用户名: 密码: 验证码:
地下水中BTEX的迁移规律及其原位生物修复技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
苯系物(苯、甲苯、乙苯和二甲苯,BTEX),作为单环芳烃类物质,主要存在于原油和石油产品(如天然气)中,并作为工业溶剂广泛应用于化工行业。BTEX具有“致癌、致畸和致突变”效应,其在生产、储存和运输过程中极易进入地下环境,并严重威胁地下水的公共安全,因此研究地下水环境中BTEX的迁移规律及其原位修复技术具有重要的理论价值和应用前景。本文首先建立污染物在土壤—地下水环境中迁移转化基本控制方程,并对BTEX在多孔介质中的迁移传递规律进行了研究;同时针对构建的固定化生物格栅系统,从微生物驯化、降解菌群落结构分析以及生物固定化技术等方面对地下水中BTEX的原位生物修复过程进行了系统研究。
     由等温吸附平衡确定了BTEX在夹砂粉质粘土中的吸附行为表现为线性规律,通过土柱弥散实验计算得到BTEX在夹砂粉质粘土中的弥散系数和阻滞系数。对于阻滞系数Rd来说,其由小到大依次为苯<甲苯<二甲苯<乙苯,说明土壤对BTEX混合物各组分的截留和净化能力不同,其中对苯的作用最弱,而对甲苯、乙苯和二甲苯的截留和净化作用相对较强。
     对富集驯化所得到的BTEX混合降解菌,确定了其好氧降解的最适条件为:温度30℃、pH值7.5、接种量为2.61 mg/L。底物降解动力学研究结果表明:其一级降解速率常数由大到小依次为二甲苯>乙苯>甲苯>苯,而BTEX共存时由于存在竞争抑制作用导致各组分的一级降解速率常数降低。综合考虑BTEX基质利用和混合菌的生长,采用Monod动力学模型拟合得到混合菌以苯、甲苯、乙苯和二甲苯作为共同基质的最大比增长速率分别为0.3395、0.5199、0.6298和0.2701 h-1,而基质半饱和常数为160.6、124.6、168.3、227.8 mg/L。
     针对苯、甲苯、乙苯、二甲苯和BTEX混合基质五种驯化方式下的混合菌,研究了其菌种群结构特点并初步探讨了BTEX好氧代谢途径。结果表明:不同驯化方式的混合菌,其种群具有一定相似性和基因多样性,因此其生物降解性能不同。BTEX混合基质驯化降解菌的总DNA中含有儿茶酚-1,2-双氧酶,说明代谢过程首先是将苯系物转化为含烷基的儿茶酚,然后通过正位裂解转化为含烷基的顺式粘康酸,最终进入三羧酸循环转化为CO2和H2O。
     以固定化微生物作为反应格栅填充介质为目的,制备并比较了海藻酸钠-活性炭纤维型(SA-MB)和聚乙烯醇-活性炭纤维型(PVA-MB)固定化填充介质的微观结构、降解性能和可重复利用性,从而确定海藻酸钠作为包埋载体更具优势,而活性炭纤维是一种较好的改进载体,起到了支撑稳定结构和强化生物降解作用。
     SA-MB填充介质具有良好的渗透性能,满足作为生物格栅填充介质的要求。采用土柱实验研究了BTEX混合组分在固定化生物格栅中的去除过程。结果表明:所构建的生物格栅系统能够很好地去除污染地下水中的BTEX,研究结果可对现场修复提供一定的依据和参考。
Benzene, toluene, ethylene and xylenes (BTEX, in brief), as important aromatic compounds, exist in oil and petroleum products and were widely used as solvents in industry. BTEX were improved to be carcinogenic, teratogenetic and mutagenic to endanger human-beings’health by contaminating underground water with leakage and delivery. To study the migration and removal of BTEX-contaminated groundwater is of theoretical and application importance. In this study, the transport and transformation formulation was established for BTEX in soil and groundwater system. Then the immobilized biological barrier has been presented for describing the remediation of BTEX-contaminated groundwater, which was included the domestic influence and community analysis of mixed culture, preparation of immobilized bio-beads and in situ removal process of BTEX.
     The detailed works of this thesis are as follows:
     The results of batch experiment indicated that linear equilibrium adsorption equation can well describe the adsorption behavior of BTEX in clayed soil. A soil column experiment was performed to calculate the dispersive coefficient and retardation factor of the test medium. As for Rd, the retardation factors were followed by benzene, toluene, ethyl benzene and xylenes, which meant the aquifer medium had hardly the abilities to retard and attenuate benzene and could partly retard toluene,ethyl benzene and xylenes.
     Based on the enrichment and purposed acclimation of the aerobic microbes, degradation performance of BTEX was studied and optimal temperature was 30℃, pH value was 7.5 and inoculums was 2.61 mg/L. The one-order kinetics constants of substrates’degradation were followed as: benzene < toluene < ethyl benzene < xylenes. As for BTEX mixture, the dynamics parameters were apparently decreased because of competitive effect. Through Monod kinetics simulation, the maximum-specific-growth rates of mixed culture were separately 0.3395, 0.5199, 0.6298 and 0.2701 h-1, while the half-saturation concentrations were 160.6, 124.6, 168.3 and 227.8 mg/L.
     Different domestic conditions have been taken to study the changes of microbial community structure. The results of PCR-DGGE showed that different domestic indeed influenced the mixture’s DNA diversity and biodegradation. The microbes, acclimated by BTEX mixture, had the key metabolism enzyme as catechol-1, 2-dioxygenese, which indicated the microbes could firstly biodegrade BTEX into catechol with alkyl, then degrade into cis,cis-muconic acid with alkyl by ortho-cleavage, at last transform into carbon dioxide and water in tricarboxylic acid cycle.
     Bench experiments of degradation were carried out to assess the performance of two kinds of new-typed immobilized bio-beads, which were produced with sodium alginate (SA), polyvinyl alcohol (PVA) and activated carbon fiber (ACF). As a result, SA-MB was considered better in the microstructure, degradation and reusability, and ACF was a well-performing encapsulation carrier, which could enhance biodegradation of BTEX by changing the microstructure and stabilities of MB.
     Permeability of SA-MB as medium of biobarrier was measured as1.32×10-10 m2, which was proved to be suitable for permeable reactive system. Furthermore, the removal of BTEX was studied in the biobarrier which was simulated by laboratory column. It showed that the presented biobarrier with immobilized biobeads could do well in remedying BTEX-contaminated groundwater and provide dependable basis for in situ remediation practice.
引文
[1] Lang M M, Paul V R, Lewis S. Model simulations in support of field scale design and operation of bioremediation based on cometabolic degradation. Ground Water, 1997, 35(4): 565~572
    [2] Farhadian M, Vachelard C, Duchez D, et al. In situ bioremediation of monoaromatic pollutants in Ground Water: A review. Bioresource Technology, 2008, 99: 5296~5308
    [3] Hutchins S R, Downs W C, Wilson J T. Effect of nitrate addition on biorestoration of fuel-contaminated aquifer: field demonstration. Ground Water, 1991, 29(4): 571~580.
    [4] Robert C B, Carios A G, Mark T B. Geochemical indicators of intrinsic bioremediation. Ground Water, 1995, 33(2): 180~189
    [5] Brian C, Kirtland C, Marjorie A. Petroleum mass removal from low permeability sediment using air sparging /soil vapor extraction: impact of continuous or pulsed operation. Journal of Contaminant Hydrology, 2000, 41, 367~383
    [6] Menendez-Vega D, Pelaez A I, Cordoba G F, et al. Engineered in situ bioremediation of soil and groundwater polluted with weathered hydrocarbons. European Journal of Soil Biology, 2007, 43 (5-6): 310~321
    [7] Juhler R K, Felding G. Monitoring methyl tertiary butyl-ether (BTEX) and other organic micropollutants in groundwater: results from the Danish national monitoring program. Water, Air, and Soil Pollution, 2003, 149: 145~161.
    [8] Lee J Y, Lee K K. Viability of natural attenuation in a petroleum contaminated shallow sandy aquifer. Environmental Pollution, 2003, 126(2): 201~212
    [9] Katrin A, Matthias M, Adolf E, et al. Microcosms experiments to acess the potential for natural attenuation of contaminated groundwater. Water Research, 2001, 35(3): 720~728
    [10]郭永海,沈照理,钟佐燊,等,河北平原地下水有机氯污染及其防污性能的关系,水文地质工程地质,1996,23(1):40~42
    [11]郭华明,王焰新.地下水有机污染治理技术现状及发展前景,地质科技情报, 1999,18(2):69~72
    [12]徐绍辉,朱学愚.地下水石油污染的水力截获技术及数值模拟,水利学报, 1999, 1(1):71~76
    [13]史箴,李抗美.用毛细管柱测定水和废水中的苯系物,甘肃环境研究与监测, 1999,12(3):123~125
    [14] Mackay D M, Cherry J A, Groundwater contamination: pump-and-treatremediation. Journal of Environmental Science and Technology, 1989, 23(6): 630~636
    [15] Faisal I K, Tahir H, Ramzi H. An overview and analysis of site remediation technologies. Journal of Environmental Management, 2004, 71: 95~122
    [16] Daifullah A M, Girgis B S. Impact of surface characteristics of activated carbon on adsorption of BTEX. Colloids Surfaces A: Phys. Engineering Aspects, 2003, 214(1-3), 181~193
    [17] Ranck, J M, Bowman R S, Weeber J L, et al. BTEX removal from produced water using surfactant-modified zeolite. Journal of Environmental Engineering, 2005, 131(3): 434~442
    [18]任子平,杨赞中,矿物的环保功能及其应用研究进展,矿产保护与利用, 2001,3:44~48
    [19] Robin S, Krishna R R. Mechanisms controlling toluene removal from saturated soils during in situ air sparging. Journal of Hazardous Materials, 1998, 57: 209~230
    [20]纪录,张晖,原位化学氧化法在土壤和地下水修复中的研究进展,环境污染治理技术与设备,2003,4(6),37~42
    [21] Tiburtius E R, Peralta-Zamora P, Emmel A. Treatment of gasoline-contaminated waters by advanced oxidation processes. Journal of Hazardous Materials, 2005, 126, 86~90
    [22] Mascolo G, Ciannarella R, Balest L, et al. Effectiveness of UV-based advanced oxidation processes for the remediation of hydrocarbon pollution in the groundwater: A laboratory investigation. Journal of Hazardous Materials, 2007, 152(3): 1138~1145
    [23]陈士夫,空心玻璃微球附载TiO2清除水面漂浮的油层,中国环境科学,1999, l(1):47~50
    [24] Gabriel J, Baldrian P, Verma P, et al. Degradation of BTEX and PAHs by Co(Ⅱ)and Cu(Ⅱ)-based radical-generating systems. Applied catalysis B: Environmental, 2004, 51: 159 ~164
    [25]于勇,谢天强,蔺延项等,受石油污染地下水的臭氧处理技术研究,工业用水与废水,2001,32(2):14~15
    [26] Jason M E, Ahad, Slater G F. Carbon isotope effects associated with fenton-like degradation of toluene: Potential for differentiation of abiotic and biotic degradation. Science of the Total Environment, 2008, 401: 194~198
    [27]张春辉,朱琨,裴元生等,臭氧与二氧化氯去除水中石油类污染物研究,兰州交通大学学报,2001,20(6):72~75
    [28]陈玉成,污染环境生物修复工程,北京:化学工业出版社,2003
    [29]沈德钟,污染环境的生物修复,北京:北京化学工业出版社,2002,13~25
    [1] Lang M M, Paul V R, Lewis S. Model simulations in support of field scale design and operation of bioremediation based on cometabolic degradation. Ground Water, 1997, 35(4): 565~572
    [2] Farhadian M, Vachelard C, Duchez D, et al. In situ bioremediation of monoaromatic pollutants in Ground Water: A review. Bioresource Technology, 2008, 99: 5296~5308
    [3] Hutchins S R, Downs W C, Wilson J T. Effect of nitrate addition on biorestoration of fuel-contaminated aquifer: field demonstration. Ground Water, 1991, 29(4): 571~580.
    [4] Robert C B, Carios A G, Mark T B. Geochemical indicators of intrinsic bioremediation. Ground Water, 1995, 33(2): 180~189
    [5] Brian C, Kirtland C, Marjorie A. Petroleum mass removal from low permeability sediment using air sparging /soil vapor extraction: impact of continuous or pulsed operation. Journal of Contaminant Hydrology, 2000, 41, 367~383
    [6] Menendez-Vega D, Pelaez A I, Cordoba G F, et al. Engineered in situ bioremediation of soil and groundwater polluted with weathered hydrocarbons. European Journal of Soil Biology, 2007, 43 (5-6): 310~321
    [7] Juhler R K, Felding G. Monitoring methyl tertiary butyl-ether (BTEX) and other organic micropollutants in groundwater: results from the Danish national monitoring program. Water, Air, and Soil Pollution, 2003, 149: 145~161.
    [8] Lee J Y, Lee K K. Viability of natural attenuation in a petroleum contaminated shallow sandy aquifer. Environmental Pollution, 2003, 126(2): 201~212
    [9] Katrin A, Matthias M, Adolf E, et al. Microcosms experiments to acess the potential for natural attenuation of contaminated groundwater. Water Research, 2001, 35(3): 720~728
    [10]郭永海,沈照理,钟佐燊,等,河北平原地下水有机氯污染及其防污性能的关系,水文地质工程地质,1996,23(1):40~42
    [11]郭华明,王焰新.地下水有机污染治理技术现状及发展前景,地质科技情报, 1999,18(2):69~72
    [12]徐绍辉,朱学愚.地下水石油污染的水力截获技术及数值模拟,水利学报, 1999, 1(1):71~76
    [13]史箴,李抗美.用毛细管柱测定水和废水中的苯系物,甘肃环境研究与监测, 1999,12(3):123~125
    [14] Mackay D M, Cherry J A, Groundwater contamination: pump-and-treatremediation. Journal of Environmental Science and Technology, 1989, 23(6): 630~636
    [15] Faisal I K, Tahir H, Ramzi H. An overview and analysis of site remediation technologies. Journal of Environmental Management, 2004, 71: 95~122
    [16] Daifullah A M, Girgis B S. Impact of surface characteristics of activated carbon on adsorption of BTEX. Colloids Surfaces A: Phys. Engineering Aspects, 2003, 214(1-3), 181~193
    [17] Ranck, J M, Bowman R S, Weeber J L, et al. BTEX removal from produced water using surfactant-modified zeolite. Journal of Environmental Engineering, 2005, 131(3): 434~442
    [18]任子平,杨赞中,矿物的环保功能及其应用研究进展,矿产保护与利用, 2001,3:44~48
    [19] Robin S, Krishna R R. Mechanisms controlling toluene removal from saturated soils during in situ air sparging. Journal of Hazardous Materials, 1998, 57: 209~230
    [20]纪录,张晖,原位化学氧化法在土壤和地下水修复中的研究进展,环境污染治理技术与设备,2003,4(6),37~42
    [21] Tiburtius E R, Peralta-Zamora P, Emmel A. Treatment of gasoline-contaminated waters by advanced oxidation processes. Journal of Hazardous Materials, 2005, 126, 86~90
    [22] Mascolo G, Ciannarella R, Balest L, et al. Effectiveness of UV-based advanced oxidation processes for the remediation of hydrocarbon pollution in the groundwater: A laboratory investigation. Journal of Hazardous Materials, 2007, 152(3): 1138~1145
    [23]陈士夫,空心玻璃微球附载TiO2清除水面漂浮的油层,中国环境科学,1999, l(1):47~50
    [24] Gabriel J, Baldrian P, Verma P, et al. Degradation of BTEX and PAHs by Co(Ⅱ)and Cu(Ⅱ)-based radical-generating systems. Applied catalysis B: Environmental, 2004, 51: 159 ~164
    [25]于勇,谢天强,蔺延项等,受石油污染地下水的臭氧处理技术研究,工业用水与废水,2001,32(2):14~15
    [26] Jason M E, Ahad, Slater G F. Carbon isotope effects associated with fenton-like degradation of toluene: Potential for differentiation of abiotic and biotic degradation. Science of the Total Environment, 2008, 401: 194~198
    [27]张春辉,朱琨,裴元生等,臭氧与二氧化氯去除水中石油类污染物研究,兰州交通大学学报,2001,20(6):72~75
    [28]陈玉成,污染环境生物修复工程,北京:化学工业出版社,2003
    [29]沈德钟,污染环境的生物修复,北京:北京化学工业出版社,2002,13~25
    [30] Langwaldt J H, Puhakka J A. On-site biological remediation of contaminated groundwater: a review. Environmental Pollution, 2000, 107: 187~197.
    [31] Vidali M. Bioremediation: An overview. Pure and Applied Chemistry, 2001, 73, 1163~1172.
    [32] Corseuil H X, Moreno F N. Phytoremedation potential of willow trees for aquifer contaminated with ethanol-blended gasoline. Water Research, 2001, 35(12): 3013~3017
    [33] Wallace S, Kadlec R. BTEX degradation in a cold-climate wetland system. Water Science and Technology, 2005, 51:165~171
    [34]周德庆,微生物学教程,北京:高等教育出版社,1993,116~117
    [35] Yamaguchi T, Ishida M, Suzuki T. Biodegradation of hydrocarbons by prototheca zopfii in rotating biological contactors. Process Biochemistry, 1999, 35: 403~409
    [36]陈碧娥,郭厚宝,苏荣西等,湄洲湾天然菌群对石油烃的降解作用,华侨大学学报,2000,21(2):182~187
    [37]丁克强,郑昭佩,孙铁珩等,石油污染土壤的生物降解,生态学杂志,2001, 20(4):16~18
    [38]李玉瑛,郑西来,李冰,石油污染与微生物群落结构的相互影响,生态环境,2006,15(2):248~252
    [39] Lu S J, Wang H Q, Cao Z H. Isolation and characterization of gasoline-degrading bacteria from gas station leaking-contaminated soils. Journal of Environmental Sciences, 2006, 18(5): 969~972
    [40] Lee J C, Royh J R, Kim H S. Metabolic engineering of Pseudomonas putida for the simultaneous biodegradation of benzene, toluene, and p-xylene mixture. Biotechnology and Bioengineering, 1994, 43: 1146~1152
    [41] Shim H, Hwang B, Lee S S, et al. Kinetics of BTEX biodegradation by a cocuhure of Pseudomonas putida and Pseudomonas florescens under hypoxic conditions. Biodegradation, 2005, 16(4): 319~327
    [42] Shim H, Yang T. BTEX removal from contaminated groundwater by a co-culture of Pseudomonas putida and Pseudomonas fluorescens immobilized in a continuous fibrous-bed bioreactor. Journal of Chemical Technology and Biotechnology, 2002, 77: 1308~1315
    [43] Dupont R R. Fundamentals of bioventing applied to fuel contaminated sites. Environmental Progress, 1993, 12(1):45~53
    [44]王琳,邵宗泽,4株苯系物降解菌株的筛选鉴定、降解特性及其降解基因研究,微生物学报,2006,46(5):753~757
    [45]陆军,王菊思,赵丽辉,苯系化合物好氧降解菌的驯化和筛选,环境科学,1996,17(6):1~4
    [46]程金平,郑敏,张兰英等,苯系化合物好氧生物降解性实验研究,干旱环境监测,2002,16(2):107~110
    [47]席劲瑛,胡洪营,朱洪博等,两株甲苯高效降解菌降解性能的比较,中国环境科学,2005,25(增刊):102~105
    [48]张鹤清,胡洪营,席劲瑛,6种挥发性有机物在甲苯驯化微生物中的好氧生物降解性能,环境科学,2003,24(6):83~90
    [49]霍丹群,孙兴福,饶佳家,甲苯降解茵的分离、鉴定及其对甲苯的降解特性,化工环保,2005,25(5):337~340
    [50]张兰英,阿布巴卡尔·达布雷,林学钰,模拟地下水环境微生物降解甲苯的研究,环境科学学报,2002,22(5):634~636
    [51]尤侯平,刘建新,邢跃军,富氧条件下对二甲苯氧化反应的研究,石油化工,2005,34(9):870~874
    [52]陈余道,蒋亚萍,黄宗万,浅层地下水中石油烃污染研究的物理模型.桂林工学院学报,2004,24(4):492~497
    [53] Margesin R, Walder G, Schinner F, Bioremediation assessment of BTEX- contaminated Soil. Acta Biotechnologica, 2003, 23: 29~36
    [54] Godeke S H, Richnow H, Wei A, et a1. Muti tracer test for the implementation of enhanced in-situ bioremediation at a BTEX contaminated megasite. Journal of Contaminant Hydrology, 2006, 87: 211~236
    [55] Johnsona S J, Woolhouse K J, Prommer H, et al. Contribution of anaerobic microbial activity to natural attenuation of benzene in groundwater. Engineering Geology, 2003, 70:343~349
    [56] Widdel F, Boetius A, Rabus R. Anaerobic biodegradation of hydrocarbons including methane prokaryotes, New York: Springer New York, 2006: 1028~1049
    [57] Chakraborty R, Coates J D. Anaerobic degradation of monoaromatic hydrocarbons. Applied Microbiology and Biotechnology, 2004, 64(4):437~446
    [58] John D C, Romy C, Michael J, et al. Anaerobic benzene biodegradation a new era. Research in Microbiology cultures, 2002, 153: 621~628
    [59] Maila M P, Randima P, Dranen K, et al. Soil microbial communities: Influence of geographic location and hydrocarbon pollutants. Soil Biology and Biochemistry, 2006, 38: 303~310
    [60] Brett R, Baldwin, Cindy H, et al. Nies. Enumeration of aromatic oxygenase genes to evaluate monitored natural attenuation at gasoline-contaminated sites. Water Research, 2008, 42: 723~731
    [61] Alfreide A, Vogt C. Bacterial Diversity and Aerobic Biodegradation Potential in a BTEX-Contaminated Aquifer. Water, Air, and Soil Pollution, 2007, 183: 415~426
    [62] Hendrickx B, Dejonghel W, Faber F, et al. PCR-DGGE method to assess the diversity of BTEX mono-oxygenase genes at contaminated sites. Microbial Ecology, 2006, 55: 262~273
    [63] Hendrickx B, Junca H, Vosahlova J, et al. Alternative primer sets for PCR detection of genotypes involved in bacterial aerobic BTEX degradation: Distribution of the genes in BTEX degrading isolates and in subsurface soils of a BTEX contaminated industrial site. Microbiological Methods, 2006, 64: 250~265
    [64] Hayaishi O, Nozaki M. Nature of mechanism of oxygenases. Science,1969, 25: 389~396
    [65]夏北成,环境污染物生物降解,北京:化工出版社,2002,181~186
    [66] Smith M R.The biodegradation of aromatic hydrocarbons by bacteria. Biodegradation, 1990, 1: 191~206
    [67] Sei K, Asano K I, Tateishi N, et al. Design of PCR primers and gene probes for the genenal detection of bacterial population capable of degrading aromatic compounds via catechol cleavage pathways. Bioscience and Bioengegineering, 1999, 88(5): 542~550
    [68] Alvarez P J J, Vogel T M. Degradation of BTEX and their aerobic metabolites by indigenous microorganisms under nitrate reducing conditions. Water Science and Technology, 1995, 31(1): 15~28
    [69] Johnson S J, Woodhouse K J, Prommer H, et al. Contribution of anaerobic microbial activity to natural attenuation of benzene in groundwater. Engineering Geology, 2003, 70: 343~349
    [70] Gerniglia C E. Microbial metabolism of polycylic aromatic hydrocarbons. Advanced in Applied Microbiology, 1990, 30: 31~71
    [71] Leahy J G, Colwell R R. Microbial degradation of hydrocarbons in the environment. Microbiological Reviews, 1990, 54: 305~315
    [72] Atlas R M. Microbial degradation of petroleum hydrocarbons: an environmental perspective. Microbiological Reviews, 1981, 45(1): 180~209
    [73] Dagley S, Gibson D T. The bacterial degradation of catechol. Biochemistry, 1965, 95: 466~474
    [74] Yeh C H, Lin C W, Wu C H. A permeable reactive barrier for the bioremediation of BTEX-contaminated groundwater: Microbial community distribution and removal efficiencies. Journal of Hazardous Materials, 2010
    [75] Ritter W F, Scarborough R W. Review of bioremediation of contaminated soils and groundwater. Environmental Science and Health, 1995, A30(2): 333~357
    [76] Bianchi-Mosquera G C, Allen-King R M, Mackay D M. Enhanced degradation of dissolved benzene and toluene using a solid oxygen-releasing compound. Ground Water Monitoring and Remediation, 1994, 14: 120~128
    [77] Reed T, Allen M H, Peabody J. JP-4/JP-8 bioremediation using ORC pumped into semi- permanent injection wells. In: The Sixth Annual In-situ and On-site Bioremediation Conference, San Diego, 2001
    [78] Wilson J T, Ward C H. Opportunity for bioremediation of aquifers contaminated with petroleum hydrocarbon. Journal of Industrial Microbiology, 1988, 27: 109~116
    [79] Pardieck D L, Bouwer E J, Stone A T. Hydrogen peroxide use to increase oxidant capacity for in situ bioremediation of contaminated soils and aquifers: a review. Journal of Contaminated Hydrology, 1992, 9:221~242
    [80] Fiorenza S, Ward C H. Microbial adaption to hydrogen peroxide and biodegradation of aromatic Hydrocarbons. Industrial Microbiology, 1997, 18: 140~151
    [81] White D M, Irvine R L, Woolard C R. The use of solid peroxide to stimulate growth of aerobic microbes in tundra. Journal of Hazardous Materials, 1998, 57: 71~78
    [82] Ilaria G, Luigi V, Mauro F. Oxygen supply for biostimulation of enzymatic activity in organic-rich marine ecosystems. Soil Biology and Biochemistry, 2004, 5: 1~7
    [83] Kao C M, Chen S C, Wang J Y, et al. Remediation of PCE-contaminated aquifer by an in situ two-layer biobarrier: laboratory batch and column studies. Water Research, 2003, 37: 27~38
    [84]徐向阳,俞秀娥,郑平等,受酚污染地表水生物修复技术的基础研究,浙江大学学报,1999,25(4):409~413
    [85] Bokhamy M, Adler N, Pulgarin C, et al. Degradation of sodium anthraquinone sulphonate by free and immobilized bacterial cultures. Applied Microbiology and Biotechnology, 1994, 41(1): 110~116
    [86] Rasmussen G, Fremmersvik G, Olsen R A. Treatment of creosote-contaminated groundwater in a peat/sand permeable barrier-a column study. Journal of Hazardous Materials, 2002, B39: 285~306.
    [87] Carsten V, Albin A, Helmut L, et al. Bioremediation of chlorobenzene contaminated ground water in an in situ reactor mediated by hydrogen peroxide. Journal of Contaminated Hydrology, 2004, 68, 121~141
    [88] Guerin T F, Horner S, McGovern T, et al. An application of permeable reactive barrier technology to petroleum hydrocarbon contaminated groundwater. Water Research, 2002, 36: 15~24
    [89] Gillham R W, O’hannesin S F. Enhanced degradation of halogenated aliphatics by zero-valent iron. Ground Water, 1994, 32(6): 958~967
    [90] Borden R C, Goin R T, Kao, C M. Control of BTEX migration using abiologically enhanced permeable barrier. Ground Water Monitoring and Remediation, 1997, 17: 70~80
    [91] Blowes D W, Ptacek C J, Cherry J A, et al. Passive remediation of groundwater using in situ treatment curtains. Geogenvironment, 2000, 1589~1605
    [92] Snape I, Morris C E, Cole C M. The use of permeable reactive barriers to control contaminant dispersal during site remediation in Antarctica. Cold Regions Science and Technology, 2001, 32: 157~174
    [93] Ludwing R D, McGregor R G, Blowes D W, et al. A permeable reactive barrier for treatment of heavy metals. Ground Water, 2002, 40(1): 59~66
    [94] Wilkin R T, Puls R W, Sewell G W. Long-term performance of permeable reactive barriers using zero-valent iron: geochemical and microbiological effects. Ground Water, 2003, 41(4): 493~503
    [95]胡黎明,地下水污染修复的活性渗滤墙技术,水利水电技术,2003,34(7): 11~13
    [96]Carsten V, Albin A, Helmut L, et al. Bioremediation of chlorobenzene- contaminated groundwater in an in situ reactor mediated by hydrogen peroxide. Contaminated Hydrology, 2004, 68, 121~141
    [97]Kalin R M. Engineered passive bioreactive barriers: risk-managing the legacy of industrial soil and groundwater pollution. Current Opinion in Microbiology, 2004, 7: 227~238
    [98]Beitinger E. Permeable treatment walls-design, construction and cost: NATO/OCMS pilot study, 1998, Special Session, Treatment Walls and Permeable Reactive Barriers, USEPA, Report, No. 542-R-98-003, 1998
    [99]Baker M J, Blows D W, Ptacek C J. Laboratory development of permeable reactive mixture for the removal of phosphorous from onsite wastewater disposal system. Journal of Environmental Science and Technology, 1998, 32: 2308~2316
    [100]Czurda K A. Reactive walls with fly ash zeolites as surface active components. In: The 11th International Clay Conference, Ottawa, 1998
    [101]Czurda K A, Haus R. Reactive barriers with fly ash zeolites for in situ ground water remediation. Applied Clay Science, 2002, 21: 13~20
    [102]董军,赵勇胜,赵晓波等.垃圾渗滤液对地下水污染的PRB还原处理技术.环境科学,2003,24(5):151~156
    [103]钟佐燊,刘菲.地下水有机污染控制及就地修复技术研究进展(三).水文地质工程地质,2001,5:76~79
    [104]Komnitsas K, Bartzas G, Paspaliaris I. Efficiency of limestone and red mud barriers: laboratory column studies. Minerals Engineering, 2004, 17: 183~194
    [105]Kriegman-King M R, Reinhand M. Transformation of carbon tetrachloride by pyrite in aqueous solution. Journal of Environmental Science and Technology, 1994, 28: 692~700
    [106]Muftikian R, Fernando Q, Korte N, et al. A method for the rapid dechlorinationof low molecular weight chlorinated hydrocarbons in water. Water Research, 1995, 29: 24~34
    [107]Sivavec T M, Mackenzie P D, Horney D P. Effect of siete groundwater on reactivity of bimetallic media: Deactivation of nickel plated granular iron, ACS National Meeting. American Chemical Society, 1997, 37(1): 83~85
    [108]Puls R W, Paul C J. Powell R M. The application of in situ permeable reactive (zero-valent iron) barrier technology for the remediation of chromate- contaminated groundwater: a field test. Applied Geochemistry, 1999, 14(8): 989~1000
    [109]Powell R M, Puls R W, Hightower S K, et al. Coupled iron corrosion and chromate reduction: Mechanisms for subsurface remediation. Journal of Environmental Science and Technology, 1995, 29(8): 1913~1922
    [110]Cantrell K J, Kaplan D I, Wietsma T W. Zero-valent iron for the in-situ remediation of selected metals in groundwater. Journal of Hazardous Materials, 1995, 42(2): 201~212
    [111]Mcrae C W, Blowes D W, Ptacek C. Laboratory-scale investigation of remediation of As and Se using iron oxides. Sixth Symposium and Exhibition on Groundwater and Soil Remediation, Montreal, Canada, 1997
    [112]Powell R M, Puls R W. Proton generation by dissolution of intrinsic or augmented aluminosilicate minerals for in situ contaminant remediation by zero-valence-state iron. Journal of Environmental Science and Technology, 1997, 31(8): 2241~2251
    [113]Permeable reactive barrier technologies for contaminant remediation, USEPA, Report, EPA/600/R- 98/125, 1998
    [114]David W B, Carol J P, Shawn G B, et al. Treatment of inorganic contaminants using permeable reactive barriers. Contaminated Hydrology, 2000, 45: 123~137
    [115]王业耀,孟凡生.地下水污染修复的渗透反应格栅技术.地下水,2004,26(2):97~100
    [116]Bostick W D, Shoemaker J L, Osborne P E, et al. Removal of agricultural nitrate from till-drainage water using in-line bioreactors. Journal of Contaminated Hydrology, 1990, 15: 207~211
    [117]Robertson W D, Cherry J A. In situ denitrification of septic system nitrate using reactive porous media barriers: field trails. Ground Water, 1995, 33(1): 99~111
    [118]Schipper L, Vojvodic-Vukovic M. Nitrate removal from groundwater using a denitrification wall amended with sawdust: field trail. Journal of Environmental Quality, 1998, 27: 664~668
    [119]Benner S G, Herbert R B, Blowes D W, et al. Geochemistry and microbiology of a permeable reactive barrier for acid mine drainage. Journal of Environmental Science and Technology, 1999, 33: 2793~2799
    [120]Westerhoff P. Reduction of nitrate, bromate and chlorate by zero valent iron.Journal of Environmental Engineering, 2003, 129(1): 10~16
    [121]O’hannesin S F. A field demonstration of a permeable reaction wall for the in situ abiotic degradation of halogenated aliphatic organic compounds, Ontario, Canada University of Waterloo, 1993
    [122]Schreier C G, Reinhard M. Transformation of chlorinated organic compounds by iron and manganese powders in buffered water and in landfill leachate. Chemosphere, 1994, 29: 1743~1753
    [123]Orth W S, Gillham R W. Dechlorination of trichloroethene in aqueous solution using Fe0. Journal of Environmental Science and Technology, 1996, 30: 66~71
    [124]Bradley P M, Chapelle F H. Anaerobic mineralization of vinyl chloride in Fe(III)-reducing, aquifer sediments. Journal of Environmental Science and Technology, 1996, 30: 2084~2086
    [125]O’heannesin S F, Gillham R W. Long-term performance of an situ“iron wall”for remediation of VOCs. Ground Water, 1998, 36(1): 164~170
    [126]Farrell J, Kason M, Melitasn N, et al. Investigation of the long-term performance of zero-valent iron for reductive dechlorination of trichloro- ethylene. Journal of Environmental Science and Technology, 2000, 34(3): 514~521
    [127]Li T, Farrell J. Electrochemical investigation of the rate limiting mechanism for trichloroethylene and carbon tetrachloride reduction at iron surface. Journal of Environmental Science and Technology, 2001, 35(17): 3560~3565
    [128]Long term performance of permeable reactive barriers using zero-valent iron: an evaluation at two sites. USEPA, Report, EPA/600/S-02/001, 2002
    [129]Grattini G, Malcomson M, Fernando Q, et al. Rapid dechlorination of polychlorinated biphenyls on the surface of a Pd/Fe bimetallic system. Journal of Environmental Science and Technology, 1995, 29(12): 2898~2900
    [130]Liang L, nickortej D, Clausen J, et al. Byproduct formation during the reduction of TCE by zero-valance iron and palladized iron. Groundwater Monitoring and Remediation, 1997: 122~127
    [131]Anid P J, Alvarez P J, Vogel T M. Biodegradation of monoaromatic hydrocarbons in aquifer columns amended with hydrogen peroxide and nitrate. Water Research, 1993, 27: 685~691
    [132]Kao C M, Prosser J. Intrinsic bioremediation of trichloroethene and chlorobenzene: field and laboratory studies. Water Research, 1999, B69: 67~79
    [133]Arienzo M. Degradation of 2, 4, 6-trinitrotoluene in water and soil slurry utilizing a calcium peroxide compound. Chemosphere, 2000, 40: 331~337
    [134]Kao C M, Lei S E. Using a peat biobarrier to remediate PCE contaminated aquifers. Water Research, 2000, 34: 835~845
    [135]Cassidy D P, Irvine R L. Use of calcium peroxide to provide oxygen for contaminant biodegradation in saturated soil. Journal of Hazardous Materials,1999, 69: 25~39
    [136]Robert H, Richard S I. Dissolved oxygen-releasing compound, US patent application, 20030189187
    [137]Kao C M, Borden R C. Enhanced TEX biodegradation in a nutrient briquet-peat barrier system. Journal of Environmental Engineering, 1997, 123(1): 18~24
    [138]Kao C M, Chen S C, Wang J Y, et al. Remediation of PCE-contaminated aquifer by an in situ two-layer biobarrier: laboratory batch and column studies. Water Research, 2003, 37: 27~38
    [139]Vesela L, Nemecek J, Siglova M, et al. The biofiltration permeable reactive barrier: practical experience from Synthesia. International Biodeterioration and Biodegradation, 2006, 58: 224~230
    [140]Yerushalmi L, Manuel M F, Guiot S R. Biodegradation gasoline and BTEX in a microaerophilic biobarrier. Biodegradation, 1999, 10: 341~352
    [141]Gupta N, Fox T C. Hydrogeologic modelling for permeable reactive barriers. Journal of Hazardous Materials, 1999, 68: 19~39
    [142]Norris R D, Hinchee R E, Brown R A, et al. Handbook of Bioremediation. Boca Raton, FL: CRC Press, 1994
    [143]Riser-Roberts E. Bioremediation of Petroleum Contaminated Sites, NCEL, Port Hueneme, CA: C. K. Smoley Publishers, CRC Press, 1992
    [144]Weston Inc, Roy F. Remedial Technologies for Leaking Underground Storage Tanks. University of Massachusetts, Amherst, MA: Lewis Publishers, 1988
    [145]Hadely P W, Armstrong.“Where is the benzene?”Examing California groundwater quality surveys, Ground Water, 1991, 29(1): 35~40
    [146]Thomas J M, Wilson J T, Ward C H. Microbial process in the subsurface. In: Subsurface Restoration, Michigan, Ann Arbor Press, 1997, 177~199
    [147]David E E, Edward J L, Martin J O, et al. Bioaugmentation for accelerated in situ anaerobic bioremediation. Journal of Environmental Science and Technology, 2000, 34(11): 2254~2260
    [148]Gruiz K, Kriston E. In situ bioremediation of hydrocarbon in soil. Journal of Soil Contamination, 1995, 4(2):163~173
    [149]Duba A G. TCE remediation using in situ restingstate bioaugmentation. Journal of Environmental Science and Technology, 1996, 30(6): 1982~1989
    [150]Smyth D J A, Shikaze S G, Cherry J A. Hydraulic performance of permeable barriers for in situ treatment of contaminated groundwater. Land Contaminated Reclamation, 1997, 5(3): 131~137
    [151]Eykholt G R, Elder C R, Benson C H. Effects of aquifer heterogeneity and reaction mechanism uncertainty on a reactive barrier. Journal of Hazardous Materials, 1999, 68(1): 73~96
    [152]Muyzer G, Smalla K. Application of denaturing gradient gel electrophoresis (DGGE) and temperature gradient gel electrophoresis (TGGE) in microbialecology. Antonie Van Leeuwenhoek, 1998, 73(1):127~141
    [153]Myers R M, Fischer S G, Lerman L S, et al. Nearly all single base substitutions in DNA fragments joined to a GC-clamp can be detected by denaturing gradient gel electrophoresis. Nucleic Acids Research, 1985, 13(9): 3131~3145
    [154]Muyzer G, Waal E C, Uitterlinden A G. Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction amplified genes encoding for 16SrRNA. Applied and Environmental Microbiology, 1993, 59(3): 695~700
    [155]Choi J W, Kim S B, Kim D J. Desorption kinetics of benzene in a sandy soil in the presence of powdered activated carbon. Environmental Monitoring and Assessment, 2007, 125: 313~323
    [156]Chen D Y, Xing B S, Xie W B. Sorption of phenanthrene, naphthalene and o-xylene by soil organic matter fractions. Geoderma, 2007, 139: 329~335
    [157]Sharmasarkar S, Jaynes W F, Vance G F. BTEX sorption by montmorillonite organic clays: TMPA, ADAM, HDT-MA. Water, Air, and Soil Pollution, 2000, 119: 257~273
    [158]Braida W J , Pignatello J J, Lu Y F, et al. Sorption hysteresis of benzene in charcoal Particles. Journal of Environmental Science and Technology, 2003, 37: 409~417
    [159]童玲,郑西来,李梅等.土壤对苯系物的吸附行为研究.西安建筑科技大学学报(自然科学版),2007,39(6):856~861
    [160]Rowe R K, Mukunoki T, Sangam H P. BTEX diffusion and sorption for a geosynthetic clay liner at two temperatures. Geotechnical and Geoenvironmental Engineering, 2005, 131: 1211~1221
    [161]赵文谦,黄勤生,泥砂吸附石油的数学模型与试验研究,水利学报,1997,(12):50~57
    [162]李崇明,赵文谦,河流泥沙对石油的吸附,解吸规律及影响因素的研究,中国环境科学,1997,17(1):23~28
    [163]Shen Y H. Sorption of benzene and naphthol to organobentonites intercalated with short chaincationic surfactants. Environmental Science and Health PartA: Toxi /Hazardous Substances & Environmental Engineering, 2002, 37:43~54
    [164]凌婉婷,徐建民,高彦征等.溶解性有机质对土壤中有机污染物环境行为的影响,应用生态学报,2004,15(2):326~330
    [165]娄保锋,朱利中,杨坤,苯及其取代物与对硝基苯胺在沉积物上的竞争吸附,中国环境科学,2004,24(3):327~331
    [166]Kim S B, Ha H C, Choi N C, et al. Influence of flow rate and organic carbon content on benzene transport in a sandy soil. Hydrological Processes, 2006, 20: 4307~4316
    [167]胡黎明,郝荣福,殷昆亭等,BTEX在非饱和土和地下水系统中迁移的试验研究,清华大学学报(自然科学版).2003,43(11):1546~1549
    [168]Guven O, Molz F L, Melville J G. An analysis of dispersion in a stratified aquifer. Water Resource Research, 1984, 20:1337~1345
    [169]Pickens J F, Grisak G E. Scale-dependent dispersion in a stratified granular aquifer. Water Resource Research, 198l, 17:1191~1211
    [170]Serrano S E. The Form of the dispersion equation under recharge and variable velocity and its analytical solution. Water Resource Research, 1992, 28: 1801~1808
    [171]Yates S R. An Analytical Solution for one-dimensional transport in hetero- geneous porous media. Water Resource Research, 1990, 26: 233l ~2338
    [172]Yates S R. An analytical solution for one dimensional transport in porous media with an exponential dispersion function. Water Resource Research, 1992, 28: 2149~2154
    [173]Basha H A, El-Habel F S. Analytical solution of the one-dimensional time-dependent transport equation. Water Resource Research, 1993, 29: 3209~3214
    [174]Tindall J A, Kunkel J R. Unsaturated zone hydrology for scientists and engineers. New Jersey: Prentice Hall, 1999: 273~325
    [175]Van Genuchten M T,Schaap M G, Mohanty B P, et a1. Modeling flow and transport processes at the local scale. J Feyen & K. Wigo. Modelling of transport processes in soils-international workshop of Eur AgEng’s field of interest on soil and water[c]. The Netherlands: Wagenigen Pers, Wageningen, 1999: 23~45
    [176]杨建锋,万书勤,邓伟等,地下水浅埋条件下包气带水和溶质运移数值模拟研究述评,农业工程学报,2005,21(6):158~165
    [177]Butters G L, Jury W A. Field scale transport of bromide in an unsaturated soil : 2 dispersion modeling. Water Resource Research, 1989, 25: l575~l581
    [178]刘兆昌,张兰生,聂永丰等,地下水系统的污染与控制,北京:中国环境科学出版社,1991
    [179]孙讷正,地下水污染-数学模型和数值方法,北京:地质出版社,1989
    [180]Scheidegger A E. General theory of dispersion in porous media. Journal of Geophysical Research, 1961, 66: 3273~3278
    [181]Davis J W, Madsen S. Factors affecting the biodegradation of toluene in soil. Chemosphere, 1996, 33(1): 107~130
    [182]Reddy H L, Ford R M. Analysis of biodegradation and bacterial transport: Comparison of models with kinetic and equilibrium bacterial adsorption. Journal of Contaminant Hydrology, 1996, 22:271~287
    [183]Lahvis M A, Baehr A L. Estimation of rates of aerobic hydrocarbon biodegradation by simulation of gas transport in the unsaturated zone. Water Resource Research, 1996, 32(7): 2231~2249
    [184]Bekins B A, Warren E, Michael G. E. A comparison of zero-order, first-order,

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700