用户名: 密码: 验证码:
适用于DNA电荷输运研究的紧束缚模型方法
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
作为生命遗传信息的载体,DNA是一类非常重要的生命大分子,其对绝大多数生命体的发育和机体运作起指导作用。近年来,由于在基因损伤修复等许多基本生命过程中的关键作用和在纳米电子学中作为分子器件的重要应用前景,DNA分子中电荷输运问题已成为多个学科比如化学、物理、生物前沿领域中的研究热点。在研究初期围绕DNA分子是否具有导电能力这一问题研究者们进行了诸多争论,不同实验中DNA表现出导体、半导体、绝缘体甚至是超导体等相差悬殊的导电行为。经过十多年来的研究,尽管对具体机制仍存在争议,研究者们已经基本认同DNA分子具有输运电荷的能力,但其程度受DNA分子的序列、碱基堆叠的完整性、构型涨落、溶剂环境以及电极(或电荷给体受体)与碱基的耦合等因素的影响很大,其中某些因素对DNA导电性的影响是颠覆性的。这些因素由分子微观结构决定,在实验上不容易控制,这就迫切要求理论计算学家通过模拟计算从微观角度研究DNA分子中的电荷输运行为,解释电荷输运机制。
     对DNA这类生命大分子体系的电子结构的计算一直是理论计算领域中一个具有挑战性的课题,主要是因为生命大分子体系所含原子数目太多且不具备周期性,利用常规量子化学从头算方法所需的计算条件当前计算机能力尚不能承受。在DNA电荷输运的计算模拟研究中,紧束缚模型方法因其简单明了、物理图像清晰等优点而被广泛采用。该方法把DNA分子抽象为一维格点体系,每个格点提供一个在位轨道,电子在紧邻格点轨道间能发生跃迁,其状态通过在位能和迁移积分描述。通过设定这两个参数的值,紧束缚模型方法可以计算DNA中电荷输运所涉及的电子状态、空穴状态或前线电子能带结构。
     尽管在DNA的电荷输运研究中紧束缚模型方法被广泛应用,但对其方法本身的研究还很少,这导致模型中参数取值缺少标准,各种文献中所采用的参数不一致,严重影响了该方法的准确性,不利于DNA电荷输运的研究。针对这一问题,我们从最基本的理论公式出发,根据DNA的分子结构和电子结构逐级做近似,推导出参数计算公式,建立系统化的参数计算方案,完善适用于DNA分子的紧束缚模型方法,使其能够更加合理地应用于DNA电荷输运研究。我们提出以下参数计算方案:
     第一,对孤立格点体系作量子化学计算以得到格点在位轨道;
     第二,对格点及其紧邻格点组成的子体系作量子化学计算,得到该子体系的单电子哈密顿作为计算参数专用的有效DNA哈密顿,总体系中其他原子作为点电荷作用于该有效哈密顿或直接忽略;
     第三,计算有效DNA哈密顿基于格点在位轨道的矩阵元,将矩阵元带入相应公式得到在位能和迁移积分。
     根据所提出的参数计算方案,我们对DNA的紧束缚模型方法做了以下研究:
     通过计算各种序列组合下空穴和电子的紧束缚模型参数,研究了DNA分子的一级结构(碱基序列)对参数的影响。计算结果表明,格点在位能主要取决于格点代表的碱基种类,四种碱基的空穴在位能的顺序是G     以DNA分子中碱基对间距离和扭转角为代表,研究了DNA分子的二级结构(构象)对紧束缚模型参数的影响。计算结果表明,格点间迁移积分受构象尤其是扭转角的影响非常大。当格点间距离取标准值而扭转角为0°时,GG格点间和AA格点间的迁移积分均能达到近0.8eV,而当扭转角取标准值36°时,两类迁移积分均不足0.1eV。当固定扭转角而增加格点间距离时,格点间迁移积分随着距离的增加呈指数函数形式衰减。计算过程中我们还考虑了紧邻格点极化作用对迁移积分的影响,当格点二体体系明显不对称时,格点间的相互极化差异较大,导致不能利用前线轨道的能级分裂来计算迁移积分。另外,我们还分别计算了从大量晶体数据统计分析得出的平均A-型构象和平均B-型构象中所有序列组合对应在位能和迁移积分,比较了其差异。
     我们把计算出的参数应用于SSH模型,研究了DNA分子的势阱势垒结构对其中空穴极化子的影响。研究表明单阱结构中空穴以极化子的形式存在于GC碱基对组成的势阱中;当势阱跨度较窄时,空穴电荷在势垒上有一定分布;势阱宽度为3个GC碱基对时,极化子最稳定。在周期性阱垒结构中,势阱和势垒的宽度对极化子形状都有显著影响。通过拟合格点间迁移积分同格点间距的关系,我们得出DNA链polyA-polyT和polyG-polyC中电子-声子耦合因子,然后将其应用于SSH模型以研究这两种链中空穴极化子的静态性质及其在电场下的动态行为。计算结果表明polyG-polyC中的空穴极化子的定域程度、稳定性均强于polyA-polyT中极化子,但在电场作用下polyA-polyT中极化子的迁移率较高,利于长程电荷迁移现象的发生。
     除了对DNA分子的紧束缚模型方法研究外,我们还对之前提出的利用点群对称性简化矩阵元计算的生成子方法进行了一定研究。按照初始基函数在对称操作下的变换关系,可将初始基函数空间划分为对称性恒定子空间。在此基础上我们利用群表示理论和投影算符的性质从理论上证明了生成子方法,并将其推广到点群的高维不可约表示。作为演示,我们把该方法应用于苯分子的紧束缚模型计算和Heisenberg半经验价键模型计算中。
     本论文的创新点主要包括:
     1.从最根本的量子力学方程出发,通过逐级近似,得到了紧束缚模型参数的计算公式,据此建立了系统化的参数计算方案,完善了适用于DNA分子的紧束缚模型方法。
     2.根据所提出的参数计算方案,研究了DNA分子紧束缚模型中在位能和迁移积分随DNA分子的序列、构象的变化关系。
     3.根据在位能计算结果构建DNA势阱势垒结构,并利用SSH模型研究了其中空穴极化子的性质;根据迁移积分同格点间距离的关系得出SSH模型中电子-声子耦合因子。
     4.基于对称性恒定子空间的特性,利用群表示理论证明了之前提出的生成子方法,并将其推广到点群的高维不可约表示,使这一方法得以完善。
Deoxyribonucleic acid (DNA) is a kind of important biomacromolecule that contains the genetic information used in the development and functioning of most known living organisms. Because of the key role in many of basic life processes such as gene damage and repair, as well as the promising application in molecular electronics, charge transport in DNA molecules has caught considerable attention of chemists, physicists and biologists in recent years. Charge-transfer reactions and conductivity measurements show a large variety of possible electronic behavior, ranging from Anderson and band-gap insulators to semiconductors, conductors, and even induced superconductors. After ten years of research, although the specific mechanism still remains controversial, the basic ability of charge migration through the DNA has been universally recognized. However the conductivity of DNA is greatly affected by many factors, such as the base sequence, the integrity of base stacking, the fluctuations of conformation, solvent environment, the electrode (or the charge donor and acceptor) and so on. These factors, some of which give a subversive influence on the conductivity of DNA, are found directly related to the microstructure of DNA. Due to the difficulties in experiment to control this, theoretical efforts should be made to understand the electronic properties of DNA and to look for common mechanism to elucidate charge transport in DNA.
     The electronic structure calculation of complicated biomacromolecule such as DNA has been a challenging task for routine quantum computation methods, because these molecules are very large in size, and without periodic conditions. The tight-binding model has been extensively adopted to investigate electronic structure of DNA because of its advantages, for example, simplicity. In this tight-binding model approach, the backbone of DNA is generally ignored because it makes little contribution to the charge transfer. Each base or base pair is set to be one lattice site in the model, and each site provide only one site orbital for electron locate at this site. Electrons can hop between the adjacent site orbitals, and the electronic structure can be described by two parameters:the on-site energy and the transfer integral between two adjacent sites.
     Although this tight-binding model approach has been extensively used, researches on this methods itself are seldom reported, resulting in lack of standard values of the two parameters. Parameters used in various literatures are inconsistent, seriously affecting the accuracy of this method. In view of this problem, we derived the parameter formula from the first principles with gradual approximation and put forward systematic scheme for calculating the two parameters. The detailed scheme is given as follows:
     1. Quantum chemical calculations are carried out for all the isolated lattice system, and the site orbitals are obtained.
     2. Quantum chemical self-consistent field calculations are carried out for the subsystem which contains the isolated lattice and its adjacent lattices. Then the single-electron Hamiltonian for this subsystem, which is an effective Hamiltonian for calculating the parameters, is obtained. The other atoms in the total system can be taken as point charges or be ignored.
     3. The matrix elements of the effective Hamiltonian based on the site orbital are calculated. Then the on-site energy and the transfer integral can be calculated from these matrix elements using the corresponding formula.
     According to the proposed parameter calculation scheme, our researches on the tight-binding model method of DNA are as follows:
     By calculating the hole and the electron tight binding parameters of various base sequences, the influence of primary structure (base sequence) on the parameters are investigated. The results show that the on-site energy depends mainly on the base type. The order of the hole-on-site energy among the four type bases is G< A< T< C, while the order of electron-on-site energy is opposite. The on-site energy level splits because of the polarization of the adjacent lattices. As for the hole, this polarization leads to a lower energy and the 3'end gives a stronger polarization than the 5'end. The on site energy of guanine base shows the most obvious polarization effect among the four bases. The value of transfer integral of ideal B-form DNA ranges from 0.02 to 0.12eV, which depends on the bases type too. These parameters can be used to construct the tight-binding model Hamiltonian of arbitrary sequences of DNA molecules, calculate the hole or the electron states, and study the influence of the base sequence of the DNA on its charge-transport behavior.
     Dependence of the two tight binding model parameters on the secondary structure (double-helical conformation) of DNA such as rise and twist was also investigated. The results show that the transfer integral between adjacent sites critically depends on the double-helical conformation, especially the twist between the two adjacent base pairs. When the distance between the two adjacent sites takes the standard value (3.38A), the transfer integral of AA and GG with the twist angle of 0°is nearly 0.8eV, but with the twist angle 36°, both types of transfer integral is under 0.1 ev. When the value of twist angle is fixed, the transfer integral decays exponentially with the increase of distance between the two adjacent sites. The influence of the polarization of the adjacent site on the transfer integral was discussed. The result show that, when two-site subsystem used to construct the effective DNA Hamiltonian is obviously asymmetric, the polarization of the site is different from each other, which result in the disuse of the frontier orbital splitting to calculate the transfer integral. In addition, we also compared the on site energy and the transfer integral differences between the average A-DNA and the B-DNA crystal structure.
     With the parameters obtained, we investigated properties of polarons in different quantum well-barrier potential structures of DNA using the tight-binding SSH model. In the case of single-well potential structures, the hole localizes at the GC base pair, forming a polaron, and the polaron is most stable when the quantum well contains three GC base pairs. In the other case, namely periodic well-barrier potential structure, the width of the quantum wells and the quantum barriers both show a significant effect on the polaron. The electron-phonon coupling factor in SSH model is obtained by calculating the relationship between the transfer integral and distance in poly(G)-poly(C) and poly(A)-poly(T) DNA molecules. Properties of hole polarons in these two molecules are investigated using SSH model. The results of model calculation illustrate that polaron in poly(A)-poly(T) has a larger width and is more delocalized than that in poly(G)-poly(C) DNA molecule. Polarons in both the two kind of DNA molecules move in the form of drifting when a electric field is applied in the direction of the DNA chain, and polaron in poly (A)-poly (T) has a higher drifting mobility.
     In addition to the investigations on the tight binding model method of DNA, we also do some study on the generator method to simplify the calculation of elements of the Hamiltonian matrix. When a system under consideration has some symmetry, usually its Hamiltonian space can be parallel partitioned into a set of subspaces, which is invariant under symmetry operations. A general algorithm to construct the generator functions is proposed, and is extended to deal with system having high-dimensional irreducible representations. Furthermore, two model Hamiltonians is used to show how the generator method simplifies the calculation of Hamiltonian matrix elements.
     The original contributions in this doctoral dissertation are as follows:
     1. Computing formula for the parameters of tight binding model was obtained from the most fundamental equation of quantum mechanics with the gradual approximation, and a systematic parameter calculation scheme has been proposed.
     2. With the obtained parameter calculation scheme, the influences of primary structure and secondary structure on the parameters are investigated. The result illustrate that the on site energy depends on the base type of the lattice, and can be affected by the sequence of DNA molecule. While the transfer integral depends mainly on the conformation of DNA molecule, and the influence of the sequence of DNA molecule can be ignored.
     3. Two types of special quantum well-barrier potential structures of the DNA chains are constructed based on the calculated on site energy, properties of hole polaron in them are investigated using the SSH model. Furthermore, with the electron-phonon coupling factor obtained by fitting dependence of transfer integral on distance, static and dynamic properties of hole polarons in poly(G)-poly(C) and poly(A)-poly(T) DNA molecules are investigated.
     4. With the concept that symmetry-invariant subspace, the previously proposed generator method is proved through group representation theory and properties of projection operator, and then generalized to the circumstance of high-dimension irreducible representations of point group.
引文
[1]Watson J.D.& Crick F.H.C. Molecular Structure of Nucleic Acids:A Structure for Deoxyribose Nucleic Acid. Nature. (1953) 171,737-8.
    [2]Genereux J.C.& Barton J.K. Mechanisms for DNA Charge Transport. Chemical Reviews. (2009) 110,1642-62.
    [3]Schuster G.B. Topics in Current Chemistry 236. Long-Range Charge Transfer in DNA Ⅰ. Springer, New York.2003.
    [4]Schuster G.B. Topics in Current Chemistry 237. Long-Range Charge Transfer in DNA Ⅱ. Springer, New York.2003.
    [5]Wagenknecht H.A. Charge Transfer in DNA:from Mechanism to Application. WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim, Germany 2005.
    [6]Chakraborty T., Charge Migration in DNA:Perspectives from Physics, Chemistry, and Biology. Springer, New York.2007.
    [7]Endres R.G., Cox D.L.& Singh R.R.P. Colloquium:The quest for high-conductance DNA. Reviews of Modern Physics. (2004) 76,195.
    [8]Eley D.D.& Spivey D.I. Semiconductivity of organic substances. Part 9.—Nucleic acid in the dry state. Transactions of the Faraday Society. (1962) 58, 411-5.
    [9]Roth S.R. One-Dimensional Metals. VCG Verlagsgesellschaft, Weinheim, Germany 1995.
    [10]Murphy C.J., Arkin M.R., Jenkins Y., Ghatlia N.D., Bossmann S.H., Turro N.J., et al. Long-Range Photoinduced Electron-Transfer through a DNA Helix. Science. (1993) 262,1025-9.
    [11]Murphy C.J., Arkin M.R., Ghatlia N.D., Bossmann S., Turro N.J.& Barton J.K. Fast Photoinduced Electron-Transfer through DNA Intercalation. Proceedings of the National Academy of Sciences of the United States of America. (1994) 91,5315-9.
    [12]Turro N.J.& Barton J.K. Paradigms, supermolecules, electron transfer and chemistry at a distance. What's the problem? The science or the paradigm? Journal of Biological Inorganic Chemistry. (1998) 3,201-9.
    [13]Young M.A., Ravishanker G.& Beveridge D.L. A 5-nanosecond molecular dynamics trajectory for B-DNA:analysis of structure, motions, and solvation. (1997) 73,2313-36.
    [14]Braun E., Eichen Y., Sivan U.& Ben-Yoseph G. DNA-templated assembly and electrode attachment of a conducting silver wire. Nature. (1998) 391,775-8.
    [15]de Pablo P.J., Moreno-Herrero F., Colchero J., Gomez Herrero J., Herrero P., Bar A.M., et al. Absence of dc-Conductivity in lambda-DNA. Physical Review Letters. (2000) 85,4992.
    [16]Storm A.J., Noort J.v., Vries S.d.& Dekker C. Insulating behavior for DNA molecules between nanoelectrodes at the 100 nm length scale. Applied Physics Letters. (2001) 79,3881-3.
    [17]Porath D., Bezryadin A., de Vries S.& Dekker C. Direct measurement of electrical transport through DNA molecules. Nature. (2000) 403,635-8.
    [18]Rakitin A., Aich P., Papadopoulos C., Kobzar Y, Vedeneev A.S., Lee J.S., et al. Metallic Conduction through Engineered DNA:DNA Nanoelectronic Building Blocks. Physical Review Letters. (2001) 86,3670.
    [19]Fink H.-W.& Schonenberger C. Electrical conduction through DNA molecules. Nature. (1999)398,407-10.
    [20]Yoo K.H., Ha D.H., Lee J.O., Park J.W., Kim J., Kim J.J., et al. Electrical Conduction through Poly(dA)-Poly(dT) and Poly(dG)-Poly(dC) DNA Molecules. Physical Review Letters. (2001) 87,198102.
    [21]Kasumov A.Y., Kociak M., Gueron S., Reulet B., Volkov V.T., Klinov D.V., et al. Proximity-Induced Superconductivity in DNA. Science. (2001) 291,280-2.
    [22]Tran P., Alavi B.& Gruner G. Charge Transport along the lambda-DNA Double Helix. Physical Review Letters. (2000) 85,1564.
    [23]Wan C.Z., Fiebig T., Kelley S.O., Treadway C.R., Barton J.K.& Zewail A.H. Femtosecond dynamics of DNA-mediated electron transfer. Proceedings of the National Academy of Sciences of the United States of America. (1999) 96,6014-9.
    [24]Arkin M.R., Stemp E.D.A., Holmlin R.E., Barton J.K., Hormann A., Olson E.J.C., et al. Rates of DNA-mediated electron transfer between metallointercalators. Science. (1996)273,475-80.
    [25]O'Neill M.A.& Barton J.K. DNA-mediated charge transport chemistry and biology. Long-Range Charge Transfer in DNA I.2004, pp.67-115.
    [26]Giese B. Long distance charge transport in DNA:The hopping mechanism. Accounts of Chemical Research. (2000) 33,631-6.
    [27]Giese B., Amaudrut J., Kohler A.K., Spormann M.& Wessely S. Direct observation of hole transfer through DNA by hopping between adenine bases and by tunnelling. Nature. (2001) 412,318-20.
    [28]Giese B., Beyrichgraf X., Burger J., Kesselheim C., Senn M.& Schafer T. The Mechanism of Anaerobic, Radical-Induced DNA Strand Scission. Angewandte Chemie-International Edition in English. (1993) 32,1742-3.
    [29]Lewis F.D.& Wasielewski M.R. Dynamics and Equilibrium for Single Step Hole Transport Processes in Duplex DNA. Longe-Range Charge Transfer in DNA I.2004, pp.45-65.
    [30]Lewis F.D., Letsinger R.L.& Wasielewski M.R. Dynamics of photoinduced charge transfer and hole transport in synthetic DNA hairpins. Accounts of Chemical Research. (2001) 34,159-70.
    [31]Schuster G.B. Long-Range Charge Transfer in DNA:Transient Structural Distortions Control the Distance Dependence. Ace Chem Res. (2000) 33,253-60.
    [32]Schuster G.B.& Landman U. The Mechanism of Long-Distance Radical Cation Transport in Duplex DNA:Ion-Gated Hopping of Polaron-Like Distortions. Longe-Range Charge Transfer in DNA I.2004, pp.139-61.
    [33]Takada T., Kawai K., Cai X.C., Sugimoto A., Fujitsuka M.& Majima T. Charge separation in DNA via consecutive adenine hopping. Journal of the American Chemical Society. (2004) 126,1125-9.
    [34]Kawai K., Takada T., Tojo S.& Majima T. Kinetics of weak distance-dependent hole transfer in DNA by adenine-hopping mechanism. Journal of the American Chemical Society. (2003) 125,6842-3.
    [35]Kelley S.O.& Barton J.K. DNA-mediated electron transfer from a modified base to ethidium:pi-stacking as a modulator of reactivity. Chemistry & Biology. (1998) 5, 413-25.
    [36]Kelley S.O.& Barton J.K. Electron transfer between bases in double helical DNA. Science. (1999)283,375-81.
    [37]Kelley S.O., Holmlin R.E., Stemp E.D.A.& Barton J.K. Photoinduced electron transfer in ethidium-modified DNA duplexes:Dependence on distance and base stacking. Journal of the American Chemical Society. (1997) 119,9861-70.
    [38]Lewis F.D., Liu X.Y., Wu Y.S., Miller S.E., Wasielewski M.R., Letsinger R.L., et al. Structure and photoinduced electron transfer in exceptionally stable synthetic DNA hairpins with stilbenediether linkers. Journal of the American Chemical Society. (1999) 121,9905-6.
    [39]Lewis F.D., Zhang Y.F., Liu X.Y., Xu N.& Letsinger R.L. Naphthalenedicarboxamides as fluorescent probes of inter-and intramolecular electron transfer in single strand, hairpin, and duplex DNA. Journal of Physical Chemistry B. (1999) 103,2570-8.
    [40]Valis L., Wang Q., Raytchev M., Buchvarov I., Wagenknecht H.A.& Fiebig T. Base pair motions control the rates and distance dependencies of reductive and oxidative DNA charge transfer. Proceedings of the National Academy of Sciences of the United States of America. (2006) 103,10192-5.
    [41]Lewis F.D., Zhu H.H., Daublain P., Cohen B.& Wasielewski M.R. Hole mobility in DNA A tracts. Angewandte Chemie-International Edition. (2006) 45,7982-5.
    [42]Liu C.S., Hernandez R.& Schuster G.B. Mechanism for radical cation transport in duplex DNA oligonucleotides. Journal of the American Chemical Society. (2004) 126,2877-84.
    [43]LeBard D.N., Lilichenko M., Matyushov D.V., Berlin Y.A.& Ratner M.A. Solvent reorganization energy of charge transfer in DNA hairpins. Journal of Physical Chemistry B. (2003) 107,14509-20.
    [44]Davis W.B., Hess S., Naydenova I., Haselsberger R., Ogrodnik A., Newton M.D., et al. Distance-Dependent Activation Energies for Hole Injection from Protonated 9-Amino-6-chloro-2-methoxyacridine into Duplex DNA. Journal of the American Chemical Society. (2002) 124,2422-3.
    [45]Jortner J., Bixon M., Langenbacher T.& Michel-Beyerle M.E. Charge transfer and transport in DNA. Proceedings of the National Academy of Sciences of the United States of America. (1998) 95,12759-65.
    [46]Takada T., Kawai K., Fujitsuka M.& Majima T. Direct observation of hole transfer through double-helical DNA over 100 A. Proceedings of the National Academy of Sciences of the United States of America. (2004) 101,14002-6.
    [47]Takada T., Kawai K., Fujitsuka M.& Majima T. Rapid long-distance hole transfer through consecutive adenine sequence. Journal of the American Chemical Society. (2006)128,11012-3.
    [48]Xu, Zhang, Li & Tao. Direct Conductance Measurement of Single DNA Molecules in Aqueous Solution. Nano Letters. (2004) 4,1105-8.
    [49]Xu B.& Tao N.J. Measurement of Single-Molecule Resistance by Repeated Formation of Molecular Junctions. Science. (2003) 301,1221-3.
    [50]Jortner J., Bixon M., Voityuk A.A.& Rosch N. Superexchange mediated charge hopping in DNA. Journal of Physical Chemistry A. (2002) 106,7599-606.
    [51]Bixon M.& Jortner J. Charge transport in DNA via thermally induced hopping. Journal of the American Chemical Society. (2001) 123,12556-67.
    [52]Augustyn K.E., Genereux J.C.& Barton J.K. Distance-independent DNA charge transport across an adenine tract. Angewandte Chemie-International Edition. (2007) 46,5731-3.
    [53]Drummond T.G., Hill M.G.& Barton J.K. Electron transfer rates in DNA films as a function of tether length. Journal of the American Chemical Society. (2004) 126, 15010-1.
    [54]Maniadis P., Kalosakas G, Rasmussen K.& Bishop A.R. Polaron normal modes in the Peyrard-Bishop-Holstein model. Physical Review B. (2003) 68,174304.
    [55]Conwell E.M.& Rakhmanova S.V. Polarons in DNA. PNAS. (2000) 97,4556-60.
    [56]Conwell E.M. Charge transport in DNA in solution:The role of polarons. PNAS. (2005) 102,8795-9.
    [57]Conwell E.M., Bloch S.M., McLaughlin P.M.& Basko D.M. Duplex polarons in DNA. Journal of the American Chemical Society. (2007) 129,9175-81.
    [58]Rakhmanova S.V.& Conwell E.M. Polaron Motion in DNA. J Phys Chem B. (2001)105,2056-61.
    [59]Conwell E.M., Park J.H.& Choi H.Y. Polarons in DNA:Transition from Guanine to Adenine Transport. J Phys Chem B. (2005) 109,9760-3.
    [60]Ly D., Sanii L.& Schuster G.B. Mechanism of charge transport in DNA: Internally-linked anthraquinone conjugates support phonon-assisted polaron hopping. Journal of the American Chemical Society. (1999) 121,9400-10.
    [61]Henderson P.T., Jones D., Hampikian G, Kan Y.Z.& Schuster G.B. Long-distance charge transport in duplex DNA:The phonon-assisted polaron-like hopping mechanism. Proceedings of the National Academy of Sciences of the United States of America. (1999) 96,8353-8.
    [62]Liu C.S.& Schuster GB. Base sequence effects in radical cation migration in duplex DNA:Support for the polaron-like hopping model. Journal of the American Chemical Society. (2003) 125,6098-102.
    [63]Pullman B.& Pullman A. Some Electronic Aspects of Biochemistry. Reviews of Modern Physics. (1960) 32,428.
    [64]Berlin Y.A., Kurnikov I.V., Beratan D., Ratner M.A.& Burin A.L. DNA Electron Transfer Processes:Some Theoretical Notions. Long-Range Charge Transfer in DNA II.2004, pp.1-36.
    [65]Tong G.S.M., Kurnikov I.V.& Beratan D.N. Tunneling Energy Effects on GC Oxidation in DNA. The Journal of Physical Chemistry B. (2002) 106,2381-92.
    [66]Senthilkumar K., Grozema F.C., Guerra C.F., Bickelhaupt F.M., Lewis F.D., Berlin Y.A., et al. Absolute rates of hole transfer in DNA. Journal of the American Chemical Society. (2005) 127,14894-903.
    [67]Voityuk A.A., Jortner J., Bixon M.& Rosch N. Electronic coupling between Watson-Crick pairs for hole transfer and transport in desoxyribonucleic acid. Journal of Chemical Physics. (2001) 114,5614-20.
    [68]Yoshioka Y., Kitagawa Y, Takano Y, Yamaguchi K., Nakamura T.& Saito I. Experimental and theoretical studies on the selectivity of GGG triplets toward one-electron oxidation in B-form DNA. Journal of the American Chemical Society. (1999) 121,8712-9.
    [69]Voityuk A.A., Jortner J., Bixon M.& Rosch N. Energetics of hole transfer in DNA. Chemical Physics Letters. (2000) 324,430-4.
    [70]Troisi A.& Orlandi G Hole migration in DNA:a theoretical analysis of the role of structural fluctuations. Journal of Physical Chemistry B. (2002) 106,2093-101.
    [71]Voityuk A.A., Siriwong K.& Rosch N. Charge transfer in DNA. Sensitivity of electronic couplings to conformational changes. Physical Chemistry Chemical Physics. (2001)3,5421-5.
    [72]Voityuk A.A., Siriwong K.& Rosch N. Environmental fluctuations facilitate electron-hole transfer from guanine to adenine in DNA pi stacks. Angewandte Chemie-International Edition. (2004) 43,624-7.
    [73]Grozema F.C., Siebbeles L.D.A., Berlin Y.A.& Ratner M.A. Hole mobility in DNA:Effects of static and dynamic structural fluctuations. Chemphyschem. (2002) 3, 536.
    [74]Barnett R.N., Cleveland C.L., Joy A., Landman U.& Schuster G.B. Charge migration in DNA:Ion-gated transport. Science. (2001) 294,567-71.
    [75]Voityuk A.A. Charge transfer in DNA:Hole charge is confined to a single base pair due to solvation effects. Journal of Chemical Physics. (2005) 122.
    [76]Cuniberti G, Macia E., Rodriguez A.& Romer R.A. Tight-binding modeling of charge migration in DNA devices. In:Chakraborty T., (Ed.), Charge Migration in DNA:Perspectives from Physics, Chemistry, and Biology.2007, pp.1-20.
    [77]Mallajosyula S.S.& Pati S.K. Toward DNA Conductivity:A Theoretical Perspective. The Journal of Physical Chemistry Letters.1,1881-94.
    [78]Yu Z.G.& Song X. Variable Range Hopping and Electrical Conductivity along the DNA Double Helix. Physical Review Letters. (2001) 86,6018.
    [79]Sugiyama H.& Saito I. Theoretical studies of GC-specific photocleavage of DNA via electron transfer:Significant lowering of ionization potential and 5'-localization of HOMO of stacked GG bases in B-form DNA. Journal of the American Chemical Society. (1996) 118,7063-8.
    [80]Roche S. Sequence Dependent DNA-Mediated Conduction. Physical Review Letters. (2003)91,108101.
    [81]Caetano R.A.& Schulz P.A. Sequencing-Independent Delocalization in a DNA-Like Double Chain with Base Pairing. Physical Review Letters. (2005) 95, 126601.
    [82]Wang X.F.& Chakraborty T. Charge transfer via a two-strand superexchange bridge in DNA. Physical Review Letters. (2006) 97.
    [83]Su W.P., Schrieffer J.R.& Heeger A.J. Solitons in Polyacetylene. Physical Review Letters. (1979) 42,1698.
    [84]Su W.P., Schrieffer J.R.& Heeger A.J. Soliton excitations in polyacetylene. Physical Review B. (1980) 22,2099.
    [85]Conwell E.M.& Basko D.M. Hole Traps in DNA. J Am Chem Soc. (2001) 123, 11441-5.
    [86]Conwell E. Polarons and Transport in DNA. Long-Range Charge Transfer in DNA Ⅱ.2004, pp.73-102.
    [1]唐敖庆,杨忠志 & 李前树 量子化学.科学出版社,北京1982.
    [2]徐光宪 & 黎乐民 量子化学——基本原理和从头计算法.科学出版社,北京1980.
    [3]Szabo A.& Ostlund N. Modern Quantum Chemistry Introduction to Advanced Electronic Structure Theory. Dover Publications, New York 1996.
    [4]Young D.C. Computational Chemistry:A Practical Guide for Applying Techniques to Real-World Problems. Wiley, New York 2001.
    [5]Levine I.N. Quantum Chemistry世界图书出版公司,北京2004.
    [6]Leach A.R. Molecular Modelling:Principles and Applications世界图书出版公司,北京2001.
    [7]Hartree D.R. The Calculation of Atomic Structures. John Wiley and Sons, New York 1957.
    [8]Fischer C.F. The Hartree-Fock Method for Atoms. John Wiely and Sons, New York 1977.
    [9]Krishnan R., Schlegel H.B.& Pople J.A. Derivative studies in configuration--interaction theory. The Journal of Chemical Physics. (1980) 72, 4654-5.
    [10]Foresman J.B., Head-Gordon M., Pople J.A.& Frisch M.J. Toward a systematic molecular orbital theory for excited states. The Journal of Physical Chemistry. (1992) 96,135-49.
    [11]Moller C.& Plesset M.S. Note on an Approximation Treatment for Many-Electron Systems. Physical Review. (1934) 46,618.
    [12]Head-Gordon M., Pople J.A.& Frisch M.J. MP2 energy evaluation by direct methods. Chemical Physics Letters. (1988) 153,503-6.
    [13]Frisch M.J., Head-Gordon M.& Pople J.A. A direct MP2 gradient method. Chemical Physics Letters. (1990) 166,275-80.
    [14]Frisch M.J., Head-Gordon M.& Pople J.A. Semi-direct algorithms for the MP2 energy and gradient. Chemical Physics Letters. (1990) 166,281-9.
    [15]Roothaan C.C.J. New Developments in Molecular Orbital Theory. Reviews of Modern Physics. (1951) 23,69.
    [16]Pople J.A., Santry D.P.& Segal G.A. Approximate Self-Consistent Molecular Orbital Theory. I. Invariant Procedures. The Journal of Chemical Physics. (1965) 43, S129-S35.
    [17]Pople J.A.& Segal G.A. Approximate Self-Consistent Molecular Orbital Theory. Ⅱ. Calculations with Complete Neglect of Differential Overlap. The Journal of Chemical Physics. (1965) 43, S136-S51.
    [18]Pople J.A.& Segal G.A. Approximate Self-Consistent Molecular Orbital Theory. Ⅲ. CNDO Results for AB2 and AB3 Systems. The Journal of Chemical Physics. (1966) 44,3289-96.
    [19]Pople J.A., Beveridge D.L.& Dobosh P.A. Approximate Self-Consistent Molecular-Orbital Theory. V. Intermediate Neglect of Differential Overlap. The Journal of Chemical Physics. (1967) 47,2026-33.
    [20]Dewar M.J.S.& Thiel W. Ground states of molecules.38. The MNDO method. Approximations and parameters. Journal of the American Chemical Society. (1977) 99,4899-907.
    [21]Dewar M.J.S.& Thiel W. Ground states of molecules.39. MNDO results for molecules containing hydrogen, carbon, nitrogen, and oxygen. Journal of the American Chemical Society. (1977) 99,4907-17.
    [22]Dewar M.J.S., Zoebisch E.G., Healy E.F.& Stewart J.J.P. Development and use of quantum mechanical molecular models.76. AMI:a new general purpose quantum mechanical molecular model. Journal of the American Chemical Society. (1985) 107, 3902-9.
    [23]Stewart J.J.P. Optimization of parameters for semiempirical methods I. Method. Journal of Computational Chemistry. (1989) 10,209-20.
    [24]Stewart J.J.P. Optimization of parameters for semiempirical methods II. Applications. Journal of Computational Chemistry. (1989) 10,221-64.
    [25]Parr R.G Density Functional Theory. Annual Review of Physical Chemistry. (1983)34,631-56.
    [26]Hohenberg P.& Kohn W. Inhomogeneous Electron Gas. Physical Review. (1964) 136, B864.
    [27]Kohn W.& Sham L.J. Self-Consistent Equations Including Exchange and Correlation Effects. Physical Review. (1965) 140, Al 133.
    [28]Koch W.& Holthausen M.C. A Chemist's Guide to Density Functional Theory. Wiley, New York 2001.
    [29]黄昆 & 韩汝琦 固体物理学 高等教育出版社,北京1988.
    [30]赵成大 固体量子化学. 高等教育出版社,北京2003.
    [31]Goringe C.M., Bowler D.R.& E. Hernandez. Tight-binding modelling of materials. Reports on Progress in Physics. (1997) 60,1447.
    [32]Slater J.C.& Koster GF. Simplified LCAO Method for the Periodic Potential Problem. Physical Review. (1954) 94,1498.
    [33]Liu F. Self-consistent tight-binding method. Physical Review B. (1995) 52, 10677.
    [34]Elstner M., Porezag D., Jungnickel G., Frauenheim T., Suhai S.& Seifert G. A selfconsistent-charge density-functional tight-binding scheme. Tight-Binding Approach to Computational Materials Science. (1998) 491,131-6
    [35]Niehaus T.A., Suhai S., Della Sala F., Lugli P., Elstner M., Seifert G, et al. Tight-binding approach to time-dependent density-functional response theory. Physical Review B. (2001) 63,085108
    [36]Huckel Z. Quanten theoretische Beitrage zum Benzolproblem. I. Die Electron enkonfiguration des Benzols. Zeitschrift fur Physik. (1931) 70,203-86.
    [37]Anderson P.W. Absence of Diffusion in Certain Random Lattices. Physical Review. (1958) 109,1492.
    [38]Su W.P., Schrieffer J.R.& Heeger A.J. Solitons in Polyacetylene. Physical Review Letters. (1979) 42,1698.
    [39]Su W.P., Schrieffer J.R.& Heeger A.J. Soliton excitations in polyacetylene. Physical Review B. (1980) 22,2099.
    [40]Heeger A.J. Nobel Lecture:Semiconducting and metallic polymers:The fourth generation of polymeric materials. Reviews of Modern Physics. (2001) 73,681.
    [41]Cuniberti G, Macia E., Rodriguez A.& Romer R.A. Tight-binding modeling of charge migration in DNA devices. In:Chakraborty T., (Ed.), Charge Migration in DNA:Perspectives from Physics, Chemistry, and Biology.2007, pp.1-20.
    [42]Lowdin P.-O. On the Non-Orthogonality Problem Connected with the Use of Atomic Wave Functions in the Theory of Molecules and Crystals. The Journal of Chemical Physics. (1950) 18,365-75.
    [43]Frisch M.J., Trucks G.W., Schlegel H.B., Scuseria G.E., Robb M.A., Cheeseman J.R., et al. Gaussian 03. Revision C.02 ed. Gaussian, Inc., Wallingford CT.2004.
    [44]Schmidt M.W., Baldridge K.K., Boatz J.A., Elbert S.T., Gordon M.S., Jensen J.H., et al. General atomic and molecular electronic structure system. Journal of Computational Chemistry. (1993) 14,1347-63.
    [1]Wagenknecht H.A. Charge Transfer in DNA:from Mechanism to Application. WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim, Germany 2005.
    [2]Schuster GB. Topics in Current Chemistry 236. Long-Range Charge Transfer in DNA I. Springer, New York.2003.
    [3]Schuster GB. Topics in Current Chemistry 237. Long-Range Charge Transfer in DNA Ⅱ. Springer, New York.2003.
    [4]Endres R.G, Cox D.L.& Singh R.R.P. Colloquium:The quest for high-conductance DNA. Reviews of Modern Physics. (2004) 76,195.
    [5]Genereux J.C.& Barton J.K. Mechanisms for DNA Charge Transport. Chemical Reviews. (2009) 110,1642-62.
    [6]Chakraborty T., Charge Migration in DNA:Perspectives from Physics, Chemistry, and Biology. Springer, New York.2007.
    [7]Murphy C.J., Arkin M.R., Jenkins Y, Ghatlia N.D., Bossmann S.H., Turro N.J., et al. Long-Range Photoinduced Electron-Transfer through a DNA Helix. Science. (1993) 262,1025-9.
    [8]Henderson P.T., Jones D., Hampikian G, Kan Y.Z.& Schuster GB. Long-distance charge transport in duplex DNA:The phonon-assisted polaron-like hopping mechanism. Proceedings of the National Academy of Sciences of the United States of America. (1999) 96,8353-8.
    [9]Lewis F.D., Liu X.Y., Liu J.Q., Miller S.E., Hayes R.T.& Wasielewski M.R. Direct measurement of hole transport dynamics in DNA. Nature. (2000) 406,51-3.
    [10]Giese B., Amaudrut J., Kohler A.K., Spormann M.& Wessely S. Direct observation of hole transfer through DNA by hopping between adenine bases and by tunnelling. Nature. (2001) 412,318-20.
    [11]Tran P., Alavi B.& Gruner G. Charge Transport along the lambda-DNA Double Helix. Physical Review Letters. (2000) 85,1564.
    [12]Cuniberti G., Macia E., Rodriguez A.& Romer R.A. Tight-binding modeling of charge migration in DNA devices. In:Chakraborty T., (Ed.), Charge Migration in DNA:Perspectives from Physics, Chemistry, and Biology.2007, pp.1-20.
    [13]Mallajosyula S.S.& Pati S.K. Toward DNA Conductivity:A Theoretical Perspective. The Journal of Physical Chemistry Letters.1,1881-94.
    [14]Conwell E.M.& Rakhmanova S.V. Polarons in DNA. PNAS. (2000) 97,4556-60.
    [15]Rakhmanova S.V.& Conwell E.M. Polaron Motion in DNA. J Phys Chem B. (2001)105,2056-61.
    [16]Hush N.S.& Cheung A.S. Ionization potentials and donor properties of nucleic acid bases and related compounds. Chemical Physics Letters. (1975) 34,11-3.
    [17]Colson A.O., Besler B., Close D.M.& Sevilla M.D. ABINITIO MOLECULAR-ORBITAL CALCULATIONS OF DNA BASES AND THEIR RADICAL IONS IN VARIOUS PROTONATION STATES-EVIDENCE FOR PROTON-TRANSFER IN GC BASE PAIR RADICAL-ANIONS. Journal of Physical Chemistry. (1992)96,661-8.
    [18]Saito I., Nakamura T., Nakatani K., Yoshioka Y., Yamaguchi K.& Sugiyama H. Mapping of the Hot Spots for DNA Damage by One-Electron Oxidation:Efficacy of GG Doublets and GGG Triplets as a Trap in Long-Range Hole Migration. J Am Chem Soc. (1998) 120,12686-7.
    [19]Voityuk A.A., Zerner M.C.& Rosch N. Extension of the neglect of diatomic differential overlap method to spectroscopy. NDDO-G parametrization and results for organic molecules. Journal of Physical Chemistry A. (1999) 103,4553-9.
    [20]Voityuk A.A., Jortner J., Bixon M.& Rosch N. Energetics of hole transfer in DNA. Chemical Physics Letters. (2000) 324,430-4.
    [21]Newton M.D. Quantum chemical probes of electron-transfer kinetics:the nature of donor-acceptor interactions. Chemical Reviews. (1991) 91,767-92.
    [22]Sugiyama H.& Saito I. Theoretical Studies of GG-Specific Photocleavage of DNA via Electron Transfer:Significant Lowering of Ionization Potential and 5'-Localization of HOMO of Stacked GG Bases in B-Form DNA. J Am Chem Soc. (1996)118,7063-8.
    [23]Zhang H., Li X.-Q., Han P., Yu X.Y.& Yan Y. A partially incoherent rate theory of long-range charge transfer in deoxyribose nucleic acid. The Journal of Chemical Physics. (2002) 117,4578-84.
    [24]Voityuk A.A., Rosch N., Bixon M.& Jortner J. Electronic coupling for charge transfer and transport in DNA. Journal of Physical Chemistry B. (2000) 104,9740-5.
    [25]Voityuk A.A.& Rosch N. Fragment charge difference method for estimating donor-acceptor electronic coupling:Application to DNA pi-stacks. Journal of Chemical Physics. (2002) 117,5607-16.
    [26]Voityuk A. A. Estimation of electronic coupling in pi-stacked donor-bridge-acceptor systems:Correction of the two-state model. Journal of Chemical Physics. (2006) 124.
    [27]Rosch N.& Voityuk A.A. Quantum chemical calculation of donor-acceptor coupling for charge transfer in DNA. Long-Range Charge Transfer in DNA Ⅱ.2004, pp.37-72.
    [28]Chong D.P., Gritsenko O.V.& Baerends E.J. Interpretation of the Kohn--Sham orbital energies as approximate vertical ionization potentials. The Journal of Chemical Physics. (2002) 116,1760-72.
    [29]Senthilkumar K., Grozema F.C., Guerra C.F., Bickelhaupt F.M.& Siebbeles L.D.A. Mapping the sites for selective oxidation of guanines in DNA. Journal of the American Chemical Society. (2003) 125,13658-9.
    [30]Senthilkumar K., Grozema F.C., Guerra C.F., Bickelhaupt F.M., Lewis F.D., Berlin Y.A., et al. Absolute rates of hole transfer in DNA. Journal of the American Chemical Society. (2005) 127,14894-903.
    [31]Elstner M., Porezag D., Jungnickel G., Elsner J., Haugk M., Frauenheim T., et al. Self-consistent-charge density-functional tight-binding method for simulations of complex materials properties. Physical Review B. (1998) 58,7260-8.
    [32]Kubar T., Woiczikowski P.B., Cuniberti G.& Elstner M. Efficient calculation of charge-transfer matrix elements for hole transfer in DNA. Journal of Physical Chemistry B. (2008) 112,7937-47.
    [33]Kubar T.& Elstner M. What governs the charge transfer in DNA? The role of DNA conformation and environment. Journal of Physical Chemistry B. (2008) 112, 8788-98.
    [34]Lowdin P.-O. On the Non-Orthogonality Problem Connected with the Use of Atomic Wave Functions in the Theory of Molecules and Crystals. The Journal of Chemical Physics. (1950) 18,365-75.
    [35]Lu X.& Olson W.K.3DNA:a software package for the analysis, rebuilding and visualization of three-dimensional nucleic acid structures. Nucleic Acids Research. (2003)31,5108-21.
    [36]Lu X.J.& Olson W.K.3DNA:a versatile, integrated software system for the analysis, rebuilding and visualization of three-dimensional nucleic-acid structures. Nature Protocols. (2008) 3,1213-27.
    [37]Clowney L., Jain S.C., Srinivasan A.R., Westbrook J., Olson W.K.& Berman H.M. Geometric Parameters in Nucleic Acids:Nitrogenous Bases. J Am Chem Soc. (1996)118,509-18.
    [38]Frisch M.J., Trucks GW, Schlegel H.B., Scuseria GE., Robb M.A., Cheeseman J.R., et al. Gaussian 03. Revision C.02 ed. Gaussian, Inc., Wallingford CT.2004.
    [39]Mulliken R.S. Electronic Population Analysis on LCAO-MO Molecular Wave Functions. I. The Journal of Chemical Physics. (1955) 23,1833-40.
    [1]Genereux J.C.& Barton J.K. Mechanisms for DNA Charge Transport. Chemical Reviews. (2009) 110,1642-62.
    [2]Mallajosyula S.S.& Pati S.K. Toward DNA Conductivity:A Theoretical Perspective. The Journal of Physical Chemistry Letters.1,1881-94.
    [3]Schuster G.B. Topics in Current Chemistry 236. Long-Range Charge Transfer in DNA Ⅰ. Springer, New York.2003.
    [4]Schuster G.B. Topics in Current Chemistry 237. Long-Range Charge Transfer in DNA Ⅱ. Springer, New York.2003.
    [5]Endres R.G., Cox D.L.& Singh R.R.P. Colloquium:The quest for high-conductance DNA. Reviews of Modern Physics. (2004) 76,195.
    [6]Cuniberti G, Macia E., Rodriguez A.& Romer R.A. Tight-binding modeling of charge migration in DNA devices. In:Chakraborty T., (Ed.), Charge Migration in DNA:Perspectives from Physics, Chemistry, and Biology.2007, pp.1-20.
    [7]Yu Z.G.& Song X. Variable Range Hopping and Electrical Conductivity along the DNA Double Helix. Physical Review Letters. (2001) 86,6018.
    [8]Conwell E.M.& Rakhmanova S.V. Polarons in DNA. PNAS. (2000) 97,4556-60.
    [9]Rakhmanova S.V.& Conwell E.M. Polaron Motion in DNA. J Phys Chem B. (2001)105,2056-61.
    [10]Grozema F.C., Berlin Y.A.& Siebbeles L.D.A. Mechanism of charge migration through DNA:Molecular wire behavior, single-step tunneling or hopping? Journal of the American Chemical Society. (2000) 122,10903-9.
    [11]Grozema F.C., Siebbeles L.D.A., Berlin Y.A.& Ratner M.A. Hole mobility in DNA:Effects of static and dynamic structural fluctuations. Chemphyschem. (2002) 3, 536.
    [12]Ivanova A., Shushkov P.& Rosch N. Systematic Study of the Influence of Base-Step Parameters on the Electronic Coupling between Base-Pair Dimers: Comparison of A-DNA and B-DNA Forms. The Journal of Physical Chemistry A. (2008) 112,7106-14.
    [13]Voityuk A.A., Siriwong K.& Rosch N. Charge transfer in DNA. Sensitivity of electronic couplings to conformational changes. Physical Chemistry Chemical Physics. (2001)3,5421-5.
    [14]Senthilkumar K., Grozema F.C., Guerra C.F., Bickelhaupt F.M., Lewis F.D., Berlin Y.A., et al. Absolute rates of hole transfer in DNA. Journal of the American Chemical Society. (2005) 127,14894-903.
    [15]Kubar T., Woiczikowski P.B., Cuniberti G.& Elstner M. Efficient calculation of charge-transfer matrix elements for hole transfer in DNA. Journal of Physical Chemistry B. (2008) 112,7937-47.
    [16]Olson W.K., Bansal M., Burley S.K., Dickerson R.E., Gerstein M., Harvey S.C., et al. A standard reference frame for the description of nucleic acid base-pair geometry. Journal of Molecular Biology. (2001) 313,229-37.
    [17]Lu X.J.& Olson W.K.3DNA:a software package for the analysis, rebuilding and visualization of three-dimensional nucleic acid structures. Nucleic Acids Research. (2003)31,5108-21.
    [18]Lu X.J.& Olson W.K.3DNA:a versatile, integrated software system for the analysis, rebuilding and visualization of three-dimensional nucleic-acid structures. Nature Protocols. (2008) 3,1213-27.
    [19]Clowney L., Jain S.C., Srinivasan A.R., Westbrook J., Olson W.K.& Berman H.M. Geometric Parameters in Nucleic Acids:Nitrogenous Bases. J Am Chem Soc. (1996) 118,509-18.
    [20]Frisch M.J., Trucks G.W., Schlegel H.B., Scuseria G.E., Robb M.A., Cheeseman J.R., et al. Gaussian 03. Revision C.02 ed. Gaussian, Inc., Wallingford CT.2004.
    [1]Schuster G.B. Topics in Current Chemistry 236. Long-Range Charge Transfer in DNA I. Springer, New York.2003.
    [2]Schuster G.B. Topics in Current Chemistry 237. Long-Range Charge Transfer in DNA II. Springer, New York.2003.
    [3]Wagenknecht H.A. Charge Transfer in DNA:from Mechanism to Application. WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim, Germany 2005.
    [4]Chakraborty T., Charge Migration in DNA:Perspectives from Physics, Chemistry, and Biology. Springer, New York.2007.
    [5]Endres R.G, Cox D.L.& Singh R.R.P. Colloquium:The quest for high-conductance DNA. Reviews of Modern Physics. (2004) 76,195.
    [6]Genereux J.C.& Barton J.K. Mechanisms for DNA Charge Transport. Chemical Reviews. (2009) 110,1642-62.
    [7]Mallajosyula S.S.& Pati S.K. Toward DNA Conductivity:A Theoretical Perspective. The Journal of Physical Chemistry Letters.1,1881-94.
    [8]Eley D.D.& Spivey D.I. Semiconductivity of organic substances. Part 9.—Nucleic acid in the dry state. Transactions of the Faraday Society. (1962) 58, 411-5.
    [9]Murphy C.J., Arkin M.R., Jenkins Y, Ghatlia N.D., Bossmann S.H., Turro N.J., et al. Long-Range Photoinduced Electron-Transfer through a DNA Helix. Science. (1993) 262,1025-9.
    [10]Hall D.B., Holmlin R.E.& Barton J.K. Oxidative DNA damage through long-range electron transfer. Nature. (1996) 382,731-5.
    [11]Giese B., Amaudrut J., Kohler A.K., Spormann M.& Wessely S. Direct observation of hole transfer through DNA by hopping between adenine bases and by tunnelling. Nature. (2001) 412,318-20.
    [12]Bixon M., Giese B., Wessely S., Langenbacher T., Michel-Beyerle M.E.& Jortner J. Long-range charge hopping in DNA. Proceedings of the National Academy of Sciences of the United States of America. (1999) 96,11713-6.
    [13]Giese B. Long distance charge transport in DNA:The hopping mechanism. Accounts of Chemical Research. (2000) 33,631-6.
    [14]Tran P., Alavi B.& Gruner G. Charge Transport along the lambda-DNA Double Helix. Physical Review Letters. (2000) 85,1564.
    [15]Kasumov A.Y., Kociak M., Gueron S., Reulet B., Volkov V.T., Klinov D.V., et al. Proximity-Induced Superconductivity in DNA. Science. (2001) 291,280-2.
    [16]Yoo K.H., Ha D.H., Lee J.O., Park J.W., Kim J., Kim J.J., et al. Electrical Conduction through Poly(dA)-Poly(dT) and Poly(dG)-Poly(dC) DNA Molecules. Physical Review Letters. (2001) 87,198102.
    [17]Rakitin A., Aich P., Papadopoulos C., Kobzar Y, Vedeneev A.S., Lee J.S., et al. Metallic Conduction through Engineered DNA:DNA Nanoelectronic Building Blocks. Physical Review Letters. (2001) 86,3670.
    [18]Porath D., Bezryadin A., de Vries S.& Dekker C. Direct measurement of electrical transport through DNA molecules. Nature. (2000) 403,635-8.
    [19]Storm A.J., Noort J.v., Vries S.d.& Dekker C. Insulating behavior for DNA molecules between nanoelectrodes at the 100 nm length scale. Applied Physics Letters. (2001)79,3881-3.
    [20]Braun E., Eichen Y, Sivan U.& Ben-Yoseph G DNA-templated assembly and electrode attachment of a conducting silver wire. Nature. (1998) 391,775-8.
    [21]Zhang Y, Austin R.H., Kraeft J., Cox E.C.& Ong N.P. Insulating Behavior of lambda-DNA on the Micron Scale. Physical Review Letters. (2002) 89,198102.
    [22]Conwell E.M.& Bloch S.M. Base Sequence Effects on Transport in DNA. J Phys Chem B. (2006)110,5801-6.
    [23]Kubar T.& Elstner M. What governs the charge transfer in DNA? The role of DNA conformation and environment. Journal of Physical Chemistry B. (2008) 112, 8788-98.
    [24]Voityuk A.A., Siriwong K.& Rosch N. Charge transfer in DNA. Sensitivity of electronic couplings to conformational changes. Physical Chemistry Chemical Physics. (2001)3,5421-5.
    [25]O'Neill M.A.& Barton J.K. DNA charge transport:Conformationally gated hopping through stacked domains. Journal of the American Chemical Society. (2004) 126,11471-83.
    [26]Yves A.M., Francesco Luigi G., Teodoro L.& Michele P. Solvent Effects on Charge Spatial Extent in DNA and Implications for Transfer. Physical Review Letters. (2007)99,058104.
    [27]Lewis F.D., Liu X.Y., Liu J.Q., Miller S.E., Hayes R.T.& Wasielewski M.R. Direct measurement of hole transport dynamics in DNA. Nature. (2000) 406,51-3.
    [28]Apalkov V.& Chakraborty T. Transverse tunneling current through guanine traps in DNA. Physical Review B. (2005) 72.
    [29]Grozema F.C., Berlin Y.A.& Siebbeles L.D.A. Mechanism of charge migration through DNA:Molecular wire behavior, single-step tunneling or hopping? Journal of the American Chemical Society. (2000) 122,10903-9.
    [30]Takada T., Kawai K., Fujitsuka M.& Majima T. Direct observation of hole transfer through double-helical DNA over 100 A. Proceedings of the National Academy of Sciences of the United States of America. (2004) 101,14002-6.
    [31]Takada T, Kawai K., Cai X.C., Sugimoto A., Fujitsuka M.& Majima T. Charge separation in DNA via consecutive adenine hopping. Journal of the American Chemical Society. (2004) 126,1125-9.
    [32]Takada T., Kawai K., Fujitsuka M.& Majima T. Rapid long-distance hole transfer through consecutive adenine sequence. Journal of the American Chemical Society. (2006)128,11012-3.
    [33]Lewis F.D., Zhu H.H., Daublain P., Cohen B.& Wasielewski M.R. Hole mobility in DNA A tracts. Angewandte Chemie-International Edition. (2006) 45,7982-5.
    [34]Berlin Y.A., Kurnikov I.V., Beratan D., Ratner M.A.& Burin A.L. DNA Electron Transfer Processes:Some Theoretical Notions. Long-Range Charge Transfer in DNA Ⅱ.2004, pp.1-36.
    [35]Ladik J., Bende A.& Bogar F. The electronic structure of the four nucleotide bases in DNA, of their stacks, and of their homopolynucleotides in the absence and presence of water. The Journal of Chemical Physics. (2008) 128,105101-14.
    [36]Henderson P.T., Jones D., Hampikian G., Kan Y.Z.& Schuster G.B. Long-distance charge transport in duplex DNA:The phonon-assisted polaron-like hopping mechanism. Proceedings of the National Academy of Sciences of the United States of America. (1999) 96,8353-8.
    [37]Alexandre S.S., Artacho E., Soler J.M.& Chacham H. Small Polarons in Dry DNA. Physical Review Letters. (2003) 91,108105.
    [38]Joy A., Guler G., Ahmed S., McLaughlin L.W.& Schuster G.B. Polaronic semiconductor behavior of long-range charge transfer in DNA oligomers in solution: controlling barriers to long-distance radical cation migration in DNA with thymine analogs. Faraday Discussions. (2006) 131,357-65.
    [39]Schuster G.B.& Landman U. The Mechanism of Long-Distance Radical Cation Transport in Duplex DNA:Ion-Gated Hopping of Polaron-Like Distortions. Longe-Range Charge Transfer in DNA Ⅰ.2004, pp.139-61.
    [40]Barnett R.N., Cleveland C.L., Joy A., Landman U.& Schuster G.B. Charge migration in DNA:Ion-gated transport. Science. (2001) 294,567-71.
    [41]Conwell E.M.& Rakhmanova S.V. Polarons in DNA. PNAS. (2000) 97,4556-60.
    [42]Conwell E.M.& Basko D.M. Hole Traps in DNA. J Am Chem Soc. (2001) 123, 11441-5.
    [43]Rakhmanova S.V.& Conwell E.M. Polaron Motion in DNA. J Phys Chem B. (2001)105,2056-61.
    [44]Conwell E.M.& Basko D.M. Polarons and conduction in DNA. Synthetic Metals. (2003)137,1381-3.
    [45]Kalosakas G., Rasmussen K.O.& Bishop A.R. Charge trapping in DNA due to intrinsic vibrational hot spots. The Journal of Chemical Physics. (2003) 118,3731-5.
    [46]Kalosakas G., Rasmussen K.O.& Bishop A.R. Nonlinear excitations in DNA: polarons and bubbles. Synthetic Metals. (2004) 141,93-7.
    [47]Maniadis P., Kalosakas G., Rasmussen K.O.& Bishop A.R. ac conductivity in a DNA charge transport model. Physical Review E (Statistical, Nonlinear, and Soft Matter Physics). (2005) 72,021912.
    [48]Berashevich J.A., Apalkov V.& Chakraborty T. Polaron tunneling dynamics of a linear polymer of nucleotides. Journal of Physics-Condensed Matter. (2008) 20,-
    [49]Conwell E.M. Charge transport in DNA in solution:The role of polarons. PNAS. (2005) 102,8795-9.
    [50]Conwell E.M.& Basko D.M. Effect of Water Drag on Diffusion of Drifting Polarons in DNA. J Phys Chem B. (2006) 110,23603-6.
    [51]Conwell E.M., Bloch S.M., McLaughlin P.M.& Basko D.M. Duplex polarons in DNA. Journal of the American Chemical Society. (2007) 129,9175-81.
    [52]Kalosakas G., Aubry S.& Tsironis G.P. Polaron solutions and normal-mode analysis in the semiclassical Holstein model. Physical Review B. (1998) 58,3094.
    [53]Maniadis P., Kalosakas G, Rasmussen K.& Bishop A.R. Polaron normal modes in the Peyrard-Bishop-Holstein model. Physical Review B. (2003) 68,174304.
    [54]Komineas S., Kalosakas G. & Bishop A.R. Effects of intrinsic base-pair fluctuations on charge transport in DNA. Physical Review E. (2002) 65,061905.
    [55]Basko D.M.& Conwell E.M. Effect of solvation on hole motion in DNA. Physical Review Letters. (2002) 88.
    [56]Su W.P., Schrieffer J.R.& Heeger A.J. Solitons in Polyacetylene. Physical Review Letters. (1979) 42,1698.
    [57]Su W.P., Schrieffer J.R.& Heeger A.J. Soliton excitations in polyacetylene. Physical Review B. (1980) 22,2099.
    [58]Su W.P.& Schrieffer J.R. Soliton Dynamics in Polyacetylene. PNAS. (1980) 77, 5626-9.
    [59]Ruan Q., Liu T., Kolbanovskiy A., Liu Y., Ren J., Skorvaga M., et al. Sequence context-and temperature-dependent nucleotide excision repair of a benzo[a]pyrene diol epoxide-guanine DNA adduct catalyzed by thermophilic UvrABC proteins. Biochemistry. (2007) 46,7006-15.
    [60]Zhang G.Q., Cui P., Wu J.& Liu C.B. Structural fluctuation effect on the polaron in DNA. Physica B-Condensed Matter. (2009) 404,1485-9.
    [61]Wei J.H., Wang L.X., Chan K.S.& Yan Y. Trapping and hopping of bipolarons in DNA:Su-Schrieffer-Heeger model calculations. Physical Review B. (2005) 72, 064304.
    [62]Zheng B., Wu J., Sun W.& Liu C. Trapping and hopping of polaron in DNA periodic stack. Chemical Physics Letters. (2006) 425,123-7.
    [63]Hakim M.B., Lindsay S.M.& Powell J. The speed of sound in DNA. Biopolymers. (1984) 23,1185-92.
    [64]Lewis F.D., Daublain P., Cohen B., Vura-Weis J., Shafirovich V.& Wasielewski M.R. Dynamics and efficiency of DNA hole transport via alternating AT versus poly(A) sequences. Journal of the American Chemical Society. (2007) 129,15130-+.
    [65]Olson W.K., Bansal M., Burley S.K., Dickerson R.E., Gerstein M., Harvey S.C., et al. A standard reference frame for the description of nucleic acid base-pair geometry. Journal of Molecular Biology. (2001) 313,229-37.
    [66]Clowney L., Jain S.C., Srinivasan A.R., Westbrook J., Olson W.K.& Berman H.M. Geometric Parameters in Nucleic Acids:Nitrogenous Bases. J Am Chem Soc. (1996)118,509-18.
    [67]Frisch M.J., Trucks G.W., Schlegel H.B., Scuseria G.E., Robb M.A., Cheeseman J.R., et al. Gaussian 03. Revision C.02 ed. Gaussian, Inc., Wallingford CT.2004.
    [68]Ono Y.& Terai A. Motion of Charged Solition in Polyacetylene Due to Electric Field. J Phys Soc Jpn. (1990) 59,2893-904.
    [1]Elliott J.P.& Dawber P.G. Symmetry in physics. The Macmillan Press Led, London 1979.
    [2]Cotton F.A. Chemical Applications of Group Theory. Wiley, New York 1993.
    [3]Bishop D.M. Group theory and chemistry. Clarendon Press, Oxford 1973.
    [4]Wigner E.P. Group Theory and Its Application to the Quantum Mechanics of Atomic Spectra. Academic press Inc., New York 1959.
    [5]徐光宪 & 黎乐民 量子化学——基本原理和从头计算法.科学出版社,北京1980.
    [6]Eyring H., Walter J.& kimball G.E. Quantum Chemistry. Wiley, New York 1967.
    [7]Hammermesh M. Group theory and its application to physical problems. Dover Publications Inc., New York 1989.
    [8]Ellzey M.L. Finite group theory for large systems.1. Symmetry-adaptation. Journal of Chemical Information and Computer Sciences. (2003) 43,178-81.
    [9]Ellzey M.L.& Villagran D. Finite group theory for large systems.2. Generating relations and irreducible representations for the icosahedral point group, J(h). Journal of Chemical Information and Computer Sciences. (2003) 43,1763-70.
    [10]Ellzey M.L. Finite group theory for large systems.3. Symmetry-generation of reduced matrix elements for icosahedral C-20 and C-60 molecules. Journal of Computational Chemistry. (2007) 28,811-7.
    [11]Wu J., Klein D.J.& Schmalz T.G. Computation on symmetry-invariant bases. International Journal of Quantum Chemistry. (2003) 94,7-22.
    [12]Cui P., Wu J., Zhang G.Q.& Boyd R.J. A Simple Representation of Energy Matrix Elements in Terms of Symmetry-Invariant Bases. Journal of Computational Chemistry. (2010) 31,492-6.
    [13]Robinson G.B. Representation theory of the symmetric group. University of Toronto Press, Toronto 1961.
    [14]James G.D.& Liebeck M.W. Representations and characters of group. Cambridge University Press, Cambridge, UK 2001.
    [15]Wu J.& Jiang Y.S. Optimization of basis sets in valence bond calculations. Chemical Physics Letters. (1999) 311,315-20.
    [16]Huckel Z. Quanten theoretische Beitrage zum Benzolproblem. I. Die Electron enkonfiguration des Benzols. Zeitschrift fur Physik. (1931) 70,203-86.
    [17]Malrieu J.P.& Maynau D. A valence bond effective Hamiltonian for neutral states of.pi. systems.1. Method. Journal of the American Chemical Society. (1982) 104,3021-9.
    [18]Maynau D.& Malrieu J.P. A valence bond effective Hamiltonian for the neutral states of.pi. systems.2. Results. Journal of the American Chemical Society. (1982) 104,3029-34.
    [19]Said M., Maynau D., Malrieu J.P.& Garcia-Bach M.A. A nonempirical Heisenberg Hamiltonian for the study of conjugated hydrocarbons. Ground-state conformational studies. J Am Chem Soc. (1984) 106,571-9.
    [20]Wu J., Schmalz T.G.& Klein D.J. An extended Heisenberg model for conjugated hydrocarbons. Journal of Chemical Physics. (2002) 117,9977-82.
    [21]Wu J., Schmalz T.G.& Klein D.J. An extended Heisenberg model for conjugated hydrocarbons. II. Kekule basis. Journal of Chemical Physics. (2003) 119,11011-6.
    [22]Wu J.& Jiang Y.S. The valence bond calculations for conjugated hydrocarbons having 24-28 pi-electrons. Journal of Computational Chemistry. (2000) 21,856-69.
    [23]Li S.& Jiang Y. Bond Lengths, Reactivities, and Aromaticities of Benzenoid Hydrocarbons Based on Valence Bond Calculations. Journal of the American Chemical Society. (1995) 117,8401-6.
    [24]Klein D.J.& Trinajstic N. Valence Bond Theory & Chemical Structure. Elsevier, Amsterdam 1990.
    [25]Poshusta R.D.& Kelin D.J. Novel Ab Initio Correlated Calculations for an Infinite Chain of Hydrogen Atoms. Physical Review Letters. (1982) 48,1555.
    [26]Ciesielski A., Cyranski M.K., Krygowski T.M., Fowler P.W.& Lillington M. Super-Delocalized Valence Isomer of Coronene. The Journal of Organic Chemistry. (2006) 71,6840-5.
    [27]Novoselov K.S., Geim A.K., Morozov S.V., Jiang D., Zhang Y, Dubonos S.V., et al. Electric field effect in atomically thin carbon films. Science. (2004) 306,666-9.
    [28]Novoselov K.S., Jiang D., Schedin F., Booth T.J., Khotkevich V.V., Morozov S.V., et al. Two-dimensional atomic crystals. Proceedings of the National Academy of Sciences of the United States of America. (2005) 102,10451-3.
    [29]Manes J.L. Symmetry-based approach to electron-phonon interactions in graphene. Physical Review B. (2007) 76,045430.
    1 Murphy C J, Arkin M R, Jenkins Y, Ghatlia N D, Bossmann S H, Turro N J, Barton J K. Long-Range Photoinduced Electron-Transfer through a DNA Helix. Science,1993, 262:1025-1029
    2 Hall D B, Holmlin R E, Barton J K. Oxidative DNA damage through long-range electron transfer. Nature,1996,382:731-735
    3 Giese B. Long distance charge transport in DNA:The hopping mechanism. Acc Chem Res, 2000,33:631-636
    4 Bixon M, Giese B, Wessely S, Langenbacher T, Michel-Beyerle M E, Jortner J. Long-range charge hopping in DNA. PNAS,1999,96:11713-11716
    5 Henderson P T, Jones D, Hampikian G, Kan Y Z, Schuster G B. Long-distance charge transport in duplex DNA:The phonon-assisted polaron-like hopping mechanism. PNAS,1999, 96:8353-8358
    6 Schuster G B:Long-Range Charge Transfer in DNA:Transient Structural Distortions Control the Distance Dependence. Acc Chem Res,2000,33:253-260
    7 Takada T, Kawai K, Fujitsuka M, Majima T. Direct observation of hole transfer through double-helical DNA over 100 A. PNAS,2004,101:14002-14006
    8 Takada T, Kawai K, Fujitsuka M, Majima T. Rapid long-distance hole transfer through consecutive adenine sequence. J Am Chem Soc,2006,128:11012-11013
    9 Porath D, Bezryadin A, de Vries S, Dekker C. Direct measurement of electrical transport through DNA molecules. Nature,2000,403:635-638
    10 Eley D D, Spivey D I. Semiconductivity of organic substances. Part 9.—Nucleic acid in the dry state. Trans Faraday Soc,1962,58:411-415
    11 Conwell E M, Rakhmanova S V. Polarons in DNA. PNAS,2000,97:4556-4560
    12 Alexandre-S S, Artacho E, Soler J M, Chacham H. Small Polarons in Dry DNA. Phys Rev Lett,2003,91:108105
    13 Rakhmanova S V, Conwell E M. Polaron Motion in DNA. J Phys Chem B,2001, 105:2056-2061.
    14 Zheng B, Wu J, Sun W Q, Liu C B. Trapping and hopping of polaron in DNA periodic stack. Chem Phys Lett,2006,425:123-127
    15 Su W P, Schrieffer J R, Heeger A J. Solitons in Polyacetylene. Phys Rev Lett,1979,42:1698
    16 Su W P, Schrieffer J R, Heeger A J. Soliton excitations in polyacetylene. Phys Rev B,1980, 22:2099
    17 Voityuk A A, Rosch N, Bixon M, Jortner J. Electronic coupling for charge transfer and transport in DNA. J Phys Chem B,2000,104:9740-9745
    18 Voityuk A A, Jortner J, Bixon M, Rosch N. Electronic coupling between Watson-Crick pairs for hole transfer and transport in desoxyribonucleic acid. J Chem Phys,2001,114:5614-5620
    19 Ono Y, Terai A. Motion of Charged Solition in Polyacetylene Due to Electric Field. J Phys Soc Jpn,1990,59:2893-2904
    20 Gaussian 03. Revision C.02. Wallingford CT:Gaussian, Inc.2004
    21 Olson W K, Bansal M, Burley S K, Dickerson R E, Gerstein M, Harvey S C, Heinemann U, Lu X J, Neidle S, Shakked Z, et al. A standard reference frame for the description of nucleic acid base-pair geometry. J Mol Bio,2001,313:229-237
    1. Wigner, E. P. Group Theory and Its Application to the Quantum Mechanics of Atomic Spectra; Academic Press Inc.:New York,1959.
    2. Eyring, H.; Walter, J.; Kimball, G. E. Quantum Chemistry; John Wiley & Sons:New York, 1967.
    3. Wilson, E. B.; Decius, J. C.; Cross, P. C. Molecular Vibrations; McGraw-Hill:New York,1955; reprinted by Dover.
    4. Cotton, F. A. Chemical Applications of Group Theory; John Wily & Sons:. New York,1993.
    5. M. Hammermesh, Group Theory and Its Application to Physical Problems; Dover Publications Inc.:New York,1989.
    6. Wu, J.; Klein, D. J.; Schmalz, T. G. Int. J. Quantum Chem.2003,94,7.
    7. Klein, D. J.; Carlisle, C. H.; Matsen, F. A. Adv. Quantum Chem.1970,5,219.
    8. Ellzey, Jr., M. L. J. Comput. Chem.2007,28,811.
    9. Ellzey, Jr., M. L. J. Chem. Inf. Comput. Sci.2003,44,178.
    10. Heisenberg, W., Zeit. Phys.1928,49,619.
    11. Klein, D. J.; Trinajstic, N. Valence Bond Theory & Chemical Structure; Elsevier:Amsterdam, 1990.
    12. Poshusta, R. D.; Klein, D. J. Phys. Rev. Lett.1982,48,1555.
    13. Malrieu, J. P.; Maynau, D. J. Am. Chem. Soc.,1982,104,3021.
    14. Li, S. H.; Jiang, Y. S. J. Am. Chem. Soc.1995,117,8401.
    15. Wu, J.; Schmalz, T. G.; Klein, D. J. J. Chem. Phys.2002,119,11011.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700