用户名: 密码: 验证码:
基于图和复杂网络理论的蛋白质相互作用数据分析与应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
蛋白质-蛋白质相互作用在生物体的生命活动中扮演着极其重要的作用,几乎涉及到每一个生理过程。高通量实验鉴定技术和计算预测方法的快速发展使得直接和间接来源的大规模蛋白质相互作用数据不断累积。然而,大规模蛋白质相互作用数据中较高比例的假阳性和假阴性“噪声”严重影响了相互作用数据的质量。生物信息学方法能够从已有的数据和知识出发,通过计算的方法系统评估和预测蛋白质相互作用数据的假阳性和假阴性。本文针对上述问题,从蛋白质相互作用网络的拓扑结构出发,以图和复杂网络理论为基本工具,提出了四种有效的计算方法来对蛋白质相互作用数据中假阳性数据进行评估,并预测其假阴性数据和遗传相互作用。最后,我们提出一种在整合蛋白质相互作用数据、高内涵RNAi筛选数据和其它多源数据的基础上重建果蝇的MAPK信号转导通路的方法,以此作为蛋白质相互作用数据的一个应用实例。全文的主要工作概括如下:
     (1)针对蛋白质相互作用数据中存在着较高比例假阳性数据的问题。提出了一种通过整合与蛋白质相互作用相关的多源异构组学数据,并巧妙地将多源数据信息与蛋白质相互作用网络的拓扑结构信息进行融合,进而过滤蛋白质相互作用数据中的假阳性“噪声”的方法。实验结果表明,所提出过滤算法的性能要优于已有的三种经典方法,能够筛选出原始数据中具有高度可靠性的蛋白质相互作用对。
     (2)提出了一种鲁棒的基于流形学习ISOMAP的蛋白质相互作用假阳性过滤和假阴性预测的方法。该方法首先采用ISOMAP方法将原始的蛋白质相互作用网络变换到一个低维的流形空间。然后,根据所嵌入低维空间中蛋白质间的相似性构造了一个用来表示蛋白质对相互作用可能性的可靠性指数。实验结果显示,所提出的方法能够成功地评估或预测稠密或者稀疏蛋白质相互作用网络的假阳性或假阴性“噪声”。
     (3)提出了一种新的基于线图和加权网络拓扑结构的方法来消除大规模蛋白质相互作用数据中的假阳性“噪声”。首先,采用一种新颖的加权线图算法将原始的蛋白质相互作用网络变换成其对应的加权线图;然后,计算变换后的加权线图中节点的多种网络拓扑属性。最后,采用一种加权的CD-Dist算法对蛋白质相互作用数据的可靠性进行了评估。实验结果表明,所提出的方法能够取得很好的去噪效果,过滤后的蛋白质相互作用数据可靠性得到了显著的提高。
     (4)针对目前在基因组范围内的蛋白质遗传相互作用尚不完全了解,且通过实验的方法检测蛋白质遗传相互作用将非常困难和昂贵这一问题,提出了一种计算系统生物学方法来准确预测合成遗传相互作用。该方法首先通过整合蛋白质相互作用数据、蛋白质复合物数据和基因表达谱数据,构建一个高覆盖率、高精度的功能基因网络。然后,从上述功能基因网络中计算得到十种加权网络拓扑属性作为预测合成遗传相互作用的特征向量。最后,一种基于图的半监督分类器被用来预测合成遗传相互作用。实验结果表明,所提出的方法能够准确地预测酵母的遗传相互作用。
     (5)提出了一种将RNA干扰技术、荧光显微镜技术和自动图像分析技术的结合的系统生物学方法来研究果蝇细胞的MAPK信号转导通路。该方法首先通过整合高内涵RNAi筛选数据、多源基因组学和蛋白质组学数据构建一个高可靠性的功能基因网络。然后,采用提出的一种改进的整数线性规划算法从所构建的功能基因网络中重建出果蝇MAPK信号通路。最后,通过p值、基因功能富集分析和已发表文献知识这三个指标来对得到的信号通路的生物显著性进行了验证。实验结果表明,所提出的方法不但能够发现KEGG标准数据库中存放的MAPK信号通路中包括的所有元素,而且还预测了一些额外的参与MAPK信号通路的蛋白质,通过文献查询,这些预测的蛋白质确实参与了MAPK信号通路。
Protein-protein interactions (PPI) play a very important role in almost every cellular processes.With the rapid advances in high-throughput experimental, biological experimental methods can directly and systematically detect protein interactions at the whole genome level for many organisms. In addition to the direct experimental data, a number of computational approaches have been proposed to predict the sets of interacting protein pairs. Unfortunately, current protein interactions detection via high-throughput experimental methods or prediction by computational methods are reported to exhibit high false positive and false negative "noises". At the same time, the false negative rate of the interaction networks has also been estimated to be high. In this dissertation, we propose a couple of computational algorithms to assess the reliability of interactions from the noisy data and then predict new interactions.
     The purpose of this study was to investigate protein interaction networks from the topological aspect, and to develop four effective computational methods to automatically purify these networks, i.e., to detect false positive interactions from the existing protein interaction networks and discover unknown false negative interactions by their topological properties. Finally, we presented a novel application of using PPI networks to reconstruct signaling pathway. The main works and contributions for this dissertation are introduced as follows.
     (1) The high-throughput experimental protein interaction data is prone to exhibit high level of false positive rates. A novel and effective approach was proposed to deal with this issue by integrating heterogeneous types of high-throughput biological data with weighted network topological metrics. We evaluate our proposed method on the Gavin's yeast interaction dataset. The experimental results show that by incorporating heterogeneous data types with weighted network topological metrics, our proposed method can improve functional homogeneity and localization coherence compared with those existing approaches.
     (2) A robust manifold embedding technique was developed for assessing the reliability of interactions and predicting new interactions, which purely utilizes the topological information of PPI networks and can work on a sparse input protein interactome without requiring additional information types. After transforming a given PPI network into a low-dimensional metric space using manifold embedding based on isometric feature mapping (ISOMAP), the problem of assessing and predicting protein interactions can be recasted into the form of measuring similarity between the points located in its metric space. Then a reliability index, a likelihood indicating the interaction of two proteins, was assigned to each protein pair in the PPI networks based on the similarity between the points in the embedded space. Validation of the proposed method was performed with extensive experiments on densely connected and sparse PPI network of yeast, respectively. The results demonstrate that the interactions ranked top by our proposed method have high-functional homogeneity and localization coherence. Particularly, our method is very efficient for large sparse PPI network with which the traditional algorithms fail. Therefore, the proposed algorithm is a much more promising method for detecting both false positive and false negative interactions in PPI networks.
     (3) A novel algorithm was proposed based on combination of line graph with weighted network toplogical metrics for eliminating false positive interactions from a PPI networks. A novel weighted line graph transformation method was firstly utilized to transform a PPI networks into line graph. Then, a number of network topological properties were computed. In order to define the similarity of proteins in the PPI network, a weighted Czekanowski-Kice distance metric was calculated on the basis of the obtained weighted PPI networks. Finally, the metrics wer used to assess the reliability of PPI data. The experimental results demonstate that by removing false positive protein interactions from the S.cerevisiae PPI networks, the reliability of the PPI dataset was significantly increased.
     (4) A computational systems biology approach was introduced for the accurate prediction of pairwise synthetic genetic interactions (SGI). First, a high-coverage and high-precision functional gene network (FGN) was constructed by integrating protein-protein interaction (PPI), protein complex and gene expression data. Then, a graph-based semisupervised learning (SSL) classifier was utilized to identify SGI, where the topological properties of protein pairs in weighted FGN was used as input features of the classifier. We compared the proposed SSL method with the state-of-the-art supervised classifier, the support vector machines (SVM), on a benchmark dataset in S. cerevisiae to validate the ability of our method to distinguish synthetic genetic interactions from non-interaction gene pairs. The experimental results show that the proposed method can accurately predict genetic interactions in S. cerevisiae.
     (5) A systems biology method was introduced to study the Drosophila Melanogaster MAPK signaling pathways by combining RNA interference (RNAi) technology, Fluorescence microscopy with automated image analysis. A high-quality functional gene network (FGN) was firstly derived by integrating high-content screen HCS and heterogeneous genomic data using a linear SVM classifier. Then the FGN was analyzed and the MAPK pathway was extracted using an extended integer linear programming. We validate our results and demonstrate that the proposed method achieves full coverage of components deposited in KEGG for the MAPK pathway. Interestingly, we retrieved a set of additional candidate genes for this pathway which are consistent with those published literatures.
引文
AITTOKALLIO T, SCHWIKOWSKI B 2006. Graph-based methods for analysing networks in cell biology. Brief Bioinform [J],7:243-255.
    ALBERT R, DASGUPTA B, DONDI R, et al.2007. A novel method for signal transduction network inference from indirect experimental evidence. Journal of Computational Biology [J],14: 927-949.
    ANGELELLI J-B 2008. Two local dissimilarity measures for weighted graphs with application to protein interaction networks. Advances in Data Analysis and Classification [J].
    BADER G D, BETEL D, HOGUE C W 2003. BIND:the Biomolecular Interaction Network Database. Nucleic Acids Research [J],31:248-250.
    BADER G D, HOGUE C W 2003. An automated method for finding molecular complexes in large protein interaction networks. Bmc Bioinformatics [J],4:-
    BADER J S, CHAUDHURI A, ROTHBERG J M, et al.2004. Gaining confidence in high-throughput protein interaction networks. Nature Biotechnology [J],22:78-85.
    BAKAL C, AACH J, CHURCH G, et al.2007. Quantitative morphological signatures define local signaling networks regulating cell morphology. Science [J],316:1753-1756.
    BARABASI A L, BONABEAU E 2003. Scale-free networks. Scientific American [J],288:60-69.
    BARABASI A L, OLTVAI Z N 2004. Network biology:Understanding the cell's functional organization. Nature Reviews Genetics [J],5:101-U115.
    BARRAT A, BARTHELEMY M, PASTOR-SATORRAS R, et al.2004. The architecture of complex weighted networks. Proceedings of the National Academy of Sciences of the United States of America [J],101:3747-3752.
    BAYIR M A, GUNEY T D, CAN T 2006. Integration of topological measures for eliminating non-specific interactions in protein interaction networks [C]//; City.2416-2424.
    BHATTACHARYA A, DE R K 2008. Divisive Correlation Clustering Algorithm (DCCA) for grouping of genes:detecting varying patterns in expression profiles. Bioinformatics [J],24:1359-1366.
    BOCK J R, GOUGH D A 2001. Predicting protein-protein interactions from primary structure. Bioinformatics [J],17:455-460.
    BRANDES U, FLEISCHER D 2005. Centrality measures based on current flow. Stacs 2005, Proceedings [J],3404:533-544.
    BRUN C, CHEVENET F, MARTIN D, et al.2003. Functional classification of proteins for the prediction of cellular function from a protein-protein interaction network. Genome Biol [J],5: R6.
    CAMPS-VALLS G, MARSHEVA T V B, ZHOU D Y 2007. Semi-supervised graph-based hyperspectral image classification. Ieee Transactions on Geoscience and Remote Sensing [J], 45:3044-3054.
    CARUANA R, NICULESCU-MIZIL A 2006. An Empirical Comparison of Supervised Learning Algorithms. Proceedings of the 23rd International Conference on Machine Learning [J],148: 161-168.
    CHAPELLE O, ZIEN A 2005. Semi-Supervised Classification by Low Density Separation. Proceedings of the Tenth International Workshop on Artificial Intelligence and Statistics [J]:8.
    CHATR-ARYAMONTRI A, CEOL A, PALAZZI L M, et al.2007. MINT:the molecular INTeraction database. Nucleic Acids Research [J],35:D572-D574.
    CHEN J, CHUA H N, HSU W, et al.2006a. Increasing confidence of protein-protein interactomes. Genome Inform [J],17:284-297.
    CHEN J, HSU W, LEE M L, et al.2005. Discovering reliable protein interactions from high-throughput experimental data using network topology. Artificial Intelligence in Medicine [J],35:37-47.
    CHEN J, HSU W, LEE M L, et al.2006b. Increasing confidence of protein interactomes using network topological metrics. Bioinformatics [J],22:1998-2004.
    CHEN J C, YUAN B 2006. Detecting functional modules in the yeast protein-protein interaction network. Bioinformatics [J],22:2283-2290.
    CHO R J, CAMPBELL M J, WINZELER E A, et al.1998. A genome-wide transcriptional analysis of the mitotic cell cycle. Molecular Cell [J],2:65-73.
    CHUA H N, SUNG W K, WONG L 2006. Exploiting indirect neighbours and topological weight to predict protein function from protein-protein interactions. Bioinformatics [J],22:1623-1630.
    CHUA H N, WONG L 2008. Increasing the reliability of protein interactomes. Drug Discovery Today [J],13:652-658.
    COHEN A, DAUBECHIES I, FEAUVEAU J C 1992. Biorthogonal bases of compactly supported wavelets. Communications on Pure and Applied Mathematics [J],45:485-560.
    COLAK R, HORMOZDIARI F, MOSER F, et al.2009. Dense Graphlet Statistics of Protein Interaction and Random Networks. Pacific Symposium on Biocomputing [J]:178-189.
    COLLINS S R, KEMMEREN P, ZHAO X C, et al.2007. Toward a comprehensive atlas of the physical interactome of Saccharomyces cerevisiae. Molecular & Cellular Proteomics [J],6:439-450.
    CSARDI G, NEPUSZ T 2006. The igraph software package for complex network research. InterJournal [J], Complex Systems:1695.
    DANDEKAR T, SNEL B, HUYNEN M, et al.1998. Conservation of gene order:a fingerprint of proteins that physically interact. Trends in Biochemical Sciences [J],23:324-328.
    DAVIERWALA A P, HAYNES J, LI Z J, et al.2005. The synthetic genetic interaction spectrum of essential genes. Nature Genetics [J],37:1147-1152.
    DAVIES S A, STEWART E J, HUESMANN G R, et al.1997. Neuropeptide stimulation of the nitric oxide signaling pathway in Drosophila melanogaster Malpighian tubules. Am J Physiol [J], 273:R823-827.
    DEANE C M, SALWINSKI L, XENARIOS I, et al.2002. Protein interactions-Two methods for assessment of the reliability of high throughput observations. Molecular & Cellular Proteomics [J],1:349-356.
    DEEDS E J, ASHENBERG O, SHAKHNOVICH E I 2006. A simple physical model for scaling in protein-protein interaction networks. Proceedings of the National Academy of Sciences of the United States of America [J],103:311-316.
    EDDY S R 2006. Genetics-Total information awareness for worm genetics. Science [J],311: 1381-1382.
    EDGAR R, DOMRACHEV M, LASH A E 2002. Gene Expression Omnibus:NCBI gene expression and hybridization array data repository. Nucleic Acids Research [J],30:207-210.
    EISEN M B, SPELLMAN P T, BROWN P O, et al.1998. Cluster analysis and display of genome-wide expression patterns. Proc Natl Acad Sci U S A [J],95:14863-14868.
    ENRIGHT A J, ILIOPOULOS I, KYRPIDES N C, et al.1999. Protein interaction maps for complete genomes based on gene fusion events. Nature [J],402:86-90.
    EVANS T S, LAMBIOTTE R 2009. Line graphs, link partitions, and overlapping communities. Physical Review E [J],80:
    FIELDS S, SONG O K 1989. A novel genetic system to detect protein-protein interactions. Nature [J], 340:245-246.
    FRANK E, HALL M, TRIGG L, et al.2004. Data mining in bioinformatics using Weka. Bioinformatics [J],20:2479-2481.
    FREEMAN L C 1977. Set of Measures of Centrality Based on Betweenness. Sociometry [J],40:35-41.
    GAVIN A C, ALOY P, GRANDI P, et al.2006a. Proteome survey reveals modularity of the yeast cell machinery. Nature [J],440:631-636.
    GAVIN A C, ALOY P, GRANDI P, et al.2006b. Proteome survey reveals modularity of the yeast cell machinery. Nature [J],440:631-636.
    GAVIN A C, BOSCHE M, KRAUSE R, et al.2002. Functional organization of the yeast proteome by systematic analysis of protein complexes. Nature [J],415:141-147.
    GIOT L, BADER J S, BROUWER C, et al.2003. A protein interaction map of Drosophila melanogaster. Science [J],302:1727-1736.
    GOH C S, BOGAN A A, JOACHIMIAK M, et al.2000. Co-evolution of proteins with their interaction partners. Journal of Molecular Biology [J],299:283-293.
    GU NOCHE A 2005. Comparing recent methods in graph partitioning. Electronic Notes in Discrete Mathematics [J],22:83-89.
    GULDENER U, MUNSTERKOTTER M, OESTERHELD M, et al.2006. MPact:the MIPS protein interaction resource on yeast. Nucleic Acids Research [J],34:D436-D441.
    HAKAMADA K, HANAI T, HONDA H, et al.2004. Preprocessing method for inferring genetic interaction from gene expression data using Boolean algorithm. Journal of Bioscience and Bioengineering [J],98:457-463.
    HARALICK R M, SHANMUGA.K, DINSTEIN 11973. Textural features for image classification. Ieee Transactions on Systems Man and Cybernetics [J], SMC3:610-621.
    HARARY F, NORMAN R Z 1960. Some properties of line digraphs. Rendiconti del Circulo Mathematico di Palermo [J],9:161-169.
    HART G T, LEE I, MARCOTTE E R 2007. A high-accuracy consensus map of yeast protein complexes reveals modular nature of gene essentiality. Bmc Bioinformatics [J],8:
    HART G T, RAMANI A K, MARCOTTE E M 2006. How complete are current yeast and human protein-interaction networks? Genome Biology [J],7.
    HAUTANIEMI S, KHARAIT S, IWABU A, et al.2005. Modeling of signal-response cascades using decision tree analysis. Bioinformatics [J],21:2027-2035.
    HAZBUN T R, FIELDS S 2001. Networking proteins in yeast. Proceedings of the National Academy of Sciences of the United States of America [J],98:4277-4278.
    HIGHAM D J, RASAJSKI M, PRZULJI N 2008. Fitting a geometric graph to a protein-protein interaction network. Bioinformatics [J],24:1093-1099.
    HO Y, GRUHLER A, HEILBUT A, et al.2002. Systematic identification of protein complexes in Saccharomyces cerevisiae by mass spectrometry. Nature [J],415:180-183.
    HUANG D, YI Z, PU X R 2009. Manifold-Based Learning and Synthesis. Ieee Transactions on Systems Man and Cybernetics Part B-Cybernetics [J],39:592-606.
    IGAKI T, KANDA H, YAMAMOTO-GOTO Y, et al.2002. Eiger, a TNF superfamily ligand that triggers the Drosophila JNK pathway. EMBO J [J],21:3009-3018.
    ITO T, CHIBA T, OZAWA R, et al.2001. A comprehensive two-hybrid analysis to explore the yeast protein interactome. Proceedings of the National Academy of Sciences of the United States of America [J],98:4569-4574.
    JANODY F, STURNY R, CATALA F, et al.2000. Phosphorylation of bicoid on MAP-kinase sites: contribution to its interaction with the torso pathway. Development [J],127:279-289.
    JANSEN R, GREENBAUM D, GERSTEIN M 2002. Relating whole-genome expression data with protein-protein interactions. Genome Research [J],12:37-46.
    JANSEN R, YU H Y, GREENBAUM D, et al.2003. A Bayesian networks approach for predicting protein-protein interactions from genomic data. Science [J],302:449-453.
    K.L.WILLIAMS, A.A.GOOLEY, N.H.PACKER 1996. Proteome:Not just a made-up name. Today's Life Sciences [J],8:16-21.
    KAFRI R, DAHAN O, LEVY J, et al.2008. Preferential protection of protein interaction network hubs in yeast:Evolved functionality of genetic redundancy. Proceedings of the National Academy of Sciences of the United States of America [J],105:1243-1248.
    KELLEY B P, SHARAN R, KARP R M, et al.2003. Conserved pathways within bacteria and yeast as revealed by global protein network alignment. Proceedings of the National Academy of Sciences of the United States of America [J],100:11394-11399.
    KELLEY R, IDEKER T 2005. Systematic interpretation of genetic interactions using protein networks. Nature Biotechnology [J],23:561-566.
    KERRIEN S, ALAM-FARUQUE Y, ARANDA B, et al.2007. IntAct-open source resource for molecular interaction data. Nucleic Acids Research [J],35:D561-D565.
    KROGAN N J, CAGNEY G, YU H Y, et al.2006. Global landscape of protein complexes in the yeast Saccharomyces cerevisiae. Nature [J],440:637-643.
    KUMAR A, AGARWAL S, HEYMAN J A, et al.2002. Subcellular localization of the yeast proteome. Genes & Development [J],16:707-719.
    LANCKRIET G R G, DENG M, CRISTIANINI N, et al.2004. Kernel-based data fusion and its application to protein function prediction in yeast. Pac Symp Biocomput [J]:300-311.
    LEE I, DATE S V, ADAI A T, et al.2004. A probabilistic functional network of yeast genes. Science [J], 306:1555-1558.
    LEE I, LI Z H, MARCOTTE E M 2007. An Improved, Bias-Reduced Probabilistic Functional Gene Network of Baker's Yeast, Saccharomyces cerevisiae. Plos One [J],2.
    LEHNER B, CROMBIE C, TISCHLER J, et al.2006. Systematic mapping of genetic interactions in Caenorhabditis elegans identifies common modifiers of diverse signaling pathways. Nature Genetics [J],38:896-903.
    LETOVSKY S, KASIF S 2003. Predicting protein function from protein/protein interaction data:a probabilistic approach. Bioinformatics [J],19:i197-i204.
    LEVCHENKO A 2003. Dynamical and integrative cell signaling:Challenges for the new biology. Biotechnology and Bioengineering [J],84:773-782.
    LI F, ZHOU X, MA J, et al.2007. An automated feedback system with the hybrid model of scoring and classification for solving over-segmentation problems in RNAi high content screening. Journal of Microscopy-Oxford [J],226:121-132.
    LI H W, LI Y K, LU H Q, et al.2008. Semi-supervised Learning with Gaussian Processes [M]. Ieee; New York.
    LI S, ASSMANN S M, ALBERT R 2006. Predicting essential components of signal transduction networks:A dynamic model of guard cell abscisic acid signaling. Plos Biology [J],4: 1732-1748.
    LI S M, ARMSTRONG C M, BERTIN N, et al.2004. A map of the interactome network of the metazoan C-elegans. Science [J],303:540-543.
    LIM Y M, NISHIZAWA K, NISHI Y, et al.1999. Genetic analysis of rolled, which encodes a Drosophila mitogen-activated protein kinase. Genetics [J],153:763-771.
    LINGHU B, SNITKIN E S, HOLLOWAY D T, et al.2008. High-precision high-coverage functional inference from integrated data sources. Bmc Bioinformatics [J],9:
    LIU R, ZHOU J Z, LIU M 2006. A graph-based semi-supervised learning algorithm for web page classification. ISDA 2006:Sixth International Conference on Intelligent Systems Design and Applications, Vol 2 [J]:856-860.
    LUBOVAC Z, GAMALIELSSON J, OLSSON B 2006. Combining functional and topological properties to identify core modules in Protein Interaction Networks. Proteins-Structure Function and Bioinformatics [J],64:948-959.
    MAERE S, HEYMANS K, KUIPER M 2005. BiNGO:a Cytoscape plugin to assess overrepresentation of Gene Ontology categories in Biological Networks. Bioinformatics [J],21:3448-3449.
    MAHDAVI M A, LIN Y H 2007. False positive reduction in protein-protein interaction predictions using gene ontology annotations. Bmc Bioinformatics [J],8.
    MANJUNATH B S, MA W Y 1996. Texture features for browsing and retrieval of image data. Ieee Transactions on Pattern Analysis and Machine Intelligence [J],18:837-842.
    MARAZIOTIS I A, DIMITRAKOPOULOU K, BEZERIANOS A 2007. Growing functional modules from a seed protein via integration of protein interaction and gene expression data. Bmc Bioinformatics [J],8:
    MAUS M, MEDGYESID, KOVESDID, et al.2008. Grb2 associated binder 2 couples B-cell receptor to cell survival. Cell Signal [J].
    MEWES H W, FRISHMAN D, GULDENER U, et al.2002. MIPS:a database for genomes and protein sequences. Nucleic Acids Research [J],30:31-34.
    MILO R, SHEN-ORR S, ITZKOVITZ S, et al.2002. Network motifs:Simple building blocks of complex networks. Science [J],298:824-827.
    MOREY M, SERRAS F, BAGUNA J, et al.2001. Modulation of the Ras/MAPK signalling pathway by the redox function of selenoproteins in Drosophila melanogaster. Dev Biol [J],238:145-156.
    MUGAVIN M E 2008. Multidimensional scaling-A brief overview. Nursing Research [J],57:64-68.
    NEWMAN M E J 2001a. Scientific collaboration networks. I. Network construction and fundamental results. Physical Review E [J],64.
    NEWMAN M E J 2001b. Scientific collaboration networks. II. Shortest paths, weighted networks, and centrality. Physical Review E [J],6401:
    NIGAM K, MCCALLUM A K, THRUN S, et al.2000. Text classification from labeled and unlabeled documents using EM. Machine Learning [J],39:103-134.
    OPSAHL T, PANZARASA P 2009. Clustering in weighted networks. Social Networks [J],31: 155-163.
    OZIER O, AMIN N, IDEKER T 2003. Global architecture of genetic interactions on the protein network. Nature Biotechnology [J],21:490-491.
    PATIL A, NAKAMURA H 2005. Filtering high-throughput protein-protein interaction data using a combination of genomic features. Bmc Bioinformatics [J],6.
    PELLEGRINI M, MARCOTTE E M, THOMPSON M J, et al.1999. Assigning protein functions by comparative genome analysis:Protein phylogenetic profiles. Proceedings of the National Academy of Sciences of the United States of America [J],96:4285-4288.
    PINGKUM Y, XIAOBO Z, SHAH M, et al.2008. Automatic segmentation of high-throughput RNAi fluorescent cellular images. IEEE Transactions on Information Technology in Biomedicine [J], 12:109-117.
    PRZULJ N 2007. Biological network comparison using graphlet degree distribution. Bioinformatics [J], 23:E177-E183.
    PRZULJ N, CORNEIL D G, JURISICA I 2004a. Modeling interactome:scale-free or geometric? Bioinformatics [J],20:3508-3515.
    PRZULJ N, WIGLE D A, JURISICA I 2004b. Functional topology in a network of protein interactions. Bioinformatics [J],20:340-348.
    RIGAUT G, SHEVCHENKO A, RUTZ B, et al.1999. A generic protein purification method for protein complex characterization and proteome exploration. Nature Biotechnology [J],17: 1030-1032.
    RIVES A W, GALITSKI T 2003. Modular organization of cellular networks. Proceedings of the National Academy of Sciences of the United States of America [J],100:1128-1133.
    ROWEIS S T, SAUL L K 2000. Nonlinear dimensionality reduction by locally linear embedding. Science [J],290:2323-+.
    SAITO R, SUZUKI H, HAYASHIZAKI Y 2002. Interaction generality, a measurement to assess the reliability of a protein-protein interaction. Nucleic Acids Research [J],30:1163-1168.
    SAITO R, SUZUKI H, HAYASHIZAKI Y 2003. Construction of reliable protein-protein interaction networks with a new interaction generality measure. Bioinformatics [J],19:756-763.
    SAWAMOTO K, OKABE M, TANIMURA T, et al.1996. The Drosophila secreted protein Argos regulates signal transduction in the Ras/MAPK pathway. Dev Biol [J],178:13-22.
    SCHLITT T, PALIN K, RUNG J, et al.2003. From gene networks to gene function. Genome Research [J],13:2568-2576.
    SCHORMANN N, SENKOVICH O, WALKER K, et al.2008. Structure-based approach to pharmacophore identification, in silico screening, and three-dimensional quantitative structure-activity relationship studies for inhibitors of Trypanosoma cruzi dihydrofolate reductase function. Proteins-Structure Function and Bioinformatics [J],73:889-901.
    SCHRAMM G, ZAPATKA M, EILS R, et al.2007. Using gene expression data and network topology to detect substantial pathways, clusters and switches during oxygen deprivation of Escherichia coli. Bmc Bioinformatics [J],8:149.
    SCOTT J, IDEKER T, KARP R M, et al.2006. Efficient algorithms for detecting signaling pathways in protein interaction networks. J Comput Biol [J],13:133-144.
    SEGAL E, WANG H, KOLLER D 2003. Discovering molecular pathways from protein interaction and gene expression data. Bioinformatics [J],19 Suppl 1:i264-271.
    SEUNG H S, LEE D D 2000. Cognition-The manifold ways of perception. Science [J],290:2268-+.
    SHLOMI T, SEGAL D, RUPPIN E, et al.2006. QPath:a method for querying pathways in a protein-protein interaction network. Bmc Bioinformatics [J],7.
    SHOEMAKER B A, PANCHENKO A R 2007. Deciphering protein-protein interactions. Part Ⅱ. Computational methods to predict protein and domain interaction partners. Plos Computational Biology [J],3:595-601.
    SMIALOWSKI P, PAGEL P, WONG P, et al.2010. The Negatome database:a reference set of non-interacting protein pairs. Nucleic Acids Research [J],38:D540-D544.
    SPELLMAN P T, SHERLOCK G, ZHANG M Q, et al.1998. Comprehensive identification of cell cycle-regulated genes of the yeast Saccharomyces cerevisiae by microarray hybridization. Molecular Biology of the Cell [J],9:3273-3297.
    SPIROV A V, HOLLOWAY D M 2003. Making the body plan:precision in the genetic hierarchy of Drosophila embryo segmentation. In Silico Biol [J],3:89-100.
    SPRINZAK E, SATTATH S, MARGALIT H 2003. How reliable are experimental protein-protein interaction data? Journal of Molecular Biology [J],327:919-923.
    STARK C, BREITKREUTZ B J, REGULY T, et al.2006. BioGRID:a general repository for interaction datasets. Nucleic Acids Research [J],34:D535-D539.
    STEFFEN M, PETTI A, AACH J, et al.2002. Automated modelling of signal transduction networks. Bmc Bioinformatics [J],3:34.
    STEPHENSON K, ZELEN M 1989. Rethinking Centrality:Methods and Applications. Social Networks [J],11:1-37.
    SZUMMER M, JAAKKOLA T 2002. Partially labeled classification with Markov random walks [M] //T. G. DIETTERICH, S. BECKER, Z. GHAHRAMANI, Advances in Neural Information Processing Systems 14, Vols 1 and 2. M I T Press; Cambridge:945-952.
    TENENBAUM J B, DE SILVA V, LANGFORD J C 2000. A global geometric framework for nonlinear dimensionality reduction. Science [J],290:2319-+.
    TISCHLER J, LEHNER B, CHEN N S, et al.2006. Combinatorial RNA interference in Caenorhabditis elegans reveals that redundancy between gene duplicates can be maintained for more than 80 million years of evolution. Genome Biology [J],7.
    TO C C, VOHRADSKY J 2008. Supervised inference of gene-regulatory networks. Bmc Bioinformatics [J],9:-.
    TONG A H, LESAGE G, BADER G D, et al.2004. Global mapping of the yeast genetic interaction network. Science [J],303:808-813.
    TROYANSKAYA O G, DOLINSKI K, OWEN A B, et al.2003. A Bayesian framework for combining heterogeneous data sources for gene function prediction (in Saccharomyces cerevisiae). Proc Natl Acad Sci U S A [J],100:8348-8353.
    TU K, YU H, LI Y X 2006. Combining gene expression profiles and protein-protein interaction data to infer gene functions. J Biotechnol [J],124:475-485.
    TWYMAN R M 2004. Principles of Proteomics. Taylor & Francis Group [J].
    UCAR D, PARTHASARATHY S, ASUR S, et al.2005. Effective pre-processing strategies for functional clustering of a protein-protein interactions network [C]//; City.129-136.
    UETZ P, FINLEY R L 2005. From protein networks to biological systems. Febs Letters [J],579: 1821-1827.
    UETZ P, GIOT L, CAGNEY G, et al.2000. A comprehensive analysis of protein-protein interactions in Saccharomyces cerevisiae. Nature [J],403:623-627.
    VON MERING C, JENSEN L J, KUHN M, et al.2007. STRING 7-recent developments in the integration and prediction of protein interactions. Nucleic Acids Research [J],35:D358-D362.
    VON MERING C, KRAUSE R, SNEL B, et al.2002. Comparative assessment of large-scale data sets of protein-protein interactions. Nature [J],417:399-403.
    WANG J, ZHOU X, BRADLEY P L, et al.2008. Cellular phenotype recognition for high-content RNA interference genome-wide screening. Journal of Biomolecular Screening [J],13:29-39.
    WENG G Z, BHALLA U S, IYENGAR R 1999. Complexity in biological signaling systems. Science [J],284:92-96.
    WHITNEY H 1932. Congruent graphs and the connectivity of graphs. American Journal of Mathematics [J],54:150-168.
    WILLIAMS C K I 2002. On a connection between kernel PCA and metric multidimensional scaling. Machine Learning [J],46:11-19.
    WINZELER E A, SHOEMAKER D D, ASTROMOFF A, et al.1999. Functional characterization of the S-cerevisiae genome by gene deletion and parallel analysis. Science [J],285:901-906.
    WONG L S, LIU G M 2010. Protein Interactome Analysis for Countering Pathogen Drug Resistance. Journal of Computer Science and Technology [J],25:124-130.
    WONG S L, ZHANG L V, TONG A H, et al.2004. Combining biological networks to predict genetic interactions.Proc Natl Acad Sci U S A[J],101:15682-15687.
    WYRICK J J, YOUNG R A 2002. Deciphering gene expression regulatory networks. Current Opinion in Genetics & Development [J],12:130-136.
    XENARIOS I, SALWINSKI L, DUAN X Q J, et al.2002. DIP, the Database of Interacting Proteins:a research tool for studying cellular networks of protein interactions. Nucleic Acids Research [J], 30:303-305.
    YAMANISHI Y, VERT J P, KANEHISA M 2004. Protein network inference from multiple genomic data:a supervised approach. Bioinformatics [J],20 Suppl 1:i363-370.
    ZERNIKE F 1934. Beugungstheorie des schneidencerfarhens undseiner verbesserten form, der phasenkontrastmethode. Physica [J],1:689-704.
    ZHAO X-M, WANG R-S, CHEN L, et al.2008a. Uncovering signal transduction networks from high-throughput data by integer linear programming. Nucleic Acids Research [J].
    ZHAO X M, WANG Y, CHEN L N, et al.2008b. Protein domain annotation with integration of heterogeneous information sources. Proteins-Structure Function and Bioinformatics [J],72: 461-473.
    ZHENG H, WANG H, GLASS D H 2008. Integration of genomic data for inferring protein complexes from global protein-protein interaction networks. IEEE Trans Syst Man Cybern B Cybern [J], 38:5-16.
    ZHOU D, BOUSQUET O, LAL T N, et al.2004. Learning with local and global consistency. Advances in Neural Information Processing Systems 16 [J]:321-328.
    ZHOU T, REN J, MEDO M, et al.2007. Bipartite network projection and personal recommendation. Physical Review E [J],76:-
    ZHU H, BILGIN M, BANGHAM R, et al.2001. Global analysis of protein activities using proteome chips. Science [J],293:2101-2105.
    卜月华2000.图论及其应用.东南大学出版社[J].
    陈启民,,王金忠,,耿运琪,2001.分子生物学.南开大学出版社[J].
    史明光2009.蛋白质相互作用预测方法的研究[D].中国科学技术大学博士学位论文[J].
    孙景春,徐晋麟,李亦学,et al.2005.大规模蛋白质相互作用数据的分析与应用.科学通报[J],50.
    谭璐,姜璐2005.系统生物学与生物网络研究.复杂系统与复杂性科学[J],2.
    尹征2009.基因组尺度高信息量RNA干扰筛选数据分析:一类系统生物学应用中若干模式识别 问题的研究.浙江大学博士论文[J].
    赵静,俞鸿,骆建华,et al.2006.应用复杂网络理论研究代谢网络的进展.科学通报[J],51:8.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700