用户名: 密码: 验证码:
合成孔径聚焦超声成像技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
合成孔径聚焦超声成像作为一种超声后处理方法,能够将小孔径成像合成为大孔径成像,通过逐点聚焦的方法,使图像的分辨率不随位置和深度变化。在采用同样换能器阵元探头的情况下,使用合成孔径聚焦方法能够得到更高分辨率的重建图像,为缺陷的定性分析提供更可靠的依据。
     本文重点研究了合成孔径聚焦算法的原理以及影响合成孔径聚焦超声成像精度的因素,提出了改善合成孔径聚焦超声成像分辨率的算法和方法,并将合成孔径聚焦算法应用于相控阵超声成像系统。
     本文主要进行了以下几个方面的研究工作:
     1、对合成孔径算法进行了仿真,通过对回波的模拟聚焦,验证了合成孔径聚焦超声成像算法的有效性,并定量分析了延时误差对合成孔径聚焦的影响。通过仿真中可以看到,在换能器参数确定的情况下,延时精度是影响合成孔径聚焦成像质量的重要因素。
     2、通过Multi2000超声实验系统,使用单阵元换能器对标准试块上的不同的缺陷点进行扫描,获取原始数据后,利用合成孔径聚焦算法分别对上述数据进行了处理,通过对比处理前后-6dB的数值范围,结果表明,合成孔径聚焦算法比原始扫描数据提高分辨率17%以上。
     3、基于换能器阵列的声场辐射理论对合成孔径聚焦成像方法进行了建模,系统地分析了模型中各种参数对成像质量的影响,通过实验对不同换能器阵元数、子孔径阵元数、阵元间距等的合成孔径聚焦图像的分辨率进行了对比,建立了提高合成孔径聚焦超声成像质量的参数选取原则。
     4、针对实验中多阵元换能器扫描时,不同扫描位置间的回波延时与理论计算差别较大的问题,提出了基于小波变换计算相关性系数的合成孔径聚焦算法,通过实验证明,这种算法的分辨率要高于传统延时叠加算法。
     5、提出了将合成孔径聚焦算法应用于相控阵超声成像系统,通过超声实验系统采集了相控阵线扫原始数据,并用合成孔径聚焦算法进行了处理,实验结果表明合成孔径聚焦算法能够提高相控阵远场成像的分辨率,有效地解决了相控阵超声成像在远场的聚焦效果较差的问题。
     6、提出了一套便携式合成孔径超声系统的设计方案,为合成孔径超声成像方法的实际应用奠定了基础。
Synthetic aperture focusing algorithm for ultrasonic imaging is an image reconstruction technology. It has advantage of composite sub-apertures into full aperture. The resolution of the reconstruction image does not change with the depth and position with synthetic focusing. The synthetic aperture focusing technology can achive higher resolution under the condition that using the same conducter contrast with other image methods. The defect can be measured more precisely with this imaging method.
     The principle of synthetic aperture focusing technology has been researched and the factors which influence the image resoulution have been analized. This thesis also presents methods and algorithm which can promote image resolution. And the attempation has been tried out to apply the synthetic aperture focusing technology in ultrasonic phased array systems.
     The dissertation mainly covers the following aspects:
     1. The effectiveness of synthetic aperture focusing algorithm is verified through simulation. The results show that the delay accuracy is the key effector which influences the image quality on condition that the transducer factors are determined.
     2. Experiments have been executed through Multi2000 system. The raw B scan data has been collected through scaning the defects using single element. And the synthetic aperture focusing algorithm has been used to process the data. The results show that the resolution can be promoted 17% at least with synthetic aperture focusing algorithm according to the -6dB theorem.
     3. The model of synthetic aperture focusing algorithm is derived based on the acoustic radiation principle. And the parameters which influence the image quality have been analized. The prarmenters selection principle is defined.
     4. A new synthetic aperture focusing algorithm has been presented. The algorithm uses coefficients calculated at different scales based on the wavelet transformation. It resolves the problem that the delay time can not predicted precisely between different scan positions. This algorithm has higher resolution compared with the tranditional delay and sum method.
     5. The synthetic focusing algorithm has been applied in ultrasonic phased array systems. The resolution in the far field where the focusing effectiveness is not obvious with phased array can be promoted.
     6. A portable ultrasonic imaging system is presented using synthetic aperture focusing technology. It lays foundation for the practical application of SAFT in ultrasonic inspecton field.
引文
[1]庞勇,韩焱,超声成像方法综述,华北工学院测试技术学报,2001,15(4):280~284
    [2] Ditchburn R. J.,Burke S. K., Scala C. M., Acoustic and ultrasonic measurement of metals [J]. NDT and E. 1994, 27(2): 120~125
    [3] Lee H., Wade G. Modern Acousticial Imaging [M]. New York: IEEE Press 1986, 232~234
    [4]什么是无损检测,天工无损检测网,2004年5月23日
    [5]李喜孟,无损检测,北京:机械工业出版社,2001
    [6]张旭辉,马宏伟,超声无损检测技术的现状和发展趋势,机械制造,2002(7):24~26
    [7]沈建中,黎连修,超声无损检测的进展,无损检测,2008(2):31~38
    [8]罗雄彪,陈铁群,超声无损检测的发展趋势,无损检测,2005,27(3):148~152
    [9]詹湘琳,超声相控阵油气管道环焊缝缺陷检测技术的研究:[博士学位论文],天津大学,2006
    [10]鲍晓宇,相控阵超声检测及其关键技术检测技术的研究:[博士学位论文],清华大学,2003
    [11]单宝华,喻言,欧进萍,超声相控阵检测技术及其应用,无损检测,2004,26(5):235~238
    [12]沈建中,无损检测的几个热点问题和技术,无损检测,2005,27(1):24~46
    [13]孙宝申,沈建中,合成孔径聚焦超声成像(一),应用声学,1993,12(3):43~48
    [14]孙宝申,沈建中,合成孔径聚焦超声成像(二),应用声学,1993,12(5):39~44
    [15]孙宝申,沈建中,合成孔径聚焦超声成像(三),应用声学,1993,13(2):39~44
    [16]蔡兰,兰从庆,合成孔径聚焦成像方法研究,武汉工业大学学报,1996,18(1):84~87
    [17]李衍,超声TOFD原理和方法要领,无损检测,2007,29(2):88~93
    [18]韩相勇,姜自安,韩曙光,纪虎,超声TOFD技术在管道环焊缝检测中的应用,无损检测,2008,30(1):61~63
    [19]余国民,常永刚,丁小军,张鸿博,超声TOFD法在无损检测领域中的应用,焊管,2007, 30(6):39~44
    [20]冯若,超声手册,南京大学出版社,1999
    [21]胡建恺,张谦琳,超声检测原理和方法,中国科学技术大学出版社,1993
    [22]闫素珍,刘满仓,声发射技术及其应用,西安航空技术高等专科学校学报,2002,20(1):105~109
    [23]孙立瑛,李一博,曲志刚,王伟魁,基于EMD的声发射管道泄漏检测研究,压电与声光,2008,30(2):239~245
    [24] Brook M, Bgoc T.D.K, Eder J.,Ultrasonics inspection of steam generator tubing by chemical guided waves[J],Review of Progress in Quantitative Nondestructive Evaluation, 1990(9):243~249
    [25] Michael Lowe,David Alleyne, Peter Cawley, Mode conversion of guided waves by defects in pipes[J]. Review of Progress in Quantitative Nondestructive Evaluation, 1997, 16 :1261~1268.
    [26]何存富,吴斌,范晋伟,超声柱面导波技术及其应用研究进展,力学进展,2001,25(2):105~107
    [27]焦敬品,何存富,吴斌,费仁元,王秀艳,管道超声导波检测技术研究进展,实验力学,2002,17(1): 1~9
    [28]李一博,靳世久,孙立瑛,宋志东,张元凯,超声导波管道检测中导波模态及频率的选择,天津大学学报,2006,39:143~147
    [29]许守平,张广纯,ASTM E816-96利用电磁超声换能器(EMAT)技术进行超声检查的标准方法,无损探伤,2003, 27(4): 20~28
    [30] Shcherbinin V. E., Pashagin A. I., Influence of the extension of a defect on the magnitude of its magnetic field, Soviet Journal of Nondestructive Testing, 1972, 8(4): 441~447
    [31]汪友生,基于漏磁通的缺陷信号分析,北京工业大学学报1999, 25(3): 25~30
    [32]金虹,漏磁检测技术在我国管道腐蚀检测上的应用和发展,管道技术与设备,2000, 19(7): 41~42
    [33]张勇,陈强,孙振国,汤晓华,用于无损检测的电磁超声换能器研究进展,无损检测,2004, 26(6): 275~279
    [34] Reinhold Ludwig, Willian Lord, A finite element formulation for the study of Ultrasonic NDT systems, IEEE Transaction on Ultrasonic, 1988, 35(6): 809~820
    [35] Kaltenbacher M, Ettinger K, Lerch R, Finite element analysis of coupled electromagnetic acoustic systems, IEEE Transaction on Magnetics, 1999, 35(3): 1610~1613
    [36] John J. Flaherty, Elk Grove Village, Kenneth R. Erikson, Niles, Van Metre Lund, Synthetic Aperture Ultrasonic Imaging Systems, 1970, Patent No: 3548642
    [37] G S Kino, D Corl, S Bennett, K Peterson, Real Time Synthetic Aperture Imaging System,Ultrasonics Symposium, 1980,722~731
    [38] Yoshihiko Ozaki, Hiroaki Sumitani, Toshimasa Tomoda, Mitsuo Tanaka, A new system for real-time synthetic aperture ultrasonic imaging, IEEE transactions on ultrasonics, 1988, 35(6), 828~838
    [39] Jin Ho Chang, Jun Woo Park, Tai-kyong Song, A new synthetic aperture focusing method using nonspherical wave fronts, IEEE ultrasonics symposium, 2001, 1525~1528
    [40] Jian Hua Tong, Shu Tao Liao, Chao Ching Lin, A new elastic wave based imaging method for scanning the defectd inside the structure, IEEE transactions on ultrasonics, 2007, 54(1), 128~137
    [41] Martin Pollakowski, Helmut Ermert, Chirp signal matching and signal power optimization in pulse echo mode ultrasonic nondestructive testing, IEEE transactions on ultrasonic , 1994, 41(5), 655~659
    [42] Fredrik Gran, Jorgen Arendt Jensen, Designing Waveforms for Temporal Encoding Using a Frequency Sampling Method, IEEE transactions on ultrasonic, 2007, 54(10), 2070~2081
    [43] Matthaw O’Donnell, L J Thomas, Efficient synthetic aperture imaging form a circular aperture with possible application to catherter-based imaging, IEEE transactions on ultrasonic ,1992, 39(3), 366~380
    [44] Enrico Pignone, Paolo Stanchi, Enhancement in defect detection, location and sizing in hollow axis rotors, an innovative method to improve ultrasonic image quality: the multi-SAFT and multi-probe approach, International workshop on imaging systems and techniques, 2006, 163~168
    [45] J Ylitalo, H Ermert, Evaluation of a synthetic aperture ultrasonic imaging method using a commerciao B-scanner, IEEE transactions on ultrasonic , 1993, 224~225
    [46] V Schmitz, S Chakhlov, W Muller, Experiences with synthetic aperture focusing technique in the field, Ultrasonics, 2000(38), 731~738
    [47] Ren Jeam Liou, Kuang-Chien Kao, Chin-Young Yeh, Mu-Sung Chen, Flaw detection and sizing of ultrasonic images using wavelet transform and SAFT, IEEE transactions on ultrasonic, 2004, 106~110
    [48] Sarayu Ramachandran, Jeffrey A Ketterling, Frederic L Lizzi, Orlando Aristizabal, Daniel H Turnbull, Implementation of digital synthetic aperture technique for a high frequency annular array transducer, IEEE international ultrasonics and frequency control joint 50th anniversary conference, 2004, 2065~2068
    [49] G J Schuster, S R Doctor, T T Taylor, Inspection experience in determining fabrication flaws in a reactor pressure vessel using SAFT-UT, IEEE ultrasonics symposium, 1996, 1033~1038
    [50] AL Elgarem, Multidepth synthetic aperture processing of ultrasonic data, IEEE transactions on ultrasonics, 1989, 36(3), 384~386
    [51] D A Hutchins, S M Kramer, C Saleh, SAFT processing of non-contact ultrasonic NDE data, IEEE ultrasonics symposium, 1989, 661~664
    [52] J Ridder, L H v d Wal, A J Berkhout, Synthetic focusing by means of wave-field extrapolation a new imaging technique for medical ultrasound, IEEE ultrasonics symposium, 1981, 627~631
    [53] R Raisutis, L Mazeika, The simulation of ultrasonic imaging in the case of the objects with a complex geometry, ISSN 1392-2114 Ultragarsas, 2001, 47~53
    [54] Jin-ho Chang, Tai-kyong Song, Three-way dynamic focusing for Ultrasound Imaging, IEEE catalogue No. 01CH37239, 2001, 869~872
    [55] Fredrik Gran, Jorgen Arendt Jensen, Directional velocity estimation using a spatio temporal encoding technique based on frequency division for synthetic transmit aperture ultrasound, IEEE transactions on ultrasonics, 2006, 53(7), 1289~1299
    [56] Kim Lokke Gammelmark, Jorgen Arendt Jensen, Duplex Synthetic aperture imaging with tissue motion compensation, IEEE ultrasonics symposium, 2003, 1569~1573
    [57] Niels Oddershede, Jorden Arendt Jensen, Effects influencing focusing in synthetic aperture vector follow imaging, IEEE transactions on ultrasonics, 2007, 54(9), 1811~1825
    [58] Kim Lokke Gammelmark, Jorden Arendt Jensen, Experinental study of convex coded synthetic transmit aperture imaging, IEEE ultrasonics symposium, 2002, 1613~1617
    [59] Fredrik Gran, Jorden Arendt Jensen, Frequency division transmission imaging and synthetic aperture reconstruction, IEEE transactions on ultrasonics, 2006, 53(5), 900~911
    [60] Sverre Holm, Hongxia Yao, Improved framrate with synthetic transmit aperture imaging using prefocused subapertures, IEEE ultrasonics symposium, 1997, 1535~1538
    [61] Niels Oddershede, Jorden Arendt Jensen, Motion compensated beamforming in synthetic aperture vector flow imaging, IEEE ultrasonics symposium, 2006, 2027~2031
    [62] Fredrik Gran, Jorgen Arendt Jensen, Multi element synthetic aperture transmission using a frequency division approach, IEEE ultrasonics symposium, 2003, 1942~1946
    [63] Kim Lokke Gammelmark, Jorgen Arendt Jensen, Multielement Synthetic transmit aperture imaging using temporal encoding, IEEE transactions on medical imaging, 2003, 22(4), 552~563
    [64] William F Walker, Gregg E Trahey, Real-time synthetic receive aperture imaging: experimental results, ultrasonics symposium, 1994, 1657~1660
    [65] Levin F Nock, Gregg E Trahey, Synthetic aperture imaging in medical ultrasound with correction for motion artifacts, ultrasonics symposium, 1990, 1597~1601
    [66] Levin F Nock, Gregg E Trahey, Synthetic receive aperture imaging with phase correction for motion and for tissue inhomogeneities-part ?: Bacis Principles, IEEE transactions on ultrasonics, 1992, 39(4), 489~495
    [67] Gregg E Trahey, Levin F Nock, Synthetic receive aperture imaging with phase correction for motion and for tissue inhomogeneities-partē: Effects of and correction for motion, IEEE transactions on ultrasonics, 1992, 39(4), 496~501
    [68] C J Martin, O Martinez, L G Ullate, A Octavio, G Godoy, Reduction of grating lobes in SAFT images, IEEE international ultrasonics symposium proceedings, 2008, 721~724
    [69] Borislav Gueorguied Tomov, Jorgen Arendt Jensen, A new architechture for a single chip multi-channel beamformer based on a standard FPGA, IEEE ultrasonics symposium, 2001, 1529~1533
    [70] Karthik Ranganathan, William F Walker, A novel beamformer design method for medical ultrasound, Partt ?: theory, IEEE transactions on ultrasonics, 2003, 50(1), 15~24
    [71] Karthik Ranganathan, William F Walker, A novel beamformer design method for medical ultrasound, Parttē: simulation results, IEEE transactions on ultrasonics, 2003, 50(1), 25~39
    [72] Michael Inerfield, Geoffrey R Lockwood, Steven L Garverick, A sigma-delta based sparse synthetic aperture beamformer for real-time 3D ultrasound, IEEE transactions on ultrasonics, 2002, 49(2), 243~254
    [73] Borislav Gueorguied Tomov, Jorgen Arendt Jensen, Compact FPGA-based bemformer using oversampled 1-bit A/D converters, IEEE transactions on ultrasonics, 2005, 52(5), 870~880
    [74] D Bruck, M Fischer, K J Langenberg, V Schmitz, Comparison of different synthetic aperture reconstruction algorithms, ultrasonics symposium, 1982, 994~999
    [75] Sandy Cochran, Justin Earnshaw, Benoit Bargain, Katherine Kirk, Extending the synthetic aperture focusing algorithm to deal with flat and cruved features in NDT, IEEE ultrasonics symposium, 2002, 833~836
    [76] Svetoslav Ivanov Nikolov, Jorgen Arendt Jensen, Borislav Gueorguiev Tomov, Fast parametric beamformer for synthetic aperture imaging, IEEE transactions on ultrasonics, 2008, 55(8), 1755~1767
    [77] Svetoslav Ivanov Nikolov, Borislav Gueorguiev Tomov, Jorgen Arendt Jensen, Parametric beamformer for synthetic aperture ultrasound imaging, IEEE ultrasonics symposium, 2006, 2172~2176
    [78] Geoffrey R Lockwood, James R Talman, Shelby S Brunke, Real-time 3-D ultrasound imagin using sparse synthetic aperture beamforming, IEEE transactions on ultrasonics, 1998, 45(4), 980~988
    [79] C R Hazard, G R Lockwood, Real-time synthetic aperture beamforming: practical issues for hardware implementation, IEEE ultrasonics symposium, 2001, 1513~1516
    [80] George J Schuster, Steven R Doctor, Leonard J Bond, A system for high-resoultion, nondestructive, ultrasonic imaging of weld grains, IEEE transactions on instrumentation and measurement, 2004, 53(6), 1526~1532
    [81] Svetoslav Ivanov Nikolov, Jorgen Arendt Jensen, 3D synthetic aperture imaging using a virtual source element in the elevation plane, IEEE ultrasonics symposium, 2000, 1743~1747
    [82] Christian Passmann, Helmut Ermert, A 100-Mhz ultrasound imaging system for dermatologic and ophthalmologic diagnostics, IEEE transactions on ultrasonics, 1996, 43(4), 545~552
    [83] Moo-Ho Bae, Mok-Kun Jeong, A study of synthetic aperture imaging with virtual source elements in B-mode ultrasound imaging systems, IEEE transactions on ultrasonics, 2000, 47(6), 1510~1519
    [84] P Acevedo, A Sotomayor, E Moreno, Performance improvement of algorithms based on the synthetic aperture focusing technique, Acoustical Imaging, 2007, 91~99
    [85] Meng Lin Li, Wei Jung Guan, Pai Chi Li, Improved synthetic aperture focusing technique with applications in high-frequency ultrasound imaging, IEEE transactions on ultrasonics, 2004, 51(1), 63~70
    [86] C Passmann, H Ermert, In vivo imaging of the skin in the 100 MHz region using the synthetic aperture concept, IEEE ultrasonics symposium, 1995, 1287~1290
    [87] Erik Wennerstrom, Tadeusz Stepinski, Model based correction of diffraction effects of the virtual source element, IEEE transactions on ultrasonics, 2007, 54(8), 1614~1622
    [88] Kay Raum, William D O’Brien, Pulse-echo field distribution measurement technique for high-frequency ultrasound sources, IEEE transactions on ultrasonics, 1997, 44(4), 810~815
    [89] Catherine H Frazier, William D O’Brien, Synthetic aperture techniques with a virtual source element, IEEE transactions on ultrasonics, 1998, 45(1), 196~207
    [90] Stefan J Rupitsch, Florian Maier, Bernhard G Zagar, Synthetic aperture focusing technique in high-frequency ultrasound imaging to locate layer delamination, Instrumentation and measurement technology conference, 2006,1953~1958
    [91] Mustafa Karaman, Pai Chi Li, Synthetic aperture imaging for small scale systems, IEEE transactions on ultrasonics, 1995, 42(3), 429~442
    [92] Mustafa Karaman, Hasan S Bilge, Matthew O’Donnell, Adaptive Multi-element synthetic aperture imaging with motion and phase aberration correction, IEEE transactions on ultrasonics, 1998, 45(4), 1077~1087
    [93] Milen Nikolov, Vera Behar, Simulated ammealing optimization of multi-element synthetic aperture imaging systems, LSSC 2007, LNCS 4818, 585~592
    [94] Thanassis Misaridis, Jorgen Arendt Jensen, Use of modulated excitation signals in medical ultrasound, IEEE transactions on ultrasonics, 2005, 52(2), 208~219
    [95] Juha Ylitalo, A fast ultrasonic synthetic aperture imaging method:application to NDT, Ultrasonics, 1996, 331~333
    [96] T Rastello, C Haas, D Vray, M Krueger, K Schroeder, E Brusseau, G Gimenez, H Ermert, A new fourier-based multistatic synthetic aperture focusing technique for intravascular ultrasound imaging, IEEE ultrasonics symposium, 1998, 1725~1728
    [97] Keinosuke Nagai, A new synthetic-aperture focusing method for ultrasonic B-scan imaging by the Fourier Transform, IEEE transactions on sonics and ultrasonics, 1985, 531~536
    [98] J Ylitalo, H Ermert, A synthetic aperture ultrasonic imaging method:experiment, IEEE ultrasonics symposium, 1992, 1215~1218
    [99] J Ylitalo, H Ermert, A synthetic aperture ultrasonic imaging method:simulation, IEEE ultrasonics symposium, 1992, 2244~2246
    [100] Tadeusz Stepinski, An implementation of synthetic aperture focusing technique in frequency domain, IEEE transactions on ultrasonics, 2007, 54(7), 1399~1408
    [101] Daniel Levesque, Makoto Ochiai, Alain Blouin, Richard Talbot, Akira Fukumoto, Jean-Pierre Monchalin, Laser-ultrasonic inspection of surface-breaking tight cracks in metals using SAFT processing, IEEE ultrasonics symposium, 2002, 753~756
    [102] Katrin Schroeder, Synthetic aperture-based reconstruction of intravascular ultrasound images in the time domain and frequency domain, ISIE, 1502~1507
    [103] L j Busse, Three-dimensional imaging using a frequency-domain synthetic aperture focusing technique, IEEE transactions on ultrasonics, 1992, 39(2), 174~179
    [104] Juha Tapani Ylitalo, Helmut Ermert, Ultrasound synthetic aperture imaging: Monostatic approach, IEEE transactions on ultrasonics, 1994, 41(3), 333~339
    [105] Nadim M Daher, 2-D Array for 3-D ultrasound imaging using synthetic aperture techniques, IEEE transactions on ultrasonics, 2006, 53(5), 912~924
    [106] O Keitmann-Curdes, K Hensel, P Knoll, H Meier, H Ermert, 3D ultrasonic imaging and contour detection in sheet metal hydroforming, IEEE ultrasonics symposium, 2004, 697~700
    [107] Dino Roverti, Reinhold Ludwig, Fred J Looft, A general-purpose computer program for studying ultrasonic beam patterns generated with acoustic lenses, IEEE transactions on instrumentation and measurement, 1988, 37(1), 90~94
    [108] Mark A Haun, Douglas L Jones, William D O’Brien, Efficient three dimensional imaging from a small cylindrical aperture, IEEE ultrasonics symposium, 2000, 1589~1592
    [109] Yong Seok Hwang, Seung Hyun Hong, Bahram Javidi, Free view 3-D visualization fo occluded objects by using computational synthetic aperture integral imaging, Journal of display technology, 2007, 3(1), 64~70
    [110] Bahram Javidi, Yong Seok Hwang, Passive near-infrared 3D sensing and computational reconstruction with synthetic aperture integral imaging, Journal of display technology, 2008, 4(1), 3~5
    [111] C R Hazard, G R Lockwood, Theroretical Assessment of a synthetic aperture beamformer for real-time 3D imaging, IEEE ultrasonics symposium, 1998, 1865~1868
    [112] Ahmed Yamani, Three-dimensional imaging using a new synthetic aperture focusing technique, IEEE transactions on ultrasonics, 1997, 44(4), 943~947
    [113] Jorgen Arendt Jensen, Niels Oddershede, Estimation of velocity vectors in synthetic aperture ultrasound imaging, IEEE transactions on medical imaging, 2006, 25(12), 1637~1644
    [114] U Moser, M Anliker, P Schumacher, Ultrasonic synthetic aperture imaging used to measure 2D velocity fields in real time, IEEE ultrasonics symposium, 1991, 738~741
    [115] Svetoslav Ivanov Nikolov, Jorgen Arendt Jensen, Velocity estimation using synthetic aperture imaging, IEEE ultrasonics symposium, 2001, 1409~1412
    [116] Jorgen Arendt Jensen, Velocity vector estimation in synthetic aperture flow and B-mode imaging, IEEE ultrasonics symposium, 2004, 32~35
    [117] Rene Sicard, Ahmad Chahbaz, Jacques Goyette, Guided lamb waves and L-SAFT processing technique for enhanced detection and imaging of corrosion defects in plates with small depth to wavelength ratio, IEEE transactions on ultrasonics, 2004, 51(10), 1287~1297
    [118] Jacob Davies, Francesco Simonetti, Michael Lowe, Peter Cawley, Review of synthetically focused guided wave imaging techniques with application to defect sizing, ECNDT 2006 - Pipeline In Service Inspection (Tu.4.1.3)
    [119] Jacob Davies , Peter Cawley, The Application of Synthetic Focusing for Imaging Crack-Like Defects in Pipelines Using Guided Waves, IEEE transactions on ultrasonics, 2009, 56(4), 759~771
    [120]孙宝申,张凡,沈建中,合成孔径聚焦声成像时域算法研究,声学学报,1997,22(1),42~49
    [121]毕永年,赖鹏,汪元美,黄宇星,B超合成接收孔径成像前端系统实现,中国医学物理学杂志,2004,21(2),85~87
    [122]刚铁,迟大钊,袁媛,基于合成孔径聚焦的超声TOFD检测技术及图像增强,焊接学报,2006,27(10),7~10
    [123]李秋锋,混凝土结构内部异常超声成像技术研究:[博士学位论文],南京航空航天大学,2008
    [124]李炳涛,张志永,SAFT技术在超声波裂纹测深中的应用,华北电力技术,1996,52~53
    [125]张家平,韦钰,李新德,一种快速综合孔径成像算法及在定量无损检测中的应用,应用声学,1~5
    [126]万志文,侯朝焕,医学超声中的合成孔径方法,声学学报,1998,23(3),250~256
    [127]蔡兰,兰从庆,合成孔径聚焦成像方法研究,武汉工业大学学报,1996,18(1),84~87
    [128]李养良,王邓志,陈大兵,合成孔径聚焦超声成像系统的计算机仿真,现代电子技术,22,74~79
    [129]王邓志,罗斌,罗宏建,合成孔径聚焦超声成像系统研究,东北电力技术,2002,12:42~45
    [130]蔡兰,兰从庆,合成孔径聚焦成像在P扫描中的应用,无损检测,1997,19(2),35~44
    [131]韩雪梅,合成发射孔径超声成像系统的仿真,西南科技大学学报,2008,23(1),39~42
    [132]郭庆华,自适应波束形成与超分辨参数估计方法研究:[硕士学位论文],西安电子科技大学,2004
    [133]韩英臣,赵兴录,赵国庆,自适应波束形成技术的发展与现状研究,航天电子对抗,2009,25(2),61~64
    [134]阎丽明,自适应波束形成算法的研究:[硕士学位论文],西北工业大学,2003
    [135]彭虎,超声成像算法导论,中国科学技术大学出版社,2008
    [136]陈煜,图像融合技术及其应用研究:[硕士学位论文],南京航空航天大学,2004
    [137]郭春华,基于小波变换的医学图像融合研究:[硕士学位论文],西安理工大学,2004
    [138]何锦平,基于小波多分辨分析的图像增强及其应用研究:[硕士学位论文],西北工业大学,2003
    [139]罗戎蕾,基于小波多分辨分析的图像重建算法研究:[博士学位论文],浙江大学,2004
    [140]陈焕平,何明一,基于小波对比相关性及加权因子的图像融合算法,电子测量技术,2007,30(10):33~37
    [141]陶冰洁,王敬儒,张启衡,基于小波系数相关性的图像融合新方法,激光与红外,2006,36(3),227~230

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700