用户名: 密码: 验证码:
组合微滤工艺去除水中特殊污染物的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文采用混凝共沉淀-微滤工艺处理含锶废水。以Na_2CO_3为沉淀剂,FeCl_3为混凝剂,小试试验中进水锶元素浓度约为5 mg/L。在间歇试验中,Na_2CO_3投加量分别为2000 mg/L和1000 mg/L,工艺的平均去污因数(DF)分别为237和158,浓缩倍数(CF)分别为302和462,Na_2CO_3投加量为1000 mg/L时,虽然DF相对较低,但膜比通量(SF)衰减速率显著降低,且处理水量远大于后者;连续性试验中,Na_2CO_3投加量为1000 mg/L,其它条件与间歇试验相同,平均DF和CF分别为157和480,采用连续运行模式可有效克服运行初期锶元素返溶的问题。
     在小试实验的基础上,进行了混凝共沉淀-微滤工艺处理含锶废水的中试实验研究,结果表明:工艺平均DF为130;废水中的钙、镁离子浓度对管道混合器内结垢、污泥量和膜污染都有显著影响;浓缩过程在无压情况下进行,排泥较困难,尽管如此,预期在有压情况下,剩余污泥体积可以控制在200 L以内。鉴于管道混合器结垢和试验初期沉淀效果不佳的问题,采用计算流体力学(CFD)比较了小试和中试试验中采用搅拌器与管道混合器的混合效果,并提出搅拌造粒的方式改进工艺。结果表明,虽然在单位时间内搅拌器的混合效率较管道混合器低,但由于相对较长的停留时间以及相对较强的湍动强度,能够弥补混合效率的不足,并使最终的混合效果优于管道混合器。通过造粒实验,验证了改进工艺的可行性。采用搅拌混合,投加晶种和序批操作的模式,能够使出水浊度有效降低,提高沉淀效果,能够避免由于结垢造成的管道混合器的堵塞问题。基于共沉淀和膜污染的机理,预期将有助于提高含锶放射性废水的去污因数和浓缩倍数。
     由于阻垢剂生产废水的可生化性差、成分复杂,总磷和氨氮含量高的特点,尝试采用组合微滤工艺处理该废水。结果表明:应用组合微滤工艺,能够使出水的COD、TP和NH_3-N浓度分别降低到174.8、0.48和0.48 mg/L,能够达到天津污水综合排放标准(DB12/356-2008)三级标准要求。
     采用混凝-微滤法处理含氟地下水,处理水量为150 m3/d。结果表明,当硫酸铝的投加量为160 mg/L时,可使原水氟化物浓度从2.52 mg/L降至1.0 mg/L以下,其它主要指标满足《生活饮用水卫生标准》(GB 5749-2006)。工艺流程简单可靠,运行费用约为1.01元/m3,适合我国农村现状。该研究为模块化膜除氟工艺和装置的推广提供设计、运营等参考。
The study characterized the removal of strontium from an aqueous solution via coagulation coprecipitation followed by microfiltration (CPMF) with a lab-scale device. Sodium carbonate was used as the precipitating agent. Ferric chloride was added as flocculant. The concentration of strontium in the raw water used in this study was about 5 mg/L. In two intermittent tests, where dosages of sodium carbonate were 2000 mg/L and 1000 mg/L, respectively. The mean decontamination factors (DFs) were 237 and 158, and the mean concentration factors (CFs) were 302 and 462, respectively. Although the mean DF value was lower when the sodium carbonate dosage was 1000 mg/L instead of 2000 mg/L, the rate at which the specific flux (SF) of the membrane declined decreased as the amount of the effluent treated increased. The problem of strontium release at the beginning of the operation in the intermittent tests was solved by a continuous test in which the dosage of sodium carbonate still was 1000 mg/L and the other parameters were the same as that in the other tests. The results showed that the mean DF and CF were 157 and 480, respectively.
     Based on the lab-scale tests, the removal of strontium from an aqueous solution via CPMF with a pilot-scale device wes studied. The results showed that the mean DF was 130. The concentration of calcium and magnesium affected the scaling of tube mixer, sludge yield and membrane fouling very much. The concentration process was carried out without pressure. However, it is prospected that the residual sludge could be concentrated within 200 L with pressue in real application.
     Due to scaling of the pipe mixer on the pilot-scale test and bad effect of settlement in early stage of both the lab-scale and the pilot-scale experiments, Computational fluid dynamics (CFD) was adopted to compare mixing effect of stirrer with pipe mixer. And CPMF process was improved with pelleting method. The results showed that though the mixing efficiency of stirrer was lower than the pipe mixer in a unit time, the relative longer hydraulic retention time and stronger turbulent intensity made the general mixing effect of stirrer better than the pipe mixer. The improved process was primarily validated by pelleting experiments, which conducted by mixing with stirrer, adding crystal core and using sequential operation mode. The effect of sediment can be improved with turbidity reduced effectively. Therefore, the scaling problem of pipe mixer can be resolved by utilizing stirrer as the mixing and reacting device. Based on co-precipitation and membrane fouling mechanisms, the DF and CF of the liquid radioactive waste containing strontium will be improved by the new CPMF process.
     Due to poor biodegradability, complex components, high amount of total phosphate and ammonia, the scale inhibitor production wastewater is hard to treat. A hybrid microfiltration was used to treat the wastewater. The results of the experiments showed that the COD, TP and NH3-N of the treated wastewater were 174.8 mg/L、0.48 mg/L and 0.48 mg/L, respectively, which can meet the classⅢcriteria in the Integrated Wastewater Discharge Standard (DB 12/356-2008) in Tianjin。
     Coagulation–precipitation coupled with microfiltration was used to remove fluoride from groundwater. The amount of the water is 150 m3/d. When the dosages of aluminum sulfate were above 160 mg/L, the concentration of fluorine could be reduced to less than 1.0 mg/L from 2.52 mg/L in the raw water, and other main indexes were meet the demands of Standards for Drinking Water Quality (GB 5749-2006). The running cost is about 1.0 RMB per ton water. The simple flow and equipments provide a reference of design and running for modularization of defluoriding process, which is fit for countryside actuality.
引文
[1] International Atomic Energy Agency. Handling and Processing of Radioactive Waste from Nuclear Applications, Technical Report Series No. 402[R]. Vienna, 2001.
    [2] Gr?bener K H, Koch C, Nickel W. Volume reduction, treatment and recycling of radioactive waste[J]. Nuclear Engineering and Design, 1990, 118(1): 115-122.
    [3] International Atomic Energy Agency. Underground disposal of radioactive wastes: Basic Guidelines, Safety Series No.54[R]. Vienna, 1981.
    [4] Haas P A. A review of information on ferrocyanide solids for removal of cesium from solution[J]. Separation Science and Technology, 1993, 28(17-18): 2479-2506.
    [5]杨庆,侯立安,王佑君.中低水平放射性废水处理技术研究进展[J],环境科学与管理,2007,32(9):103-117.
    [6] International Atomic Energy Agency. Treatment technologies for low and intermediate level waste from nuclear application, IAEA-TECDOC-929[R], Vienna, 1997.
    [7] International Atomic Energy Agency. Chemical precipitation processes for the treatment of aqueous radioactive waste, Technical Report Series No. 337[R] . Vienna, 1992.
    [8]常青,傅金镒,郦兆龙.絮凝原理[M].兰州:兰州大学出版社,1993.
    [9]王宝贞.放射性废水处理[M].北京:科学出版社,1979.
    [10] Rout T K, Sengupta D K, Kaur G, et al. Enhanced removal of dissolved metal ions in radioactive effluents by flocculation[J]. International Journal of Mineral Processing, 2006, 80(2-4): 215-222.
    [11] Rout T K, Sengupta D K, Besra L. Flocculation improves uptake of 90Sr and 137Cs from radioactive effluents[J]. International Journal of Mineral Processing, 2006, 79(4): 225-234.
    [12] Hwang E D, Lee K W, Choo K H, et al. Effect of precipitation and complexation on nanofiltration of strontium-containing nuclear wastewater[J]. Desalination, 2002, 147(1-3): 289-294.
    [13]李永青,陈勤,薛明,等.放射性废水处理方法及国内外处理状况[C].中国环境科学学会学术年会论文集(2009):36-39.
    [14]何佳恒,蹙源,李兴亮.无机离子交换材料在放射性废水处理中的应用[J].辐射防护通讯,2008,28(6):9-13.
    [15] International Atomic Energy Agency. Application of ion exchange processes for the treatment of radioactive waste and management of spent ion exchangers, Technical Report Series No. 408[R]. Vienna, 2002.
    [16] Marinin D V, Brown G N. Studies of sorbent/ion-exchange materials for the removal of radioactive strontium from liquid radioactive waste and high hardness groundwaters[J]. Waste Management, 2000, 20(7): 545-553.
    [17] Bascetin E, Atun G. Adsorption behavior of strontium on binary mineral mixtures of Montmorillonite and Kaolinite[J]. Applied Radiation and Esotopes, 2006, 64(8): 957-964.
    [18] Chegrouche S, Mellah A, Barkat M. Removal of strontium from aqueous solutions by adsorption onto activated carbon: kinetic and thermodynamic studies[J]. Desalination, 2009, 235(1-3): 306-318.
    [19] Shawabkeh R A, Rockstraw D A, Bhada R K. Copper and strontium adsorption by a novel carbon material manufactured from pecan shells[J]. Carbon, 2002, 40(5): 781-786.
    [20] Gulsen G, Huseyin T. Preparation of TiO2-SiO2 mixed gel spheres for strontium adsorption[J]. Journal of Hazardous Materials, 2005, 120(1-3): 135-142.
    [21] Shuddhodan P M, Dhanesh T. Ion exchangers in radioactive waste management. Part XI. Removal of barium and strontium ions from aqueous solutions by hydrous ferric oxide[J]. Applied Radiation and Isotopes, 1999, 51: 359-366.
    [22] Shuddhodan P M, Vinod K S. Radiotracer technique in adsorption study-XIII. Adsorption of barium and strontium ions on chromium oxide powder[J]. Applied Radiation and Isotopes, 1995, 46(9): 847-853.
    [23] Nilchi A, Malek B, Maragheh M G. Khanchi A. Exchange properties of cyanide complexes, Part I. Ion exchange of cesium on ferrocyanides[J]. Journal of Radioanalytical and Nuclear Chemistry, 2003, 258(3): 457-462
    [24] Li B, Liao J, Wu J, Zhang D, et al. Removal of radioactive cesium from solutions by zinc ferrocyanide[J]. Nuclear Science and Techniques, 2008, 19(2): 88-92.
    [25]王士柱,姜长印.亚铁氰化钾锌类交换剂去除Cs-的初步研究[J].核化学与放射化学,1996,18(4):247-251.
    [26] Bascetin E, Haznedaroglu H, Erkol AY. The adsorption behavior of cesium on silica gel[J]. Applied Radiation and Isotopes, 2003, 59(1): 5-9.
    [27] Vejsada J, Hradil H, Ranada Z, et al. Adsorption of cesium on Czech smectite-rich clays-A comparative study[J]. Applied Clay Science, 2005, 30(1):53-66.
    [28] Ahmet E O. Treatment of radioactive liquid waste by sorption on natural zeolite in Turkey[J]. Journal of Hazardous Materials, 2006, 137(1): 332-335.
    [29] Zakrzewska-Trznadel G, Harasimowicz M, Chmielewski A G. Membrane processes in nuclear technology-application for liquid radioactive waste treatment[J]. Separation and Purification Technology, 2001, 22-23(2001): 617-625.
    [30] International Atomic Energy Agency. Application of membrane technologies for liquid radioactive waste processing, Technical Report Series No. 431[R]. Vienna, 2004.
    [31] Rao S V S, Biplob P, Lal K B, et al. Effective removal of cesium and strontium form radioactive wastes using chemical treatment followed by ultra filtration[J]. Journal of Radioanalytical and Nuclear Chemistry, 2000, 246(2): 413-418.
    [32] Zhang C-P, Gu P, Zhao J, et al. Research on the treatment of liquid waste containing cesium by an adsorption–microfiltration process with potassium zinc hexacyanoferrate[J]. Journal of Hazardous Materials, 2009, 167(1-3): 1057-1062.
    [33] Pabby A K. Membrane techniques for treatment in nuclear waste processing: global experience[J]. Membrane Technology, 2008, 2008(12): 9-13.
    [34]高永,顾平,陈卫文.膜技术处理低浓度放射性废水研究的进展[J].核科学与工程,2003,23(2):173-177.
    [35] Zakrzewska-Trznadel G, Harasimowicz M, Chmielewski A G.. Concentration of radioactive components in liquid low-level radioactive waste by membrane distillation[J]. Journal of Membrane Science, 1999, 163(2): 257-264.
    [36]白庆中,陈红盛,叶裕才,等.无机纳滤膜处理低水平放射性废水的试验研究[J].环境科学,2006,27(7):1334-1338.
    [37]陈红盛,叶裕才,白庆中,等.聚合物辅助陶瓷膜处理重金属废水[J].膜科学与技术,2005,25(6):45-50.
    [38]牟旭凤,白庆中,陈红盛,等.聚合物辅助超滤/纳滤技术处理模拟放射性废水[J].给水排水,2006,32(增刊):174-177.
    [39] Grazyna Z T, Marian H. Removal of radionuclides by membrane permeation combined with complexation[J]. Desalination, 2002, 144(1-3): 207-212.
    [40]杨腊梅,俞杰,张勇.放射性废水处理技术研究进展[J].污染防治技术,2007,20(4):35-37.
    [41]黄明犬,周从直,康青.中低放射性废水处理[J].西南给排水,2003,25(6):29-32.
    [42]王佑君、杨庆、侯立安.小型放射性废水蒸发装置设计[J].科学导报,2008,26(5):74-76.
    [43]唐秀欢,潘孝兵.植物修复-大面积低剂量放射性污染的新治理技术[J].环境污染与防治,2006,28(4):275-278.
    [44] Shraddha S, Susan E, Vidya T, Kaushik C P. Phytoremediation of 137cesium and 90strontium from solutions and low-level nuclear waste by Vetiveria zizanoides[J]. Ecotoxicology and Environmental Safety, 2008, 69(2): 306-311.
    [45] Chen J P. Batch and continuous adsorption of strontium by plant root tissues[J]. Bioresource Technology, 1997, 60(3): 185-189.
    [46] Balarama K M V, Rao S V, Arunachalam J, et al. Removal of 137Cs and 90Sr from actual low level radioactive waste solutions using moss as a phyto-sorbent[J]. Separation and Purification Technology, 2004, 38(2): 149-161.
    [47]蒋永一,黄秋红,顾鼎祥.应用生物吸附剂技术处理中低放射废液的研究[J].铀矿地质,2003,19(5):310-317.
    [48]梅卡特夫和埃迪公司.废水工程处理及回用(第4版)[M].秦裕珩译.北京:化学工业出版社,2003.
    [49]冯旭东,王葳,董黎明,等高浓度氨氮废水处理技术[J].北京工商大学学报(自然科学版),2004,22(2):5-8.
    [50]刘静文、顾平,杨睿.膜生物反应器处理高氨氮废水[J].城市环境与城市生态,2003,16(5):19-21.
    [51] Stratful I, Scrimshaw M D, Lester J N I. Conditions influencing the precipitation of magnesium ammonium phosphate[J]. Water Research, 2001,35(17): 4191-4199.
    [52]张文华,袁玮,周江菊,等.生物质煤气废水氨氮脱除的研究[J].工业水处理,2007,27(4):51-54.
    [53]徐延辉,马莹,胡卫红,等.沉淀法处理稀土生产过程中氨氮废水的研究[J].中国稀土学报, 2005,23(23): 271-274.
    [54] Uludag-Demirer S, Demirer G N, Chen S. Ammonia removal from anaerobically digested dairy manure by struvite precipitation[J]. Process Biochemistry, 2005, 40(12): 3667-3674.
    [55] Jorgensen T C, Weatherley L R. Ammonia removal from wastewater by ion exchange in the presence of organic contaminants[J]. Water Research, 2003, 37(8): 1723-1728.
    [56] Yi W, Yuichi K, Toshio O, Remowal of low-concentration ammonia in water by ion-exchange using Na-mordenite[J]. Water Research, 2007, 41(2): 269-276.
    [57]熊小京,叶均磊,王新红,等.天然沸石处理低浓度含氨废水的实验研究[J].厦门大学学报(自然科学版),2006,45(6):828-831.
    [58] Qi D, Shijun L, Zhonghong C, et al. Ammonia removal from aqueous solution using natural Chinese clinoptilolite[J]. Separation and Purification Technology, 2005,44(3):229-234
    [59] Yuqiu W, Shijun L, Ze X, et al. Ammonia removal from leachate solution using natural Chinese clinoptilolite[J]. Journal of Hazardous Materials, 2006, 136(3): 735-740.
    [60] Xiahui L, Miao L, Zhenya Z, et al. Electrochemical regeneration of zeolites and the removal of ammonia[J]. Journal of Hazardous Materials, 2009, 169(1-3): 746-750.
    [61] Miao L, Chuanping F, Zhenya Z, et al. Simultaneous regeneration of zeolites and removal of ammonia using an electrochemical method[J]. Microporous and Mesoporous Materials, 2010, 127(3): 161-166.
    [62] Dongyuan Z, Keera C, Crystal O, et al. Characteristics of the synthetic heulandite clinoptilolite family of zeolites[J]. Microporous and Mesoporous Materials, 1998, 21(4-6): 371-379.
    [63] Konstantinos P K. The relationship between the thermal behavior of clinoptilolite and its chemical compositon[J]. Clays and Clay Minerals, 2001, 49(3): 236-243.
    [64]胡允良,张振成,瞿巍,等.制药废水的氨氮吹脱试验[J].工业水处理,1997,19(4):19-21.
    [65] Zhongwei D, LIying L, Zhaoman L, et al. Experimental study of ammonia removal from water by membrane distillation (MD): The comparison of three configurations[J]. Journal of Membrane Science, 2006, 286(1-2): 93-103.
    [66] EL-Bourawi M S, Khayet M, Ma R, et al. Application of vacuum membrane distillation for ammonia removal[J]. Journal of Membrane Science, 2007, 301(1-2):200-209.
    [67] Zongli X, Tuan D, Manh H, et al. Ammonia removal by sweep gas membrane distillation[J]. Water Research, 2009, 43(6): 1693-1699.
    [68] Haag W R, Hoigne J, Bader H. Improved ammonia oxidation by ozone in the presence of bromideion[J]. Water Research, 1984, 18(9), 1125-1128.
    [69] Min Y, Kazuya U, Haruki M. Ammonia removal in bubble column by ozonation in the presence of bromide[J]. Water Research, 1999, 33(8), 1911-1917.
    [70] Imamura S. Catalytic and noncatalytic wet oxidation[J]. Industiral and Engineering Chemistry Research, 1999, 38 (5), 1743–1753.
    [71] Wasmus S, Vasini E J, Krausa M, et al. DEMS-cyclic voltammetry investigation of the electrochemistry of nitrogen compounds in 0.5 M potassium hydroxide[J]. Electrochim Acta, 1994, 39 (1): 23-31.
    [72] Gootzen J F E, Wonders A H, Visscher W. A DEMS and cyclic voltammetry study of NH3 oxidation on platinized platinum[J]. Electrochim Acta, 1998, 42(12-13): 1851–1861.
    [73] Vlyssides A G., Israilides C J. Detoxi?cation of tannery waste liquors with an electrolysis system[J]. Environmental Pollution, 1997, 97(1-2):147–152.
    [74] Vlyssides A G., Karlis P K, Rori N, et al. Electrochemical treatment in relation to pH of domestic wastewater using Ti/Pt electrodes[J]. Journal of Hazardous Materials, 2002,95(1-2) 215–226.
    [75] Kim K-W, Kim Y-J, Kim P, et al. Electrochemical conversion characteristics of ammonia to nitrogen[J]. Water Research, 2006, 40 (7): 1431–1441.
    [76] Chiang L C, Chang J E., Wen T C. Indirect oxidation effect in electrochemical oxidation treatment of land?ll leachate[J]. Water Research, 1995, 29(2): 671–678.
    [77] Yan L, Liang L, Ramesh G. Kinetic study of electrolytic ammonia removal suing TI/IrO2 as anode under different experimental conditions[J]. Journal of Hazardous Materials, 2009, 167(1-3): 959-965.
    [78]白焱,刘巍.水域氟污染与人体健康[J].东北水利水电,2006,24(11):52-54.
    [79] Meenakshi, Maheshwari R C. Fluoride in drinking water and its removal[J]. Journal of Hazardous Materials, 2006, 137(1): 456-463.
    [80] Tripathy S S, Bersillon J, Gopal K. Removal of fluoride from drinking water by adsorption onto alum-impregnated activated alumina[J]. Desalination, 2006, 50(3): 310-317.
    [81]王滨滨,郑宝山,王鸿颖,等.我国部分城市和地区居民龋齿与饮用水氟含量的关系研究[J].地球与环境,2004, 32(3-4):72-76.
    [82]查春花,张胜林,夏明芳,等饮用水除氟方法及其机理[J].净水技术,2005,24(6):46-48.
    [83] Zhang G-H, Gao Y, Zhang Y, et al. Removal of fluoride from drinking water by a membrane coagulation reactor (MCR)[J]. Desalination, 2005, 177(1-3): 143-155.
    [84]张晓辉.氟污染及防治[J].邯郸职业技术学院学报,2001,14(1):67-69.
    [85] Mohapatra M, Anand S, Mishra B K, et al. Review of fluoride removal from drinking water[J]. Journal of Environmental Management. 2009, 91(1): 67-77.
    [86] Fan X, Parker D J, Smith M D. Adsorption kinetics of fluoride on low costmaterials[J]. Water Research, 2003, 37(20): 4929–4937.
    [87] Johnston R, Heijnen H. Safe Water Technology for Arsenic Removal. Report [R]. World Health Organization (WHO): 2002.
    [88] Farrah H, Slavek J, Pickering W F. Fluoride interactions with hydrous aluminium oxides and alumina[J]. Australian Journal of Soil Research, 1987, 25(1): 55-69.
    [89]查春花,张胜林,夏明芳,等.饮用水除氟方法及其机理[J].净水技术,2005,24(6):46-48.
    [90] Rozic L, Novakovic T, Jovanovic N, et al. The kinetics of the partial dehydration of gibbsite to activated alumina in a reactor for pneumatic transport[J]. Journal of the Serbian Chemical Society, 2001, 66(4): 273-280.
    [91] Shimelis B, Zewge F, Chandravanshi B S. Removal of excess fluoride from water by aluminum hydroxide[J]. Bulletin of the Chemical Society of Ethiopia, 2006, 20(1): 17-34.
    [92] Schoeman J J, MacLeod H. The effect of particle size and interfering ions on fluoride removal by activated alumina[J]. Water SA, 1987, 13(4): 229-234.
    [93] Maliyekkal S M, Sharma A K, Philip L. Manganese-oxide-coated alumina: a promising sorbent for defluoridation of water[J]. Water Research, 2006, 40(19): 3497-3506.
    [94] Maliyekkal S M, Shukla S, Philip L, et al. Enhanced fluoride removal from drinking water by magnesia-amended activated alumina granules[J]. Chemical Engineering Journal, 2008, 140(1-3): 183-192.
    [95] Biswas K, Saha S K, Ghosh U C. Adsorption of fluoride from aqueous solution by a synthetic iron(III)–aluminum(III) mixed oxide[J]. Industrial and Engineering Chemistry Research, 2007, 46(16): 5346-5356.
    [96] Onyango M S, Kojima Y, Kumar A, et al. Uptake of fluoride by Al3+ pretreated low-silica synthetic zeolites: adsorption equilibrium and rate studies[J]. Separation Science and Technology, 2006, 41(4): 683-704.
    [97]沈振华,张玉先.改性沸石用于饮用水除氟的试验研究[J].江苏环境科技, 2006,19 (1):5-7.
    [98]胡丽娟,周琪.活化沸石的饮用水除氟工艺研究[J].净水技术,2005,24(3):15-18.
    [99] Abe I, Iwasaki S, Tokimoto T, et al. Adsorption of ?uoride ions onto carbonaceous materials[J]. Journal of Colloid and Interface Science, 2004, 275(1): 35–39.
    [100] Ramos R L, Ovalle-Turrubiartes J, Sanchez-Castillo M A. Adsorption of ?uoride from aqueous solution on aluminum-impregnated carbon[J]. Carbon, 1999, 37(4): 609-617.
    [101] Li Y-H, Wang S-G, Zhang X-F, et al. Adsorption of fluoride from water by aligned carbon nanotubes[J]. Materials Research Bulletin, 2003, 38(3): 469-476.
    [102] Fan X, Parker D J, Smith M D. Adsorption kinetics of fluoride on low cost materials[J]. Water Research, 2003, 37(20): 4929-4937.
    [103] Turner B D, Binning P, Stipp S L S. Fluoride removal by calcite: evidence for fluoride precipitation and surface adsorption[J]. Environmental Science and Technology, 2005, 39(24): 9561-9568.
    [104] Badillo-Almaraz V E, Flores J A, Arriola H, et al. Elimination of fluoride ions in water for human consumption using hydroxyapatite as an adsorbent[J]. Journal of Radioanalytical and Nuclear Chemistry, 2007, 271(3): 741-744.
    [105] Larsen M J, Pearce E I F. Defluoridation of drinking water by boiling with brushite and calcite[J]. Caries Research, 2002, 36(5): 341-346.
    [106] Solangi I B, Memon S, Bhanger M I. Removal of fluoride from aqueous environment by modified Amberite resin[J]. Journal of Hazardous Materials, 2009, 171(1-3): 815-819.
    [107]李莉,王业耀,孟凡生.含氟地下水饮用处理技术[J].地下水,2007,29(5):85-142.
    [108]陈良才,魏宏斌,李少林,等.石灰软化法处理高硬度含氟地下水的研究[J].中国给水排水,2007,23(13):49-55.
    [109]王振宇,王金生,滕彦国,等.高氟地下水混凝沉淀降氟试验研究[J].水文地质工程地质,2004,31(5):42-451
    [110]张玲玲,李晓波,顾平.混凝-微滤工艺处理含氟地下水的试验研究[J].中国给水排水,2007,23(17):50-54.
    [111] Ndiaye P I, Moulin P, Dominguez L, et al. Removal of fluoride from electronic industrial effluent by RO membrane separation[J]. Desalination, 2005, 173(1): 25-32.
    [112] Tahaikt M, Habbani R E l, Haddou A A, et al. Fluoride removal from groundwater by nanofiltration[J]. Desalination, 2007, 212(1-3): 46-53.
    [113] Hichour M, Persin F, Molenat J, et al. Fluoride removal from diluted solutions by Donnan dialysis with anion-exchange membranes [J]. Desalination, 1999, 122(1): 53-62.
    [114] Kabay N, Ara O, Samatya S, et al. Separation of fluoride from aqueous solution by electrodialysis: effect of process parameters and other ionic species[J]. Journal of Hazardous Materials, 2008, 153(1-2), 107–113.
    [115] Ghorai S, Pant K K. Equilibrium, kinetics and breakthrough studies for adsorption of fluoride on activated alumina[J]. Separation and Purification Technology, 2005, 42(3): 265-271.
    [116] Hu C Y, Lo S L, Kuan W H. Effects of co-existing anions on fluoride removal in electrocoagulation (EC) process usi01ng aluminum electrodes[J]. Water Research, 2003, 37(18): 4513-4523.
    [117] Arora M, Maheshwari R C, Jain SK, et al. Use of membrane technology for potable water production[J]. Desalination, 2004, 170(2): 105-112.
    [118]白晓琴,赵英,顾平.膜分离技术在饮用水处理中的应用[J].水处理技术,2005,31(9):1-4.
    [119]张凤,顾平,刘锋刚,等.混凝/微滤去除滦河水中不同分子质量有机物的效果[J].中国给水排水,2008,24(7):70-77.
    [120]张颖,顾平,谭丁.膜混凝反应器处理轻度污染地表水[J].天津大学学报,2003,36(2):187-191.
    [121]张光辉,顾平.基于微滤工艺处理微污染地表水的一体化设备开发研究[J].水处理技术,2004,30(5):92-296.
    [122]杨东,张玲玲,钟梓洁,等.混凝-微滤工艺处理膜反洗水的研究[J].天津工业大学学报,2008,27(3):77-81.
    [123] Oh H K, Takizawa S, Ohgaki S. et al. Removal of organics and viruses using hybrid ceramic MF system without draining PAC[J]. Desalination, 2007, 202 (1-3): 191-198.
    [124] Zhu B, Clifford D A, Chellam S. Virus removal by iron coagulation- microfiltration[J]. Water Research, 2005, 39(20): 5153-5161.
    [125] Hung M T, Liu J C. Microfiltration for separation of green algae from water [J]. Colloids Surfaces, B, Biointerfaces, 2006, 51(2): 157 - 164.
    [126]吴水波,李晓波,顾平.膜混凝反应器除砷[J].膜科学与技术,2008,28(5):77-81.
    [127] Han B, Runnells T, Zimbron J, Wickramasinghe R. Arsenicc removal from drinking water by flocculation and microfiltration[J]. Desalination, 2002, 145(1-3): 293-298.
    [128]李晓波,吴水波,顾平.铁盐和铝盐混凝微滤工艺除As(V)的比较研究[J].环境科学,2007,28(10):2198-2202.
    [129]刘耀磷,胡国付,顾平.混凝/微滤用于反渗透海水淡化的预处理[J].中国给水排水,2005,21(11):50-52.
    [130]高永,董亚玲,顾平.化学沉淀-微滤处理含铅废水[J].膜科学与技术,2005,25(5):40-44.
    [131]刘晨光,董亚玲,高永,等.化学沉淀-微滤法处理电池生产废水[J].中国给水排水,2004,20(4):44-46.
    [132]董亚玲,顾平,陈卫文.混凝-微滤膜工艺处理含铬废水[J].膜科学与技术,2004,24(4):17-20.
    [133]杨大春,张光辉,顾平. Fenton-微滤工艺处理印染废水研究[J].中国给水排水,2003,19(3): 46-48.
    [134] Gao Y, Zhao J, Zhang G-H, et al. Treatment of the wastewater containing low-level 241Am using flocculation-microfiltration process[J]. Separation and Purification Technology, 2004, 40 (2): 183-189.
    [135]张颖,顾平,邓晓钦.膜生物反应器在污水处理中的应用进展[J].中国给水排水,2002,18(4):90-92.
    [136]顾国维,何义亮.膜生物反应器器-在污水处理中的研究和应用[M].北京:化学工业出版社,2002:13-14.
    [137] Shimizu Y, Okuno Y, Uryu K, et al. Filtration characteristics of hollow fiber microfiltration membranes used in membrane bioreactor for domestic wastewater treatment[J]. Water Research, 1996, 30(10): 2285-2392.
    [138]顾平,姜立群,杨造燕.中空纤维膜床处理生活污水的中试研究[J].中国给水排水,2000,16 (3):5 - 8.
    [139]高永,张光辉,顾平.化学沉淀-微滤的临界混合液浓度的影响因素[J].水处理技术,2006,32(5):26-29.
    [140]郝爱玲,陈永玲,顾平.微污染水处理中混合液特性对膜污染的影响[J].水处理技术,2006,32(2):30-33.
    [141]刘峰刚,胡保安,何文杰,等.微滤膜法饮用水处理工艺中膜污染控制的研究[J].给水排水,2007,33(11):16-20.
    [142]国家环境保护总局-水和废水监测分析方法编委会编.水和废水监测分析方法(第四版) [M].北京:中国环境科学出版社,2002.
    [143]王占文,陈玉銮,于志刚.测定循环冷却水中聚磷酸盐含量的新方法-差示分光光度法直接测定聚磷酸盐[J].工业水处理,1998,8(4):38-41.
    [144] Weast R C. CRC Handbook of Chemistry and Physics(58th edition)[M]. CRC press Inc., Ohio, USA, 1977.
    [145]谢天俊.简明定量分析化学[M].广州:华南理工大学出版社,2003.
    [146] Hoefs J. Stable isotope geochemistry[M]. Germany, Gottingen, Springer-Verlag Berlin Heidelberg, 2009.
    [147] V. Pacary, Y. Barre, E. Plasari. Method for the prediction of nuclear waste solution decontamination by coprecipitation of strontium ions with barium sulphate using the experimental data obtained in non-radioactive environment [J]. Chemical Engineering Research and Design, Doi:10.1016/j.cherd.2010. 01.006.
    [148]孙宝盛、单金林.环境分析监测理论与技术[M].北京:化学工业出版社,2004.
    [149]大连理工大学无机化学教研室.无机化学(下册)[M].北京:高等教育出版社,1990.
    [150]罗谷风.结晶学导论[M].北京:地质出版社,1985.
    [151] Lewis J. Turbidity-controlled suspended sediment sampling for runoff-event load estimation[J]. Water Resources Research, 1996, 32(7):2299-2310.
    [152]唐荣昌.黄河水浊度与含沙量,泥沙粒度之间的关系[J].中国给水排水,1989,5(1):10-13.
    [153] Pavanelli D, Pagliarani A. Monitoring water flow, turbidity and suspend sediment load, from an Apennine Catchment Basin, Italy[J]. Journal of Agricultural Engineering Research, 2002, 83(4): 463-468.
    [154]瞿世奎,张怀静,范德江,等.长江口及其临近海域悬浮物浓度和浊度的对应关系[J].环境科学学报,2005,25(5):693-699.
    [155] Sandeep Sethi, Mark R. Wiesner. Modeling of transient permeate flux in cross-flow membrane filtration incorporating multiple particle transport mechanisms[J]. Journal of Membrane Science, 1997, 136(1-2): 191-205.
    [156]刘庆峰,王茁,尚文宇,等.晶须碳酸钙的开发[J].无机盐工业,2000,32(2):11-12.
    [157]邵明浩,史永刚,胡泽善.碳酸镁晶须的制备、表征与分析方法[J].后勤工程学院学报,2008,24(1):37-40.
    [158]许保玖.给水处理理论[M].中国建筑工业出版社,北京,2000.
    [159]汪志明.流体力学[M].石油工业出版社,北京,2006.
    [160]严煦世,范瑾初等.给水工程[M].中国建筑工业出版社,北京,1999.
    [161] Pramparo L, Pruvost J, Stuber F, et al. Mixing and hydrodynamics investigation using CFD in a square-sectioned torus reaactor in batch and continuous regimes[J]. Chemical Engineering Journal, 2008, 137(2): 396-395.
    [162] Terashima M, Goel R, Uwe H, et al. CFD simulation of mixing in anaerobic degesters[J]. Bioresource Technology, 2009, 100(7): 2228-2233.
    [163] Wang X, Ding J, Ren N Q, et al. CFD simulation of an expanded granular sludge bed (EGSB) reactor for biohydrogen production[J]. International Journal of Hydrogen Energy, 2009, 34(24): 9686-9695.
    [164] Zdzislaw J, Alvin W N. CFD modelling of continuous precipitation of barium sulphate in a stirred tank[J]. Chemical Engineering Journal, 2003, 91(2-3): 167-174..
    [165] Jie D, Xu W, Xuifei Z, et al. CFD optimization of continuous stirred-tank (CSTR) reactor for biohydrogen production[J]. Biosource Technology, 2010, doi: 10.1016/j.biotech.2010.03.146.
    [166] Vakili M H, Esfahany M N. CFD analysis of turbulence in a baffled stirred tank, a three-compartment model[J]. Chemical Engineering Science, 2009, 64(2): 351-362.static mixer[J]. Chemical Engineering Science, 2005, 60(21): 5956-5704.
    [168] Byrde O, Sawley M L. Optimaization of a Kenics static mixer for non-creeping flow conditions[J]. Chemical Engineering Journal, 1999, 72(): 163-169
    [169] Vimal K, Vaibhav S, Nigam K D P. Performance of Kenics static mixer over a wide range of Reynolds number[J]. Chemical Engineering Journal, 2008, 139(): 284-295.
    [170]王福军.计算流体动力学分析-CFD软件原理与应用[M].清华大学出版社,2005.
    [171]姬宜朋,旋转式Kenics型混合器混合性能及流动特性研究[D].北京化工大学,2005:31.
    [172]陈运进,衣春敏.猎德污水处理厂化学除磷设施的改造[J].中国给水排水,2007,23(12):29-32.
    [173]刘云根,江映翔,周平.污水化学除磷技术的现状和进展[J].云南环境科学,2005, 24(增刊):45-48.
    [174]夏宏生,向欣.废水除磷技术及进展分析[J].环境科学与管理,2006,31(1):125-128.
    [175]郑兴灿,李亚新.污水除磷脱氮技术[M].北京,中国建筑工业出版社,1998.
    [176]刘云根,江映翔,周平.污水化学除磷技术的现状和进展[J].云南环境科学,2005, 24(增刊):45-48.
    [177]夏宏生,向欣.废水除磷技术及进展分析[J].环境科学与管理,2006,31(1):125-128.
    [178]郑兴灿,李亚新.污水除磷脱氮技术[M].北京,中国建筑工业出版社,1998.
    [179]徐忠娟.有机磷农药废水的预处理方法综述[J].扬州职业大学学报,2002,6(2):32-36.
    [180]张翼,胡冰,张玉善,等.高级氧化技术降解水中有机磷农药的研究进展[J].环境污染与防治,2006,28(5):361-364.
    [181]王闪闪,刘宏菊.有机磷农药废水生物处理方法的研究与进展[J].农业环境科学学报,2007,26(3):252-255.
    [182]易辰俞,戴友芝.我国有机磷农药废水处理方法的新进展[J].精细化工中间体,2001,31(8):1-4.
    [183]李涛,谭欣,任俊革.光催化氧化-生物法处理有机磷农药废水[J].河南科技大学学报,2005,26(1):75-78.
    [184]檀笑,叶锦韶.分流预处理-兼氧串联好氧工艺处理农药废水[J].中国给水排水,2007,33(10):55-58.
    [185]彭晶,王爱杰,任南琪,等.水解-酸化-好氧工艺处理还原性染料废水的中试研究[J].哈尔滨工业大学学报,2005,37(6):753-755.
    [186]高廷东,卢继承,林贞贤.水解酸化/CASS工艺处理肠衣废水[J].中国给水排水,2009,25(4):65-66,70.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700