen, Y. T. Xie, W. C. Mak, et al. Dendritic Nanostructures of Silver: Facile Synthesis, Structural Characterizations, and Sensing Applications. Langmuir. 2006, 22 (10): 4836~4842.
    131 J. D. Driskell, S. Shanmukh, Y. J. Liu, et al. The Use of Aligned Silver Nanorod Arrays Prepared by Oblique Angle Deposition as Surface Enhanced Raman Scattering Substrates. J. Phys. Chem. C. 2008, 112 (4): 895~901.
    132 J. T. Zhang, X. L. Li, X. M. Sun, et al. Surface Enhanced Raman Scattering Effects of Silver Colloids with Different Shapes. J. Phys. Chem. B. 2005, 109 (25): 12544~12548.
    133 S. J. Lee , A. R. Morrill, M. Moskovits. Hot Spots in Silver Nanowire Bundles for SERS, J. Am. Chem. Soc. 2006, 128 (7): 2200~2201
    134 J. M. McLellan, A. Siekkinen, J. Y. Chen, et al. Comparison of the Surface-enhanced Raman Scattering on Sharp and Truncated Silver nanocubes. Chem. Phys. Lett. 2006, 427: 122~126.
    135 W. Ye, C. Shen, J. Tian, et al. Controllable Growth of Silver Nanostructures by a Simple Replacement Reaction and Their SERS Studies. Solid State Sci. 2009, 11: 1088~1093.
    136 A. Gute′s, C. Carraro, R. Maboudian. Silver Dendrites from Galvanic Displacement on Commercial Aluminum Foil as an Effective SERS Substrate. J.Am. Chem. Soc. 2010, 132: 1476~1477.
    137 X. Sun, L. Lin, Z. Li, et al. Novel Ag-Cu Substrates for Surface-enhanced Raman Scattering. Mater. Lett. 2009, 63: 2306~2308.
    138 G. M. Scheuermann, L. Rumi, P. Steurer, et al. Palladium Nanoparticles on Graphite Oxide and Its Functionalized Graphene Derivatives as Highly Active Catalysts for the Suzuki-Miyaura Coupling Reaction. J. Am. Chem. Soc. 2009, 31 (23): 8262~8270.
    139 Y. Xie, K. Ding, Z. Liu, et al. In Situ Controllable Loading of Ultrafine Noble Metal Particles on Titania. J. Am. Chem. Soc. 2009, 131 (19): 6648~6649.
    140 V. Alt, T. Bechert, P. Steinrucke. An in Vitro Assessment of the Antibacterial Properties and Cytotoxicity of Nanoparticulate Silver Bone Cement. Biomaterials. 2004, 25 (18): 4383~4391.
    141 H. J. Jeon, S. X. Yi, S. G. Oh. Preparation and Antibacterial Effects of Ag-SiO2 Thin Films by sol-gel Method. Biomaterials. 2003, 24 (27): 4921~4928.
    142 R. Narayanan, M. A. El-sayed. Effect of Colloidal Catalysis on the Nanoparticle Size Distribution: Dendrimer-Pd vs PVP-Pd Nanoparticles Catalyzing the Suzuki Coupling Reaction. J. Phys. Chem. B. 2004, 108 (25): 8572~8580.
    143张晓梅等.石油化学工业中的贵金属催化剂.贵金属, 1998, 19 (2): 54~58.
    144 J. S. Gao, Z. Q. Tian. Surface Raman Spectroscopic Studies of Ruthenium,Rhodium and Palladium Electrodes Deposited on Glassy Carbon Substrates. Spectrochim. Acta. Part. A, Molecular and Biomolecular Spectroscopy. 1997, 53 (10): 1595~1600.
    145 M. Fleischmann, P. R. Graves, I. R. Hill. Raman Spectroscopy of Pyridine Adsorbed on RoughenedβPalladium Hydride Electrodes. Chem. Phys. Lett. 1983, 95 (4~5): 322~324.
    146 B. H. Loo. Platinum and Palladium as Substrates for Surface Enhanced Raman Spectroscopy. Solid State Commun. 1982, 43 (5): 349~353.
    147 S. Zou, C. T. Williams, K. Y. C. Eddy. Surface-enhanced Raman Scattering as a Ubiquitous Vibrational Probe of Transition-Metal Interfaces: Benzene and Related Chemisorbates on Palladium and Rhodium in Aqueous Solution. J. Phys. Chem. B. 1998, 102 (45): 9039~9049.
    148 R. Gómez, J. M. Pérez, J. Solla-Gullón. In Situ Surface Enhanced Raman Spectroscopy on Electrodes with Platinum and Palladium Nanoparticle Ensembles. J. Phys. Chem. B. 2004, 108 (28): 9943~9949.
    149 I. Srnova, B. Vlckova, V. Baumruk. Enhanced Raman Spectra of 2,2'-bipyridine Adsorbed on Aggregated Palladium Colloidal Particles. J. Mol. Struct.1997, 410-411: 201~203.
    150刘郑,崔丽,杨志林等.纯Pd电极上的表面增强拉曼光谱研究及其机理初探.光散射学报. 2006, 118 (14): 313~318.
    151 B. Sun, Y. Sato, K. Suenaga, et al. Entrapping of Exohedral Metallofullerenes in Carbon Nanotubes: (CsC60)n@SWNT Nano-peapods. J. Am. Chem. Soc. 2005, (127): 17972~17973.
    152 W. Chen, X. Pan, X. Bao. Tuning of Redox Properties of Iron and Iron Oxides via Encapsulation within Carbon Nanotubes. J. Am. Chem. Soc. 2007, (129): 7421~7426.
    153 X. Pan, Z. Fan, W. Chen, et al. Enhanced Ethanol Production inside Carbon-Nanotube Reactors Containing Catalytic Particles. Nat. Mater. 2007, (6): 507~511.
    154 A. Kongkanand, P. V. Kamat. Electron Storage in Single Wall Carbon Nanotubes. Fermi Level Equilibration in Semiconductor-SWCNT Suspensions. ACS. Nano. 2007, 1 (1): 13~21.
    155 H. C. Choi, M. Shim, S. Bangsaruntip, et al. Spontaneous Reduction of Metal Ions on the Sidewalls of Carbon Nanotubes. J. Am. Chem. Soc. 2002, 124: 9058~9059.
    156 T. M. Day, P. R. Unwin, N. R. Wilson, et al. Electrochemical Templating of Met al Nanoparticles and Nanowires on Single-walled Carbon Nanotube Networks. J. Am. Chem. Soc. 2005, 127 (30): 10639~10647.
    157 L. T. Qu, L. M. Dai. Substrate-enhanced Electroless Deposition of Metal Nanoparticles on Carbon Nanotubes. J. Am. Chem. Soc. 2005, 127: 10806~10807.
    158 J. Chen, G. Lu. Controlled Decoration of Carbon Nanotubes with Nanoparticles. Nanotechnology. 2006, 17: 2891~2894.
    159 W. Z. Li, C. H. Liang, W. J. Zhou, et al. Carbon Nanotubes as Support for Cathode Catalyst of a Direct Methanol Fuel Cell. Carbon. 2002, 40 (5): 791~794.
    160 W. J. Zhou, B. Zhou, W. Z. Li, et al. Performance Comparison of Low-Temperature Direct Alcohol Fuel Cells with Different Anode Catalysts. J. Power. Sources. 2004, 126 (1-2): 16~22.
    161 J. M. Planeix, N. Coustel, B. Coq, et al. Application of Carbon Nanotubes as Supports in Heterogeneous Catalysis. J. Am. Chem. Soc. 1994, 116 (17): 7935~7936.
    162 S. Hrapovic, Y. Liu, K. B. Male, et al. Electrochemical Biosensing Platforms Using Platinum Nanoparticles and Carbon Nanotubes. Anal. Chem. 2004, 76: 1083~1088.
    163 G. Williams, B. Seger, P. V. Kamat. TiO2-graphene Nanocomposites: UV-assisted Photocatalytic Reduction of Graphene Oxide. ACS. Nano. 2008, 2: 1487~1491.
    164 R. Muszynski, B. Seger, P. V. Kamat. Decorating Graphene Sheets with Gold Nanoparticles. J. Phys. Chem. C. 2008, 112: 5263~5266.
    165 C. Xu, X. Wang, J. Zhu. Graphene-metal Particle Nanocomposites. J. Phys. Chem. C. 2008, 112: 19841~19845.
    166 S. Tankovich, D. A. Dikin, R. S. Ruoff, et al. Graphene-based Composite Materials. Nature. 2006, 442: 282~286.
    167 J. Liang, Y. Wang, Y. Huang, et al. Electromagnetic Interference Shielding of Graphene/Epoxy Omposites. Carbon. 2009, 47: 922~925.
    168 C. Nethravathi, B. Viswanath, C. Shivakumara, et at. The Production of Smectite Clay/Graphene Omposites through Elamination and Co-stacking. Carbon. 2008, 46: 1773~1781.
    169 S. Cahen, R. Janet, D. L Laffont, et al. Chemical Reduction of SiCl4 for the Preparation of Silicon-graphite Composites Used as Negative Electrodes in Lithium-Ion Batteries. J. Electrochem. Soc. 2008, 155 (7): 512~519.
    170 X. Chao, X. Wang, J. Zhu. Graphene/Metal Particle Nanocomposites. J. Phys. Chem. C. 2008, 112 (50): 19841~19845.
    171 Y. Li, L. Tang, J. Li. Preparation and Electrochemical Performance for Methanol Oxidation of Pt/Graphene Nanocomposites. Electrochem. Commun. 2009, 11: 846~849.
    172 R. S. Sundaram, N. C. Gómez, K. Balasubramanian, et al. Electrochemical Modification of Graphene. Adv. Mater. 2008, 20: 3050~3053.
    173 R. H. Wang, C. G Tian, H. G Fu, et al. In Situ Simultaneous Synthesis of WC/graphitic Carbon Nanocomposite as a Highly Efficient Catalyst Support for DMFC. Chem. Commun. 2009, 21: 3104~3106.
    174 M. Osawa, N. Matsuda, K. Yoshll, et al. Charge Transfer Resonance Raman Process in Surface-enhanced Raman Scattering from P-aminothiophenolAdsorbed on Silver: Herzberg-Teller Contribution. J. Phys. Chem. 1994, 98 (48): 12702~12707.
    175 P. C. Lee and D. P. Meisel. Adsorption and Surface-enhanced Raman of Dyes on Silver and Gold sols. J. Phys. Chem., 1982, 86: 3391~3395.
    176 K. Kneipp, H. Kneipp, I. Itzkan, et al. Ultrasensitive Chemical Analysis by Raman Spectroscopy. Chem. Rev. 1999, 99 (10): 2957~2976.
    177 B. Liu, S. H. Yu, L. J. Li, et al. Nanorod-Direct Oriented Attachment Growth and Promoted Crystallization Processes Evidenced in Case of ZnWO4. Phys. Chem. B. 2004, 108 (9): 2788~2792.
    178 S. Guo, Y.Wang, E. Wang. Large-scale, Rapid Synthesis and Application in Surface-enhanced Raman Spectroscopy of Sub-micrometer Polyhedral Gold Nanocrystals. Nanotechnology. 2007, 18: 405602.
    179 F. J. García-Vidal, J. B. Pendry. Collective Theory for Surface Enhanced Raman Scattering. Phys. Rev. Lett. 1996, 77: 1163~1166.
    180 P. Lu, J. Dong, N. Toshima. Surface-enhanced Raman Scattering of a Cu/Pd Alloy Colloid Protected by Poly (N-vinyl-2-pyrrolidone). Langmuir. 1999; 15 (23): 7980~7992.
    181 L. M. Tong, Z. P. Li, T. Zhu, et al. Gold-Nanoparticle-Enhanced Raman Scattering of Individual Single-walled Carbon Nanotubes via Atomic Force Microscope Manipulation. J. Phys. Chem. C. 2008, 112 (18): 7119~7123.
    182 M. E. Itkis, D. E. Perea, S. Niyogi, etal. Purity Evaluation of As-prepared Single-walled Carbon Nanotube Soot by Use of Solution-Phase Near-IR Spectroscopy. Nano. Lett. 2003, 3: 309~314.
    183 S. Okada, A. Oshiyama. Electronic Structure of Semiconducting Nanotubes Adsorbed on Metal Surfaces. Phys. Rev. Lett. 2005, 95: 206804.
    184 P. C. Eklund, J. M. Holden, R. A. Jishi.“Vibrational Modes of Carbon Nanotubes; Spectroscopy and Theory”. Carbon. 1995, 33: 959~972.
    185黄为华.根据X射线光电子能谱结合能位移与原子电荷间的线性相关探索金属氧化物催化剂中载体及助剂的作用.天津商学院学报. 1998, 2: 13~19.
    186 S. Guo, S. Dong, E. Wang. Constructing Carbon-Nanotube/Metal Hybrid Nanostructures Using Homogeneous TiO2 as a Space. Small. 2008, 4(8): 1133~1138.
    187 J. R. Lombardi, R. L. Birke. A unified approach to SERS. J. Phys. Chem. C 2008, 112: 5605~5617.
    188 T. L. Yung, C. C. Tei. Field Emission Properties and Electronic Structures of Ultra Small Diameter Carbon Nanotubes . Carbon. 2009, 47 (4): 1165~1170.
    189 D. Chattopadhyay, I. Galeska, F. papadimitrakopoulos. A Route for Bulk Separation of Semiconducting from Metallic Single-wall Carbon Nanotubes . J. Am. Chem. Soc. 2003, 125: 3370~3375.
    190 S. Zou, C. T. Williams, E. K. Chen, et al. Probing Molecular Vibrations at Catalytically Significant Interfaces: a New Ubiquity of Surface-enhanced Raman Scattering. J. Am. Chem. Soc. 1998, 120: 3811~3812.
    191 Y. C. Si, E. T. Samulski. Synthesis of Water Soluble Graphene. Nano. Lett. 2008, (6): 1679~1682.
    192 M. Osawa, N. Matsuda, K.Yoshii, et al. Charge Transfer Resonance Raman Process in Surface-enhanced Raman Scattering from P-aminothiophenol Adsorbed on Silver: Herzberg-Teller contribution. J. Phys. Chem., 1994, 98 (48): 12702~12707.
    193 W. Hill, B.Wehling. Potential and PH-dependent Surface-enhanced Raman Scattering of P-mercapto Aniline on Silver and Gold Substrates. J. Phys. Chem.1993, 97 (37): 9451~9455.
    194 J. A. Creighton. Surface Raman Electromagnetic Enhancement Factors for Molecules at the Surface of Small Isolated Metal Spheres: the Determination of Adsorbate Orientation From SERS Relative Intensities. Surf. Sci. 1983, 124: 209~219.
    195 M. Moskovits, J. S. Suh. Surface Geometry Change in 2-naphthoic Acid Adsorbed on Silver. J. Phys. Chem. 1988, 92 (22): 6327~6329.
    196 I.V. Lightcap, T. H. Kosel, P. V. Kamat. Anchoring Semiconductor and Metal Nanoparticles on a Two-dimensional Catalyst Mat. Storing and Shuttling Electrons with Reduced Graphene Oxide. Nano. Lett. 2010, 10: 577~583.
    197 W. Wang, Y. Lin, Y. Zhu, et al. Pd-based Bimet Allic Catalysts Prepared By Replacement Reactions. Catal. Lett. 2007, 114:169~173.
    198 X. F. Lu, M. McKiernan, Z. Peng, et al. Noble-Metal Nanotubes Prepared via a Galvanic Replacement Reaction Between Cu Nanowires and Aqueous HAuCl4, H2PtCl6, or Na2PdCl4. Sci. Adv. Mater. 2010, 2: 413~420.
    199 I. V. Lightcap, T. H. Kosel and P. V. Kamat. Nano Lett. Anchoring Semiconductor and Metal Nanoparticles on a Two-Dimensional Catalyst Mat. Storing and Shuttling Electrons with Reduced Graphene Oxide. 2010, 10:577~583.
    200 A. Kongkanand, P. V. Kamat. J. Phys. Chem. C Interactions of Single Wall Carbon Nanotubes with Methyl Viologen Radicals. Quantitative Estimation of Stored Electrons. 2007, 111: 9012~9015.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700