用户名: 密码: 验证码:
有限元模型修正方法及自由度匹配迭代技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文对有限元模型修正领域中的修正方法及自由度匹配的迭代技术进行了深入的研究。
     在工程中,通常使用有限元建模的方式来掌握结构的动力学特性。现阶段,航空、航天、大型桥梁以及其它工程结构对有限元模型的精度及可靠性提出了更高的要求。然而,结构的连接部位、边界条件以及结构阻尼的建模存在着很大的难度,其中的众多参数具有一定的不确定性,使得对复杂结构建立的有限元模型往往不精确。因此需要利用有限元模型修正技术使用实验测得的数据对有限元模型进行修正,提高有限元模型的精度及可靠性。
     传统的基于灵敏度分析的模型修正方法及修正参数的选取方法尽管应用范围广泛,但是其往往只注重数学意义上的修正,存在着诸如修正参数有限、计算耗时、灵敏度大的待修正参数有时并不是真正存在建模误差的参数等不足之处。因此,有必要找到一种计算效率高,不依赖灵敏度分析,能够同时修正大量待修正参数,并且希望在修正过程中自动找到真正存在误差的参数的模型修正方法。研究发现正交模型正交模态(CMCM)法满足以上的修正需求,然而CMCM法的修正结果仅为某一单元的整体修正因子,对于某一单元存在多个待修正参数的情况则无法分别计算出各个参数的修正量,并且在修正过程中存在着分母为零或者逼近零的危险,这给修正工作带来了困难。本文在保持原有CMCM法优越性的基础上,通过公式重新推导、变形,得到了改进的正交模型正交模态法即ICMCM法。ICMCM法解决了CMCM法存在的病态问题,并且其修正对象可以是任意的材料以及几何参数,增加了待修正参数的数量。并在ICMCM法的基础上进行扩展,推导得到了含有阻尼形式的ICMCM法,扩宽了ICMCM法的应用范围。利用ICMCM法的思想,将其应用到频响型模型修正方法中,获得了新的频响型模型修正方法——正交模型正交频响函数(CMCFRF)法。通过算例证明了ICMCM法以及CMCFRF法的有效性及优越性。
     另外,在使用传统的模型修正与自由度匹配相结合的迭代方法时,仅仅使用有限元模型的缩聚/扩展转换矩阵代替实验模型的缩聚/扩展转换矩阵,未对上述替代的误差进行额外的处理,因此造成使用传统的模型修正与自由度匹配相结合的迭代方法时模型修正的计算效率低,迭代收敛速度慢。针对此问题,本文进行了深入的研究并在传统迭代方法的基础提出了一种新的模型修正与模型缩聚结合应用的迭代方法即误差循环迭代缩聚(ECIMR)法以及新的模型修正与模态扩展结合应用的迭代方法即误差循环迭代扩展(ECIME)法。上述两种新的方法分别在传统迭代方法的基础上添加了误差修正项,大大加快了自由度匹配后模型修正的迭代收敛速度并减少了计算时间。ECIMR法在推导过程中未限制所使用的模型修正与模型缩聚的方法,ECIME法并未限制所使用的模型修正方法,因此二者分别具有一定的通用性。在修正过程中使用新的迭代方法较传统的迭代法具有更快的迭代收敛速度以及计算效率,这对于工程中大型、复杂结构的模型修正问题具有重要的工程应用价值,使用新的方法可以节省大量的计算时间。通过ICMCM法以及CMCFRF法证明了上述两种迭代方法的通用性以及有效性。另外,使用ECIMR法进行迭代后,在相同的迭代次数下,随着模型缩聚精度的提高,模型修正的精度也将随之提高。
     为了能够进一步验证本文所提出的模型修正方法对复杂结构尤其是航天对象的模型修正能力,对评价模型修正技术的基准模型即GARTEUR benchmark模型以及某型号的火箭舱段模型进行了模型修正,并获得了非常理想的模型修正结果。修正结果表明模态扩展方法更加适合ICMCM法,此时修正的方程数量远大于使用模型缩聚方法,进而可以修正数量较大的参数,模型修正结果也远好于使用模型缩聚方法。使用ICMCM法所能修正的参数数量远大于基于灵敏度分析的模型修正方法所能修正的参数数量,尽可能包含所有真正存在建模误差的参数,并利用修正方程自动的对真正存在建模误差的参数进行修正,使得修正结果更加的符合结构真实的物理意义。
In this dissertation, model updating methods and iterative techniques for degree of freedom matching in the field of finite element model updating are studied.
     Accurate finite element (FE) models of engineering structures are needed in order to predict their dynamic characteristics. Nowadays, the appearances of high precision aircrafts and spacecrafts, large scale bridges and other new engineering structures impose higher demands on the reliability and accuracy of their FE models. However, a FE model may be inaccurate especially in the case of complex structures due to difficulties in the modeling of joints, boundary conditions and structural damping. So the development of model updating method which has the ability of correcting the numerical values of individual parameters in a FE model using the data obtained from an associated experimental model is necessary. The updated model can describe the dynamic properties of the subject structure more accurately.
     The traditional eigensensitivity-based approaches have extensive application, however, this kind of model updating methods pay much attention to the updating results and have many disadvantages, for example, they have limited updating parameters, time consuming, especially, the updated parameters that have high sensitivity may not be the ones that have modeling errors. So it is necessary to find a new method which has high calculation efficiency, does not need sensitivity analysis, updates more parameters simultaneously and finds the parameters that have modeling errors indeed. It is found that the cross-model cross-mode (CMCM) method meet the former requirements, however, the updating results are the correction factor of one element, so in the case of a element has more than one parameter that have modeling errors, the CMCM method lose its updating ability. On the other hand,the denominator of the updating formula may equal or close to zero which leads to the emergence of ill-conditioned problems and brings difficulties to model updating process. This paper propose a new model updating method named as improved cross-model cross-mode (ICMCM) method which based on the CMCM method. The new method avoided the disadvantage of CMCM method by changing the process of formula derivation. Moreover, the updating object can be any physical or geometric parameters of one element, which increase the number of the updating parameters. The ICMCM method with damping is obtained by extending the ICMCM method, which enlarges application range of the original method. A new model updating method based on the frequency response function named as cross-model cross-frequency response function (CMCFRF) method is obtained by using the theory of ICMCM method. Updating results show the effectiveness and superiority of ICMCM method and CMCFRF method.
     In addition, using the traditional iterative method that associating the model updating method with the degree of freedom matching technique, the errors resulted from replacing the reduction/expansion matrix of the experimental model with those of the FE model are not fully considered, which needs more iterations and computing time in the model updating process. In order to reduce the errors produced in the replacement, based on the traditional methods, a new iterative method named as error cyclic iteration method based on model reduction (ECIMR) that associating the model updating method with the model reduction technique and a new iterative method named as error cyclic iteration method based on modal expansion (ECIME) that associating the model updating method with the modal expansion technique are proposed, in which the correction term related to the errors is added. The convergence rate and the computing time of the new method are significantly superior to those of the traditional iterative method. Because ECIMR method does not limit the model updating method and the model reduction method and ECIME method does not limit the model updating method, both of these two new iteration methods have generalities. One of important advantages of the new iterative methods is that they make the calculation converge with less iteration and computing time than those of the traditional methods, which are very useful for model updating of large-scale engineering structures, they can save much computing time and improve work efficiency. In addition, the model updating precision becomes higher with the precision of the model reduction upgraded after using ECIMR method.
     In order to further verify the updating ability of the proposed model updating method for the complex structures especially the aerospace structures, GARTEUT model which is the benchmark model for model updating and a cabin structure of a certain type rocket are used as the updating objects, and the perfect updating results are obtained. Updating results show that the modal expansion technique is more suitable for ICMCM method. The ICMCM method using modal expansion can update far more updating parameters than using model reduction, and the updating results are better by using modal expansion than by using model reduction. ICMCM method can update more parameters than the eigensensitivity-based approaches, which can include the parameters with modeling errors as much as possible. The updating equations can automatically update the parameters that have modeling errors indeed and the updating results meet the real physical meaning of the structures using ICMCM method.
引文
[1]洪嘉振.计算多体系统动力学, (高等教育出版社, 1999).
    [2]陈立平,张云清,任卫群,覃刚.机械系统动力学分析及ADAMS应用教程, (清华大学出版社, 2005).
    [3] Mottershead J E, Friswell M I. Model updating in structural dynamics: a survey. Journal of Sound and Vibration, 1993, 167(2): 347-375.
    [4] Bathe K J. Element procedures in engineering, (Prentice-Hall, New Jersey, 1982).
    [5]朱安文,曲广吉,高耀南,魏震松.结构动力模型修正技术的发展.力学进展, 2002, 32(2): 337-348.
    [6] Gravitz S I. An analytical procedure for orthogonalization of measured. MJAS, 1958, 25(11): 1168-1173.
    [7] Berman A, Flannelly W G. Theory of incomplete models of dynamic structures. AIAA, 1971, 9(8): 1481-1487.
    [8]陈绍汀,王超.结构振动分析模型的精细修校正.西安交通大学学报, 1990, 24(4): 59-64.
    [9] Wei F S. Stiffness matrix correction from incomplete test data. AIAA 1980, 18(10): 1274-1275.
    [10] Stetson A, Pamla G E. Inversion of first-order perturbation theory and its application to structural design. AIAA, 1976, 14: 454-460.
    [11] Chen J C, Garba J A. Analytical model improvement using modal test results. AIAA, 1975, 18(6): 684-690.
    [12] Chen J C, Wada B K. Criteria for analysis-test correlation of structural dynamic systems. Journal of applied mechanics, 1975, 24(2): 471-477.
    [13] Kabe A M. Stiffness matrix adjustment using mode data. AIAA, 1985, 23(9): 1431-1436.
    [14] Zhang D W, Li J J. A new method for updating the dynamic mathematical model of a structure, Part 1: Quasi-complete modified model and a concept of the guide-type method for re-creating a model. DFVLR IB 232-87 J05, 1987.
    [15]向锦武,周传荣,张阿周.基于建模误差位置识别的有限元模型修正方法.振动工程学报, 1997, 10(1): 1-7.
    [16]周星德,陈国荣.动态有限元模型修正的一种新方法.振动与冲击, 2005, 24(2): 50-53.
    [17]周星德,汪凤泉,陈道政.实验模态数据修正计算模型的拉直算法.振动工程学报, 2001, 14(2): 245-248.
    [18]李书,桌家寿,任青文.广义逆特征值方法在动力模型修正中的应用.振动与冲击, 1998, 17(2): 63-66.
    [19]钱仲焱,冯培恩.基于矩阵逼近的模型修正方法研究.机械强度, 2000, 22(2): 100-103.
    [20] Natke H G, Cottin N. Updating mathematical models on the basis of vibration and modal test results-A review of experience, 1985, 2nd Int. Symp. on Aeroelasticity and Structural Dynamics, 632-647.
    [21] Fox R L, Kapoor M P. Rates of change of eigenvalues and eigenvectors. AIAA, 1968, 6(12): 2426-2429.
    [22] Collins J D, Hart G C, Hasselman T K, Kennedy B. Statistical identification of structures. AIAA, 1974, 12(2): 185-190.
    [23] Link M, Friswell M I. Working group 1: Generation of validated structural dynamic models-results of a benchmark study utilising the GARTEUR SM-AG19 test-bed. Mechanical Systems and Signal Processing, 2003, 17(1): 9-20.
    [24] Mares C, Mottershead J E, Friswell M I. Results obtained by minising natural-frequency errors and using physical reasoning. Mechanical Systems and Signal Processing, 2003, 17(1): 39-46.
    [25]费庆国,张令弥,郭勤涛. Garteur有限元模型修正与确认研究.航空学报, 2004, 25(4): 372-375.
    [26] Hu S-L J, Li H J, Wang S Q. Cross-model cross-mode method for model updating. Mechanical Systems and Signal Processing, 2007, 21: 1690-1703.
    [27] Hu S-L J, Li H J. Simultaneous mass, damping, and stiffness updating for dynamic systems. AIAA, 2007, 45(10): 2529-2537.
    [28] Eughels A, De Roeck G. Structural damage identification of the highway bridge Z24 by FE model updating. Journal of Sound and Vibration, 2004, 278: 589-610.
    [29]田仲初,彭涛,陈政清.佛山东平大桥静动力分层次有限元模型修正研究.振动与冲击, 2007, 26(6): 162-165.
    [30]夏品奇.斜拉桥有限元建模与模型修正.振动工程学报, 2003, 26(2): 219-223.
    [31] Zapicoa J L, Gonzalez M P, Friswell M I, Taylor C A, Crewe A J. Finite element model updating of a small scale bridge. Journal of Sound and Vibration, 2003, 268: 993-1012.
    [32] Mottershead J E, Tehrani M G, Stancioiu D, James S, Shahverdi H. Structural modification of a helicopter tailcone. Journal of Sound and Vibration, 2006, 298: 336-384.
    [33] Natke H G. Die korrektur des rechenmodells eines elastomechanischen systems mittels gemessener erzwungener schwingungen. Ingenieur-Archiv, 1977, 4(6): 169-184.
    [34] Foster C D. A method of improving finite element models by using experimental data: Application and implications for vibration monitoring. International Journal of Mechanical Science, 1990, 32(3): 191-203.
    [35] Link M. Identification and correction of errors in analytical models using test data: Theoretical and practical bounds, 1990, Proceedings of the 8th International Modal Analysis conference, 570-578.
    [36] Friswell M I. Updating model parameters from frequency domain data via reducedorder model. Mechanical Systems and Signal Processing, 1990, 4(5): 377-391.
    [37] Mottershead J E. A linear frequency domain filter for parameter identification of vibration structure. Journal of Vibration, Acoustics, Stress and Reliability in Design, 1987, 109(4): 262-269.
    [38]黄东胜,顾松年.一种改进的动力缩聚及模型修正的方法.长沙铁道学院学报, 1996, 14(4): 72-77.
    [39]朱安文,曲广吉,高耀南.航天器结构模型修正技术的工程应用研究, 2002年全国振动工程及应用学术会议.
    [40]秦仙蓉.基于灵敏度分析的结构计算模型修正技术及相关问题研究.南京航空航天大学博士学位论文, 2001.
    [41]徐张明,沈荣瀛,华宏星.基于频响函数相关性的灵敏度分析的有限元模型修正.机械强度, 2003, 25(1): 5-8.
    [42]童宗鹏,章艺,沈荣瀛,华宏星.基于频响函数灵敏度分析的舰艇模型修正.上海交通大学学报, 2005, 39(11): 1847-1850.
    [43] Ren W X, Roeck G D. Structural damage identification using modal data. I: Simulation verification. Journal of Engineering Mechanics, 2002, 128(1): 87-95.
    [44] Thonon C, Golinval J C. Results obtained by minimising natural frequency and mac-value errors of a beam model. Mechanical Systems and Signal Processing, 2003, 17(1): 65-72.
    [45] G?GE D, Link M. Results obtained by minimizing natural frequency and mode shape errors of a beam model. Mechanical Systems and Signal Processing, 2003, 17(1): 21-27.
    [46] Bohle K, Fritzen C P. Results obtained by minimising natural frequency and mac-value errors of a plant model. Mechanical Systems and Signal Processing, 2003, 17(1): 55-64.
    [47] Deraemaeker A, Ladeveze P, Le Loch S. Results obtained by the CRE updating method using a plate model. Mechanical Systems and Signal Processing, 2003, 17(1): 47-54.
    [48] Mares C, Mottershead J E, Friswell M I. Results obtained by minimising natural frequency errors and using physical reasoning. Mechanical Systems and Signal Processing, 2003, 17(1): 39-46.
    [49] D'Ambrogio W, Fregolent A. Results obtained by minimising natural frequency and antiresonance errors of a beam model. Mechanical Systems and Signal Processing, 2003, 17(1): 29-37.
    [50]费庆国,张令弥,李爱群,王彤.基于不同残差的动态有限元模型修正的比较研究.振动与冲击, 2005, 24(4): 24-27.
    [51] Schedlinski C. Computational model updating of large scale finite element models, 2000, Proc. of the 18th International Modal Analysis Conference, 454-460.
    [52] Mottershead J E, Friswell M I. Model updating of joints and connections, 2002, International Conference on Structural Dynamics Modelling.
    [53] Mottershead J E, Mares C. Selection and updating of parameters for an aluminium space-frame model. Mechanical Systems and Signal Processing, 2000, 14(6): 923-944.
    [54] Bakir P G, Reynders E, Rocek G D. An improved finite element model updating method by the global optimization technique‘Coupled Local Minimizers’. Computers and Structures, 2008, 86(11-12): 1339-1352.
    [55]张令弥.动态有限元模型修正技术及其在航空航天结构中的应用.强度与环境, 1994(2): 10-17.
    [56] Peter A. Model updating possibilities 2000, Proceedings of the 18th International Modal Analysis Conference, 562-570.
    [57] Friswell M I, Mottershead J E. Finite element model updating in structural dynamics, (Kluwer Academic Publisher, London, 1995).
    [58]郑毅敏,孙华华,赵昕,陈伟,章海荣,沈旭东.大跨度高空钢结构连廊的有限元模型修正.振动工程学报, 2009, 22(1): 105-110.
    [59]于彪,周国强.基于ANSYS优化设计的井架模型修正.石油矿场机械, 2007, 36(11): 39-42.
    [60] Ahmadian H, Mottershead J E, James S, Friswell M I. Modelling and updating of large surface-to-surface joints in the AWE-MACE structure. Mechanical Systems and Signal Processing, 2006, 20: 868-880.
    [61] Schedlinski C. Computational model updating of large scale finite element models, 2000, Proceeding of the 18th International Modal Analysis Conference, 454-460.
    [62] Link M, Schedlinski C, Goge D. Parameter identification and validation of large order finite element models for industrial type structures, 2004, Proceedings of the 3rd European Conference on Structural Control.
    [63] D'Ambrogio W, Fregolent A. Updateability conditions of nonconservative FE models with noise on incomplete input-output data, 1993, International conference structural dynamic modelling test, analysis and correlation.
    [64]孙正华,李兆霞,韩晓林.大跨桥梁索塔有限元模型修正.工程抗震与加固改造, 2006, 28(1): 50-54.
    [65] Hu S-L J, Wang S Q, Li H J. Cross-modal strain energy method for estimating damage severity. Journal of Engineering Mechanics, 2006, 132(4): 429-437.
    [66] Li H J, Fang H, Hu S-L J. Damage localization and severity estimate for three-dimensional frame structures. Journal of Sound and Vibration, 2007, 301: 481-494.
    [67] Hu S-L J, Li H J. A systematic linear space approach to solving partially described inverse eigenvalue problems. Inverse Problems, 2008, 24(3): 035014.
    [68] Li H J, Zhang M, Hu S-L J. Refinement of reduced-models for dynamic systems. Progress in Natural Science, 2008, 18(8): 993-997.
    [69] Li H J, Wang J R, Hu S-L J. Using incomplete modal data for damage detection in offshore jacket structures. Ocean Engineering, 2008, 35: 1793-1799.
    [70]秦仙蓉,费庆国,张令弥,顾明.基于Matlab平台的组合结构动态分析工具箱的开发与应用.振动与冲击, 2003, 22(4): 32-35.
    [71]李效法.基于灵敏度分析的模型修正研究及其实现.南京航空航天大学硕士学位论文, 2007.
    [72]朱安文,曲广吉,高耀南.航天器结构模型优化修正方法的研究.宇航学报, 2003, 24(1): 107-110.
    [73] Mroz Z, Lekszycki T. Identification of damage in structures using parameter dependent modal response, 1998, Proceedings of ISMA25, Noise and Vibration Engineering.
    [74] Salawu O S. Detection of structural damage through changes in frequency:A review. Engineering Structures, 1997, 19(9): 718-723.
    [75] Allemang R J, Brown L. A correlation coefficient for modal vector analysis, 1982, Proceedings of the 1st International Modal Analysis Conference, 110-116.
    [76] Wolff T, Richardson M. Illustration of the use of modal assurance criterion to detect structural changes in an orbit test spacemen, 1988, Proceeding of the 4th International Modal Analysis Conference.
    [77] Allemang R J. The modal assurance criterion (MAC): Twenty years of use and abuse, 2002, Proceeding of the 20th International Modal Analysis Conference, 14-21.
    [78] Lieven N A, Ewins D J. Spatial correlation of mode shapes, the co-ordinate modal assurance criterion(COMAC) 1988, Proceedings of 6th International Modal Analysis Conference, 690-695.
    [79] Nicgorski D, Avitabile P. Conditioning of FRF measurements for use with frequency based substructuring. Mechanical Systems and Signal Processing, 2010, 24(2): 340-351.
    [80] Butland A, Avitabile P. A reduced order, test verified component mode synthesis approach for system modeling applications. Mechanical Systems and Signal Processing, 2010, 24(4): 904-921.
    [81] Saarenheimo A, Haapaniemi H, Luukkanen P, Nurkkala P. Model updating through measured data in the case of a feed water pipeline, 2003, Transactions of the 17th International Conference on Structural Mechanics in Reactor Technology.
    [82] Balmès E. Review and evaluation of shape expansion methods, 2000, Proceeding of the 18th International Modal Analysis Conference, 555-561.
    [83] Guyan R J. Reduction of stiffness and mass matrices. AIAA, 1965, 3(2): 380-381.
    [84] O'Callahan J. A procedure for improved reduced system (IRS) Model, 1989, Proceedings of 7th International Modal Analysis Conference, 17-21.
    [85] O'Callahan J, Avitabile P, Riemer R. System equivalent reduction expansion process (SEREP), 1989, Proceedings of 7th International Modal Analysis Conference, 29-37.
    [86] Zhang D W, LI J. Succession-level approximate reduction (SAR) technique for structural dynamic model, 1989, Proceedings of 13th International Modal Analysis Conference, 29-37.
    [87]张德文.改进Guyan-递推缩减技术.计算结构力学及其应用, 1996, 13(1): 90-94.
    [88]牟杨虎,张和豪.对自由度缩聚后的动力模型的修正.振动与冲击, 1991(1): 61-65.
    [89]吴斌.用动态缩聚法求解结构的特征值问题.计算力学学报, 1998, 15(3): 363-368.
    [90]刘天雄,华宏星,石银明.结构动力模型一体化降阶技术.强度与环境, 2003, 30(1): 31-36.
    [91]赵阳,高淑华,黄涛,唐国安.复杂结构的动力学模型缩聚.复旦学报, 2005, 44(3): 355-362.
    [92] Friswell M I, Garvey S D, Penny J E T. Model reduction using dynamic and iterated IRS techniques. Journal of Sound and Vibration, 1995, 186(2): 311-323.
    [93]朱安文,曲广吉,高耀南.航天器结构动力模型修正中的缩聚方法.中国空间科学技术, 2003(2): 6-10.
    [94] Lin R M, Xia Y. A new eigensolution of structures via dynamic condensation. Journal of Sound and Vibration, 2003, 266(1): 93-106.
    [95]吴斌,禹建功,潘英.一种新的结构矩阵缩聚迭代法.北京工业大学学报, 2006, 32(6): 481-484.
    [96]魏振松,王建成,岳志勇.一个新的计算动力缩聚矩阵的迭代公式.兰州大学学报, 2002, 38(6): 40-43.
    [97]唐晓峰,王皓,唐国安.动力学缩聚模型修正的矩阵逼近法.上海航天, 2007(5): 10-13.
    [98]张德文.基于改进Guyan减缩的混合型减缩系统.地震工程与工程振动, 1995, 15(4): 62-66.
    [99] Berman A, Nagy E J. Improvement of a large analytical model using test data. AIAA, 1983, 21(8): 1168-1173.
    [100] Berman A, Wei F S, Rao K V. Improvement of analytical dynamic models using modal test data. AIAA, 1980, 18(4): 684-690.
    [101] O'Callahan J. An efficient method of determining rotational degrees of freedom from analytical and experimental model data, 1986, Proceedings of 4th International Modal Analysis Conference, 50-58.
    [102]陈时雨,汪凤泉.利用模态参数-有限元扩充振型的结构动力修改法.振动、测试与诊断, 1992, 12(1): 5-10,24.
    [103]汪晓红,周传荣,徐庆华.结构分析模型的修正与振型扩充技术.东南大学学报(自然科学版), 2000, 30(2): 143-147.
    [104]秦仙蓉,张令弥,顾明,费庆国.改进的基于模态参数的结构计算模型修正方法.同济大学学报, 2002, 30(11): 1295-1299.
    [105]王树青,张韶光,李华军.基于有限元模型和模态参数的损伤识别.青岛海洋大学学报, 2003, 33(4): 650-656.
    [106] Chung Y T, Craig R R. Experimental substructure coupling with rotational coupling coordinate, 1985, Proceeding of the 26th Structures Structural Dynamics andMaterials Conference.
    [107] Mitchell M, Pardoen G C. The estimation of rotational degree-of-freedom using shape function, 1988, Proceedings of the 6th International Modal Analysis Conference, 566-571.
    [108] O'Callahan J C, Lieu I W, Chou C M. Determination of rotational degrees of freedom for moment transfer in structural modification, 1985, Proceedings of 3rd International Modal Analysis Conference, 465-470.
    [109] Berman A, Nagy E J. Improvement of a large analytical model using test data. AIAA, 1983, 21(8): 1168-1173.
    [110]曾庆华.结构动力修改技术若干问题研究.南京航空航天大学博士学位论文, 1989.
    [111] O'Callahan J, Avutabile R, Lieu I W, Madden R. An efficient method of determining rotational degrees of freedom from analytical and experimental modal data, 1986, Proceedings of the 4th International Modal Analysis Conference, 50-58.
    [112] O'Callahan J, Lieu I W, Chou C W. Determination of rotational degrees of freedom for moment transfers in structural modifications, 1985, Proceeding of the 3rd International Modal Analysis Conference.
    [113] Avitalible P, O'Callahan J. Expansion of rotational degree of freedom for structural dynamic modification, 1987, Proceeding of the 5th International Modal Analysis Conference, 950-955.
    [114] Yasuda C. An estimation method for rotational degrees of freedom using a mass additive technique, 1984, Proceeding of the 2nd International Modal Analysis conference, 877-886.
    [115] Wei M L. Modal scaling consideration for structural modification application, 1987, Proceeding of the 5th International Modal Analysis conference, 1531-1537.
    [116]王文亮.结构动力学, (复旦大学出版社, 1993).
    [117]刘延柱,陈文良,陈立群.振动力学, (高等教育出版社, 1998).
    [118] Hodgden H W, Ingols R S. Direct colorimetric method for the determination of chlorine dioxide in water. Analytical Chemistry, 1954, 26(7~12): 1224-1226.
    [119] Liang Z, Lee G C. Damping of structures Part II: Theory of complex damping. (National Center for Earthquake Engineering Research of USA, 1992).
    [120]华东理工大学和成都科技大学.分析化学, (高等教育出版社,北京, 2003).
    [121]杨杰.基于复模态的有限元结构动态修正理论研究.山东大学硕士学位论文, 2001.
    [122]王伟宏,孟新田,唐葭.结构动力分析中的阻尼模型研究.湖南城市学院学报(自然科学版), 2009, 18(2): 13-16.
    [123] Arora V, Singh S P, Kundra T K. Finite element model updating with damping identification. Journal of Sound and Vibration, 2009, 324(3-5): 1111-1123.
    [124] Chellini G, Roeck G D, Nardini L, Salvatore W. Damage analysis of a steel-concrete composite frame by finite element model updating. Journal of Constructional SteelResearch, 2010, 66(3): 398-411.
    [125]李德葆,陆秋海.实验模态分析及其应用, (科学出版社, 2001).
    [126]傅志方.振动模态分析与参数识别, (机械工业出版社, 1990).
    [127]傅志方,华宏星.模态分析理论与应用, (上海交通大学出版社, 2000).
    [128]杨海峰.基于加速度频响函数的结构损伤检测方法研究.西北工业大学硕士学位论文, 2007.
    [129] Li H J, Wang J R, Hu S-L J. Using incomplete modal data for damage detection in offshore structures. Ocean Engineering, 2008(35): 1793-1799.
    [130]刘济科,杨伟秋,邹铁方.结构损伤识别中的模型缩聚问题.中山大学学报(自然科学版), 2006, 45(1): 1-5.
    [131] Tinker M L. Hybrid residual flexibility mass-additive method for structural dynamic testing, (Marshall Space Flight Center, Alabama, 2003).
    [132]张以帅,洪嘉振,李伟明.模型缩聚-模型修正迭代方法的研究.振动与冲击, 2009, 28(12): 23-26.
    [133] Li H J, Zhang M, Hu S-L J. Refinement of reduced-models for dynamic systems. Progress in Natural Science, 2008, 18: 993-997.
    [134]杨伟秋.基于模型修正的结构损伤识别方法研究.中山大学博士学位论文, 2006.
    [135] Abdalla M O, Grigoriadis K M, Zimmerman D C. Structural damage detection using linear matrix inequality methods. Journal of Vibration and Acoustics, 2000, 122(4): 448-455.
    [136] Jaishi B, Ren W X. Damage detection by finite element model updating using modal flexibility residual. Journal of Sound and Vibration, 2006, 290(1-2): 369-387.
    [137]荆龙江,项贻强.基于柔度矩阵法的大跨斜拉桥主梁的损伤识别.浙江大学学报, 2008.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700