用户名: 密码: 验证码:
干湿循环水岩相互作用下岩石劣化机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
水-岩相互作用作为岩土工程相关学科研究的前沿领域,是工程岩土体稳定研究的重要内容,而干湿循环过程是水-岩相互作用的重要组成。干湿循环过程中,岩石改变了水的赋存状态,同时自身也受到水的反复侵蚀。干湿循环作用将造成岩土体岩性劣化,进而影响其强度和变形,并对岩土工程的稳定性和耐久性产生重要影响。论文在前人研究的基础上,从干湿循环作用的劣化过程出发,通过理论分析、室内试验、数值模拟等方法,对岩石在干湿循环作用下的劣化机理进行了较为系统深入的研究。论文的主要研究内容和成果如下:
     ①通过完整砂岩的室内干湿循环试验,揭示了砂岩的干湿循环劣化规律。试验结果表明,循环作用对岩石的影响是渐进性的,表现为初期影响较大,随着作用时间的延长,该劣化效应逐渐减弱。在此基础上,探讨了岩石物理力学参数与干湿循环次数之间的函数关系,进而定义了干湿循环劣化系数,用于表征干湿循环作用对各参数的影响程度。
     ②在试验研究的基础上,运用连续损伤力学和统计理论,导出了干湿循环作用下岩石的统计损伤本构模型。通过砂岩试验结果对该模型进行了验证,分析表明干湿循环作用对砂岩应力应变曲线的影响可分为两部分:通过杨氏模量E的变化影响其中近似线性部分,通过Weibull分布参数m和F0的变化影响其中非线性部分。干湿循环次数的增加将引起分布参数m和F0、临界损伤有效应力σ1c*的降低,并使临界损伤值Dc增加。
     ③通过室内试验和细观颗粒流数值试验,统计了岩石宏细观参数之间的基本关系,分析了宏细观参数的影响效应,得到了宏细观参数关系的定量表达式。在此基础上,建立了基于颗粒流理论的岩石细观参数半定量确定方法,进而对颗粒流计算结果进行了分析,结果表明,峰值应力条件下相同围压下的颗粒接触网络和力链的分布形态均相似,但颗粒粘结的断裂数量随干湿循环次数增加而增大。同时利用颗粒微梁的能量关系,导出了细观强度参数与断裂韧度之间的定量关系,解释了岩石细观强度参数的物理意义。
     ④探讨了干湿循环作用下的砂岩细观参数和细观应变能密度的变化规律,定义了干湿循环细观劣化系数,用于表征干湿循环作用对各细观参数的影响程度。通过对颗粒细观损伤的分析,建立了以细观模量为基础的砂岩细观损伤模型,探讨了砂岩干湿循环作用下的细观损伤效应。
     ⑤在前人研究的基础上,建立了节理岩体完整性系数和体积节理数与GSI评分系统的定量关系,对GSI评分表进行了修正,基于广义Hoek-Brown准则将完整岩石参数推演到岩体参数,并探讨了干湿循环作用对岩体力学参数的影响。从抗剪强度曲线折减的概念出发,改进了基于Hoek-Brown准则的强度折减法,并运用FLAC~(2D)的FISH语言进行了相应程序化研究,对岸坡在干湿循环作用下的正常和极限状态进行了计算分析,探讨了干湿循环作用下岩体劣化效应对库岸边坡稳定性的影响。
As the advancing edge of geotechnical engineering and its related science studies, water-rock interaction is a crucial content of the study of the stability of engineering rock-mass and soil. And in the procedure of cyclic drying-wetting, which is one of water-rock interaction’s important compositions, rock-mass altered the current state of water, while suffering repeated erosion itself, which would result in the deterioration of rock and soil, influence its the strength and deformation parameters, and leave significant effect on the stability and durability of geotechnical engineering. Based on previous studies and from the prospect of deterioration procedure of effect of cyclic drying-wetting, this thesis is about to proceed a systematic and deep study on the deterioration mechanism of rock-mass under cyclic drying-wetting effect with research methods like theoretical analysis, laboratory test, and numerical simulation. Major contents and results are as the following:
     ①Rules caused by effect of cyclic drying-wetting are discovered with the laboratory test of cyclic drying-wetting effect on integrated sandstone. It is a gradual process as suggested in the experiment results, in whose primary stage the influence is the greatest, and deterioration effect fades as time passes by. Therefore, the function relationship between the rock mechanics parameters and cycles of drying and wetting are discussed, and degradation coefficient of cyclic drying-wetting is furthermore defined to signify the degree of influence of cyclic drying-wetting effect on each parameter.
     ②On the basis of experimental study, continuum damage mechanics and statistical theory are applied in the introduction of the statistical damage constitutive model of rock-mass under the effect of cyclic drying-wetting. The model is testified with the sandstone experiment results, and the analysis indicates that the effect of cyclic drying-wetting on the sandstone’s stress-strain curves can be categorized into two sorts: the approximate linear part is influenced by the variation of young's modulus E, while the nonlinear part the Weibull distribution parameters m and F0. The increase in number of drying-wetting cycles would decrease the distribution parameters m and F0 and critical-damage effective stressσ1c*, and increase critical damage value Dc.
     ③With the laboratory test and microscopic particle flow numerical experiments, the basic relationship between the rock’s macroscopic and microscopic parameters is concluded, and the influence effect of macroscopic and microscopic parameters is analyzed, hence the quantitative expressions of the relation between macroscopic and microscopic parameters. Then, half-quantitative confirming method of rock’s macroscopic and microscopic parameters is established based on particle flow theory. The analysis of the particle flow calculation results show that contact network of the grains under the same confining pressure under peak stress own the similar distribution form. The number of cracks under peak stress is increased with cycles of drying and wetting. The energy of equivalent micro-beam is used to educe the quantitative relation between micro-strength parameters and fracture toughness, which explains the physical significance of the micro-strength parameters of rock.
     ④Rules of density of strain energy and micro-strength parameters of the sandstones are discussed and micro-degradation coefficient of cyclic drying-wetting is defined to signify the degree of influence of cyclic drying-wetting effect on each micro-parameters. Micro-damage constitutive model of sandstone is established with the analysis of contact normal and shear modulus, and micro-damage effect of cyclic drying-wetting is probed into.
     ⑤Quantitative relation between integrity coefficient of jointed rock mass and GSI system is established on basis of previous study, and so is volumetric joint count. Then, GSI classification is amended. Parameters of rock mass are deduced based on generalized Hoek-Brown criterion. And the effect of cyclic drying-wetting on rock mass is discussed. The concept of shear strength reduction is applied to deduce the improvement of strength reduction method based on Hoek-Brown criterion, and it is programmed with FISH language. Numerical simulation of both the normal and limit conditions of reservoir bank mode4l via FLAC2D is proceeded, and the stability of reservoir bank caused by degradation of rock mass with the effect of cyclic drying-wetting is discussed.
引文
[1]沈照理,钟佐桑,文冬光等.八十年代以来水-岩相互作用的地球化学热力学与动力学研究进展[A].中国第一届自然作用热力学会议论文集[C].北京,1993,9.
    [2]沈照理,王焰新.水-岩相互作用研究的回顾与展望[J].地球科学-中国地质大学学报,2002,27(2):127-133.
    [3]沈照理.应该重视水一岩相互作用的研究[J].水文地质工程地质,1991,18(2):1.
    [4]沈照理.应该继续重视与开展水-岩相互作用的研究——为《水文地质工程地质》创刊40年而作[J].水文地质工程地质,1997,(4):16-20.
    [5]仵彦卿.地下水与地质灾害[J].地下空间,1999,19(4):303-310.
    [6]谭卓英.论城市人-地系统相互作用及其环境制约[J].广西大学学报(自然科学版),2001,26(3):204-208.
    [7]沈照理,许绍倬.关于地下水地质作用[J].地球科学-中国地质大学学报,1985,10(1):99-106.
    [8]李义连,杨玉环,卢学.水-岩相互作用模拟的研究进展[J].水文地质工程地质,2003,(3):95-98.
    [9]周平根.地下水与岩土介质相互作用的工程地质力学研究[J].地学前缘,1996,3(1~2):176.
    [10]周平根.滑坡中地下水与岩土体相互作用研究概论[A].工程地质——面向21世纪(第四届全国青年工程地质大会论文集)[C].武汉:中国地质大学出版, 1997.642-649.
    [11]沈照理,钟佐桑,文冬光等.地质流体研究进展——1993年国际地质流体会议剖析[J].地球科学进展,1994,9(3):43-47.
    [12]梁冰,孙可明,薛强.地下工程中的流-固耦合问题的探讨[J].辽宁工程技术大学学报(自然版),2001,20(4):120-122.
    [13] Gu De-zhen,Wang Si-jing. On the interaction between the engineering construction and geologic environment in the man-made lake area[A]. Proceedings of IV Congress of International Association of Engineering Geology[C]. New Delhi. 1982. VII.57-64.
    [14] Wang Si-jing. Fundamental problems of environmental engineering geology in mountainous areas—a general view[A]. Proceedings. International Symposium on Engineering Geological Environment in Mountainous Areas[C]. Beijing. 1987.Vol.2,381-393.
    [15]王士天,刘汉超,张倬元等.大型水域水岩相互作用及其环境效应研究[J].地质灾害与环境保护,1997,8(1):69-88.
    [16]刁承泰,黄京鸿.三峡水库水位涨落带土地资源的初步研究[J].长江流域资源与环境,1999,8(1):75-80.
    [17]涂建军,陈治谏,陈国阶等.三峡库区消落带土地整理利用——以重庆市开县为例[J].山地学报,2002,20(6):712-717.
    [18]刘春,姜德义,任松.三峡库区消落带典型地质灾害成因分析[J].中国矿业,2004,13(10):53-55.
    [19]周彬,朱晓强,杨达源.长江三峡水库库岸消落带地质灾害防治研究[J].中国水土保持,2007,(11):43-45.
    [20] S.Gibo, Y.Zhou, K.Egashira, K.Sasaki. Landslides in Yangtze Three Gorges of China[J]. Journal of the Japan Landslide Society,1994,31(2):46-53.
    [21] Riemer. Landslides and reservoirs[A].In:Proceedings of the 6th International Symposium Landslides[C].Rotterdam:A.A.Balkema,1995,1973-2004.
    [22] E.霍克,J.W.布雷著.岩石边坡工程[M].卢世宗,李成村,夏继祥等译.北京:冶金工业出版社,1983.
    [23]陈祖煜,汪小刚,杨健等著.岩质边坡稳定分析——原理?方法?程序[M].北京:中国水利水电出版社,2005.
    [24]宣以琼,武强,杨本水等.岩石的风化损伤特征与缩小防护煤柱机理[J].中国矿业大学学报,2004,33(6):678-682.
    [25]宣以琼,武强,杨本水.岩石的风化损伤特征与缩小防护煤柱开采机制研究[J].岩石力学与工程学报,2005,24(11):1911-1916.
    [26]叶金汉等主编.岩石力学参数手册[M].北京:水利电力出版社,1991.
    [27] C.Chandong, M.D.Zoback, A.Khaksar. Empirical relations between rock strength and physical properties in sedimentary rocks[J]. Journal of Petroleum Science and Engineering, 2006,51(3~4):223-237.
    [28] L.Obert, S. L.Windes, W. I.Duvall. Standardized tests for determining the physical properties of mine rock[J]. RI-3891, Bureau of Mines, U.S. Dept. of the Interior. 1946.
    [29] N.J.Price. The influence of geological factors on the strength of coal measure rocks[J]. Geological Magazine, 1963,100(5):428-443.
    [30] N.J.Price. The compressive strength of coal measures rocks[J]. Colliery Engineering 1960,37(1):283–292.
    [31] P.S.B.Colback, B.L.Wiid. The Influence of moisture content on the compressive strength of rocks[A]. Proceedings of the 3rd Canadian Rock Mechanics Symposium[C].1965:65–83.
    [32] J.Feda. The influence of water content on the behavior of subsoil, formed by highly weathered rocks[A]. Proceedings of the 1st Congress of the International Society of Rock Mechanics[C]. Lisbon, 1966, 1:283–288.
    [33] M.D.Ruiz. Some technological characteristics of twenty six Brazilian rock types[A]. Proceedings 1st Congress of the International Society of Rock Mechanics[C]. Lisbon, 1966,1:115–119.
    [34] L.S. Burshtein. Effect of moisture on the strength and deformability of sandstone[J]. In: Soviet Mining Science,N4,1969:573–576.
    [35] A.K.Dube, B.Singh. Effect of humidity on tensile strength of sandstone[J]. Journal of Mines, Metals and Ruels,1972,20(1):8–10.
    [36] N.R.Morgenstern, K.D. Eigenbrod. Classification of argillaceous soils and rocks[J]. Proceedings of ASCE Journal of the Geotechnical Engineering Division, 1974,190, GT10, 1137–1156.
    [37] E.M.Van Eeckhout. The mechanisms of strength reduction due to moisture in coal mine shales[J]. International Journal of Rock Mechanics and Mining Science,1976,13(2):61–67.
    [38] E.M.Van Eeckhout, S.S.Peng. The effect of humidity on the compliance characteristics of coal mine shales[J]. International Journal of Rock Mechanics and Mining Science,1975,12(3):335–340.
    [39] P.G.Chamberlain, E.M.Van Eeckhout, E.R.Podnieks. Four factors influencing observed rock properties[J]. Soil specimen preparation for laboratory testing, ASTM, American Society for testing and Materials. 1976,(599):21–36.
    [40] Y.P.Chugh, R.A.Missavage. Effects of moisture on strata coal mines[J]. Engineering Geology. 1981,(17):241–255.
    [41] J.M.White, M.Mazurkiewicz. Effect of moisture content on mechanical properties of Nemo coal[J]. Moberly, Missouri U.S.A Mining Science and Technology, 1989,(9):181–185.
    [42] O.Ojo, N.Brook. The effect of moisture on some mechanical properties of rock[J]. Mining Science and Technology. 1990,(10):145–156.
    [43] L.Dobereiner, MH.de Freitas. Geotechnical properties of weak sandstone[J]. Geotechnique. 1986,36(1):79–94.
    [44] C.G..Dyke, L.Dobereiner. Evaluating the strength and deformability of sandstones[J]. Quarterly Journal of Engineering Geology,1991,24(1):123–134.
    [45]姜永东,鲜学福,许江等.砂岩单轴三轴压缩试验研究[J].中国矿业,2004,13(4):66–69.
    [46]高秀君,大久保诚介,福井胜则.三峡库区滑坡地带岩石特性的研究[J].地球与环境,2005,33(3):125–131.
    [47]冒海军,杨春和,黄小兰等.不同含水条件下板岩力学实验研究与理论分析[J].岩土力学,2006,27(9):1637–1642.
    [48]杨春和,冒海军,王学潮等.板岩遇水软化的微观结构及力学特性研究[J].岩土力学,2006(27)12:2090–2098.
    [49] E.Broch. The influence of water on some rock properties[A]. Proceedings of the Third Congress of the International Society for Rock Mechanics[C]. Themes 1-2: Advances In Rock Mechanics, Reports of Current Research, 1974,2 (A):33–38.
    [50] E.Broch. Changes in rock strength caused by water[J]. International Journal of Rock Mechanics and Mining. 1983,20(4):71–75.
    [51] S.D.Priest, S.Selvakumar. The Failure Characteristics of Selected British Rocks[R]. Transport and Road Research Laboratory Report. 1982.
    [52] G.Venkatappa.Rao, S.D.Priest, S.Selvakumar.,. Effect of moisture on strength of intact rocks and the role of effective stress principle[J]. Indian Geotechnical Journal, 1985,1(54):246–283.
    [53] A.B.Hawkins,B.J.McConnell. Sensitivity of sandstone strength and deformability to changes in moisture content[J]. Quarterly Journal of Engineering Geology, 1992,25(2):115–130.
    [54]胡哲烨,陈宏宇.影响软弱砂岩抗压强度因素之研究[J].土木水利,2001,28(2):138–151
    [55]殷跃平,胡瑞林.三峡库区巴东组(T2b)紫红色泥岩工程地质特征研究[J].工程地质学报,2004,12(2):124–135.
    [56]唐兴华,赵志祥,吉守信等.新第三系红层不同含水量与其力学性质关系试验研究[J].西北水电,2005,(4):16–19.
    [57] E.Barefield, A.Shakoor. The effect of degree of saturation on the unconfined compressive strength of selected sandstones[A]. The Geological Society of London[C]. 2006, IAEG2006 Paper number 606.
    [58]铃木光著.岩体力学与测定[M].北京:煤炭工业出版社,1973.
    [59] G..West. Strength properties of Bunter Sandstone[J]. Tunnels and Tunnelling, 1979,7(7):27–29.
    [60] V.S.沃特科里,R.D.拉马,S.S.萨鲁加著.岩石力学性质手册第一册[M].水利水电岩石力学情报网译.北京:水利出版社,1981:P80.
    [61]陈钢林,周仁德.水对受力岩石变形破坏宏观力学效应的实验研究[J].地球物理学报,1991,34(3):335–342.
    [62]康红普.水对岩石的损伤[J].水文地质工程地质,1994,(3):39–41.
    [63]周瑞光,成彬芳,杨计申等.糜棱岩流动变形与含水量的关系[J].工程勘察,1997,(5):34-37.
    [64] G.RLashkaripour. The effect of water content on the mechanical behavior of mudrocks[A]. Proceeding of the 8th the International Engineering Geology Congress[C]. 1:289-293.
    [65] G.R.Lashkaripour, M.Nakhaei. A statistical investigation on mudrocks characteristics[A]. In: Sarkka P, Eloranta P (Eds.), Proceedings of the ISRM regional symposium EUROCK’2001[C],2001:131–6.
    [66] G.R.Lashkaripour. Predicting mechanical properties of mudrock from index parameters[J]. Bulletin of Engineering Geology and the Environment,2002,61:73–7.
    [67]孟召平,彭苏萍,傅继彤.含煤岩系岩石力学性质控制因素探讨[J].岩石力学与工程学报,2002,21(1):102–106.
    [68]孟召平,苏永华著.沉积岩体力学理论与方法[M].北京:科学出版社,2006.
    [69] B.Vásárhelyi. Influence of the water saturation on the strength of volcanic tuffs[A]. In: Dinis da Gama, C., Ribeire e Sousa, L. (eds.) Workshop on volcanic rocks. Eurock2002[C]. Madeira, 2002,89–96.
    [70] B.Vásárhelyi. Some observations regarding the strength and deformability of sandstones in case of dry and saturated conditions[J]. Bulletin of Engineering Geology and the Environment,2003,62:245–249.
    [71] B.Vásárhelyi. Statistical analysis of the influence of water content on the strength of the Miocene limestone[J]. Rock Mechanics and Rock Engineering,2005,(38):69–76.
    [72] B.Vásárhelyi,P.Ván. Influence of water content on the strength of rock[J]. Engineering Geology,2006,(84):70–74.
    [73] Z.A.Erguler,R.Ulusay. Water-induced variations in mechanical properties of clay-bearing rocks[J]. International Journal of Rock Mechanics and Mining Sciences. 2009,(46):355–370.
    [74]蔡美峰,何满潮,刘东燕主编.岩石力学与工程[M].北京:科学出版社,2002
    [75] K.Hall. A laboratory simulation of rock breakdown due to freeze-thaw in a Maritime Antarctic environment[J]. Earth Surface Processes and Landforms, 1988,(13):369–382.
    [76] N.Matsuoka. Mechanisms of rock breakdown by frost action: an experimental approach[J]. Cold Regions Science and Technology, 1990,17:253–270.
    [77] A.Prick. Dilatometrical behaviour of porous calcareous rock samples subjected to freeze-thaw cycles[J]. Catena, 1995,25:7–20.
    [78]徐光苗,刘泉声,张秀丽.冻结温度下岩体THM完全藕合的初步理论分析[J].岩石力学与工程学报,2004,23(21):3709–3713.
    [79]徐光苗,刘泉声.岩石冻融破坏机理分析及冻融力学实验研究[J].岩石力学与工程学报,2005,24(17):3076–3082.
    [80]王俐,杨春和.不同初始饱水状态红砂岩冻融损伤差异性研究[J].岩土力学,2006(27),10:1772–1776.
    [81]赵澄林,朱筱敏主编.沉积岩石学(第三版)[M].石油工业出版社,2001.
    [82] J.D.Dunning,D.Petrovski,J.Schuyler,et al. The effects of aqueous chemical environments on crack propagation in quartz [J]. Journal of Geophysical Resource,1984,89(B6):4115–4123.
    [83] F.G.Bell, J.C.Cripps, M.G.Culshaw. A review of the engineering behaviour of soils and rocks with respect to groundwater[J]. Groundwater in Engineering Geology, London,1986:1–23.
    [84] N.Turk, W.R.Dearman. Influence of water on engineering properties of weathered rocks[J]. Groundwater in Engineering Geology, London, 1986:131–138.
    [85]汤连生,王思敬,张鹏程等.水-岩土化学作用与地质灾害防治[J].中国地质灾害与防治学报,1999,10(3):61–69.
    [86]汤连生,张鹏程,王思敬.水-岩化学作用的岩石宏观力学效应的试验研究[J].岩石力学与工程学报,2002,21(4):526–531.
    [87]汤连生,王思敬.岩石水化学损伤的机理及量化方法探讨[J].岩石力学与工程学报,2002,21(3):314–319.
    [88]汤连生,张鹏程,王思敬.水-岩化学作用之岩石断裂力学效应的试验研究[J].岩石力学与工程学报,2002,21(6):822–827.
    [89]汤连生,张鹏程,王洋等.水溶液对砼土剪切强度力学效应的实验研究[J].中山大学学报(自然科学版),2002,41(2):89–92.
    [90]汤连生,张鹏程,王洋.水作用下岩体断裂强度探讨[J].岩石力学与工程学报,2004,23(19):3337–3341.
    [91]汤连生,张鹏程.水化学损伤对岩石弹性模量的影响[J].中山大学学报(自然科学版),2000,39(5):126–128.
    [92]冯夏庭,赖户政宏.化学环境侵蚀下的岩石破裂特性—第一部分:试验研究[J].岩石力学与工程学报,2000,19(4):403–407.
    [93]王泳嘉,冯夏庭.化学环境侵蚀下的岩石破裂特性—第二部分:时间分形分析[J].岩石力学与工程学报,2000,19(5):551–556.
    [94]冯夏庭,王川婴,陈四利.受环境侵蚀的岩石细观破裂过程试验与实时观测[J].岩石力学与工程学报,2002,21(7):935–939.
    [95]冯夏庭,丁梧秀.应力–水流–化学耦合下岩石破裂全过程的细观力学试验[J].岩石力学与工程学报,2005,24(9):1465–1473.
    [96]陈四利,冯夏庭,李邵军.化学腐蚀下三峡花岗岩的破裂特征[J].岩土力学,2003,24(5):817–821.
    [97]陈四利,冯夏庭,李邵军.化学腐蚀对黄河小浪底砂岩力学特性的影响[J].岩土力学,2002,23(3):284–287.
    [98]陈四利,冯夏庭,李邵军.岩石单轴抗压强度与破裂特征的化学腐蚀效应[J].岩石力学与工程学报,2003,22(4):547–551.
    [99]陈四利,冯夏庭,周辉,化学腐蚀下砂岩三轴压缩力学效应的试验[J].东北大学学报(自然科学版),2003,24(3):292–295.
    [100]陈四利,冯夏庭,周辉.化学腐蚀下砂岩三轴细观损伤机理及损伤变量分析[J].岩土力学,2004,25(9):1363–1367.
    [101]丁梧秀,冯夏庭.化学腐蚀下灰岩力学效应的试验研究[J],岩石力学与工程学报,2004,23(21):3571–3576.
    [102]周翠英,邓毅梅,谭祥韶等.软岩在饱水过程中水溶液化学成分变化规律研究[J].岩石力学与工程学报,2004,23(22):3813–3817.
    [103]周翠英,邓毅梅,谭祥韶等.软岩在饱水过程中微观结构变化规律研究[J].中山大学学报(自然科学版),2003,42(4):98–102.
    [104]周翠英,邓毅梅,谭祥韶等.饱水软岩力学性质软化的试验研究与应用[J].岩石力学与工程学报,2005,24(1):33–38.
    [105]周翠英,谭祥韶,邓毅梅等.特殊软岩软化的微观机制研究[J].岩石力学与工程学报,2005,24(3):394–400.
    [106]周翠英,张乐民.软岩与水相互作用的非线性动力学过程分析[J].岩石力学与工程学报,2005,24(22):4036–4041.
    [107]霍润科,李宁,刘汉东.受酸腐蚀砂岩的统计本构模型[J],岩石力学与工程学报,2005,24(11):1852–1856.
    [108] N.Li, Y M.Zhu, B.Su, etc. A chemical damage model of sandstone in acid solution [J]. International Journal of Rock Mechanics and Mining Sciences, 2003, 40(2):243–249.
    [109]乔丽苹,刘建,冯夏庭.砂岩水物理化学损伤机制研究[J].岩石力学与工程学报,2007,26(10):2117–2124.
    [110]沈珠江.莫把虚构当真实—岩土工程界概念混乱现象剖析[J].岩土工程学报,2003,25(6):767–768.
    [111]李广信.土体、土骨架、土中应力及其他,兼与陈津民先生讨论[J].岩土工程界,2005,8(7):14–17.
    [112]李广信,李学梅.土力学中的渗透力与超静孔隙水压力[J].岩土工程界,2008,12(4):11–12.
    [113]李广信著.岩土工程50讲-岩坛漫话-第二版[M].北京:人民交通出版社,2010
    [114]陈津民.土中渗透力的定义和论证[J].岩土工程界, 2008,11(10):22–24.
    [115] K.太沙基著.理论土力学[M].徐志英译.北京:地质出版社,1960
    [116] A.W.Skempton. Effective stress in soils, concrete and rocks[J]. Pore Pressure and Suction in soils, Butterworth, London, 1961:4–16.
    [117] I.W.法默著.岩石的工程性质.汪浩译[M].北京:中国矿业学院出版社,1988.
    [118]缪协兴,杨成永,陈至达.膨胀岩体中的湿度应力场理论[J].岩土力学,1993,14(4):49–55.
    [119]缪协兴.湿度应力场理论的藕合方程[J].力学与实践,1995,17(6):22–24.
    [120]缪协兴.用湿度应力场理论分析膨胀岩巷道围岩变形[J].中国矿业大学学报,1995,24(1):58–63.
    [121] M.Xie-xin,L.Ai-hon,M.Xian-biao,etc al. Numerical Simulation for Roadways in Swelling Rock Under Coupling Function of Water and Ground Pressure[J].Journal of China University of Mining and Technoloy,2002,12(2):120–125.
    [122]陈占清,缪协兴.影响岩石渗透率的因素分析[J].矿山压力与顶板管理,2001,(2):83–86.
    [123]缪协兴,陈占清,茅献彪等.峰后岩石非Darcy渗流的分岔行为研究[J].力学学报,2003,35(6):660–667.
    [124]程宜康,陈占清,缪协兴等.峰后砂岩非Darcy流渗透特性的试验研究[J].岩石力学与工程学报,2004,23(12):2005–2009.
    [125]陈占清,缪协兴,刘卫群.采动围岩中参变渗流系统的稳定性分析[J].中南大学学报(自然科学版),2004,35(1):129–132.
    [126]刘卫群,缪协兴,陈占清.破碎岩石渗透性的试验测定方法[J].实验力学,2003,18(1):56–61.
    [127]刘卫群,缪协兴.综放开采J型通风采空区渗流场数值分析[J].岩石力学与工程学报,2006,25(6):1152–1158.
    [128]缪协兴,刘卫群,陈占清.采动岩体渗流与煤矿灾害防治[J].西安石油大学学报(自然科学版),2007,22(2):74–77.
    [129]杨天鸿,唐春安,梁正召等.脆性岩石破裂过程损伤与渗流藕合数值模型研究[J].力学学报,2003,35(5):533–541.
    [130]杨天鸿,唐春安,李连崇等.非均匀岩石破裂过程渗透率演化规律研究[J].岩石力学与工程学报,2004,23(5):758–762.
    [131]杨天鸿,屠晓利,於斌等.岩石破裂与渗流耦合过程细观力学模型[J].固体力学学报,2005,26(3):333–337.
    [132]杨天鸿,徐涛,刘建新等.应力–损伤–渗流耦合模型及在深部煤层瓦斯卸压实践中的应用[J].岩石力学与工程学报,2005,24(16):2900–2905.
    [133]曹广祝,王殿武,强毅.基于X射线CT基础上的砂岩破裂模式研究[J].西安理工大学学报,2004,20(4):361–365
    [134]吉小明,杨春和,白世伟.岩体结构与岩体水力耦合计算模型[J].岩土力学,2006,27(5):763–768
    [135]吉小明,杨春和,白世伟.与应变状态相关的岩体双重孔隙介质流-固耦合的有限元计算[J].岩石力学与工程学报,2003,22(10):1636–1639
    [136]吉小明,杨春和,白世伟.裂隙岩体流固耦合双重介质模型的有限元计算[J].岩土力学,2003,24(5):748–751
    [137]韦立德,杨春和.考虑饱和-非饱和渗流、温度和应力耦合的三维有限元程序研制[J].岩土力学,2005,26(6):1000–1004.
    [138]韦立德,杨春和,徐卫亚.拉应力条件下岩石细观力学本构模型和渗透系数张量研究(I):各向异性损伤本构模型[J].岩土力学,2005,26(5):779–783.
    [139]韦立德,杨春和,徐卫亚.拉应力条件下岩石细观力学本构模型和渗透系数张量研究(II):各向异性渗透系数张量及算例[J].岩土力学,2005,26(12):1996–2000.
    [140]韦立德,杨春和,徐卫亚.渗流场和温度场引起边坡灾害预报的有限元法[J].金属矿山,2005,(7):17–20.
    [141]殷黎明,杨春和,王贵宾等.地应力对裂隙岩体渗流特性影响的研究[J].岩石力学与工程学报,2005,24(17):3071–3075.
    [142]杨春和,王贵宾,王驹等.甘肃北山预选区岩体力学与渗流特性研究[J].岩石力学与工程学报,2006,25(4):825–832.
    [143]韦立德,杨春和,徐卫亚等.考虑饱和-非饱和渗流场和应力场耦合的三维强度折减有限元程序研制[J].水文地质工程地质,2006,(3):16–20.
    [144]韦立德,杨春和.压剪应力条件下各向异性岩石损伤本构模型和渗流模型(Ⅰ):理论模型[J].岩土力学,2006,27(3):428–434.
    [145]张嘉翔,韦立德,陈从新等.压剪应力条件下各向异性岩石损伤本构模型和渗流模型(Ⅱ):三轴压缩应力状态下理论模型及算例[J].岩土力学,2007,28(2):241–246.
    [146]韦立德,杨春和,冒海军等.压剪应力条件下板岩细观力学本构模型[J].岩土力学,2007,28(6):1225–1231.
    [147] C.W.Badger, A.D.Cummings, R.L.Whitmore. The disintegration of shale[J]. Journal of the Institute of Fuel, 1956,29,417–423.
    [148] K.Terzaghi, R.B.Peck. Soil mechanics in engineering practice[M]. New York-London-Sydney: John Wiley and Sons 1967.
    [149] M.F.Kennard,J.L.Knill. Reservoirs and limestones, with particular reference to the Cow Green Scheme[J]. Journal of the Institute of Water Engineers. 1968,(23):87–113.
    [150]杨和平,肖夺.干湿循环效应对膨胀土抗剪强度的影响[J].长沙理工大学学报(自然科学版),2005,2(2):1–5.
    [151]龚壁卫,周小文,周武华.干–湿循环过程中吸力与强度关系研究[J].岩土工程学报,2006,28(2):207–209.
    [152]曹玲,罗先启.三峡库区千将坪滑坡滑带土干-湿循环条件下强度特性试验研究[J].岩土力学,2007,28(增刊):93–97.
    [153]慕现杰,张小平.干湿循环条件下膨胀土力学性能试验研究[J].岩土力学,2008,28(增刊):580–582.
    [154] A.Prick. Dilatometrical behaviour of porous calcareous rock samples subjected to freeze-thaw cycles[J].Catena, 1995. 25:7–20.
    [155] F.S.Jeng, M.L.Lin, T.H.Huang. Wetting deterioration of soft sandstone—microscopic insights[A]. An International Conference on Geotechnical and Geological Engineering[C]. Melbourne:[sn], 2000.525.
    [156] M.L.Lin,F.S.Jeng,L.S.Tsai,T.H.Huang. Wetting weakening of tertiary sandstones—microscopic mechanism[J]. Environment Geology. 2005,(48):265–275.
    [157] P.A.Hale, A.Shakoor. A laboratory investigation of the effects of cyclic heating and cooling, wetting and drying, and freezing and thawing on the compressive strength of selected sandstones[J]. Environmental and Engineering Geoscience,2003,9(2):117–130.
    [158]刘新荣,傅晏,王永新等.(库)水-岩作用下砂岩抗剪强度劣化规律的试验研究[J].岩土工程学报,2008,30(9):1298–1302.
    [159]刘新荣,傅晏,王永新等.水岩相互作用对库岸边坡稳定的影响研究[J].岩土力学,2009,30(3):613–616.
    [160]中华人民共和国国家标准.工程岩体试验方法标准(GB/T 50266-99)[S].北京:中国计划出版社,1999.
    [161]中华人民共和国行业标准.水利水电工程岩石试验规程(SL264-2001)[S].北京:中国标准出版社,2001.
    [162]王学武.三峡库区水位升降作用对库岸边坡影响研究[D].成都理工大学硕士学位论文.2005.
    [163]国际岩石力学学会实验和现场试验标准化委员会.岩石力学实验建议方法(上集)[M].郑雨天,傅冰骏,卢世宗,等译校.北京:煤炭工业出版社,1982.
    [164] Z.T.Bueniawski. Mechanism of brittle fracture of rock, Parts I,II and III [J].International Journal of Rock Mechanics and Mining Sciences,1967,4(4):395–430.
    [165]郭中华,朱珍德,,杨志祥等.岩石强度特性的单轴压缩试验研究[J].河海大学学报,2002,30(2):93–96.
    [166] M.Cai, P.K.Kaiser, Y.Tasaka etal. Generalized crack initiation and crack damage stress thresholds of brittle rock masses near underground excavations [J].International Journal of Rock Mechanics and Mining Sciences,2004,41(5):833–847.
    [167] E.Tuncay, R.Ulusay. Relation between Kaiser effect levels and pre-stresses applied in the laboratory[J].International Journal of Rock Mechanics and Mining Sciences, 2008,45(3):524–537.
    [168] W.F.Brace, B.Paulding, C.Scholz. Dilatancy in the fracture of crystalline crocks[J]. Journal of Geophysical Resource,1966,71(16):39–53.
    [169] D.J.Holcomb, L.S.Costin. Damage in brittle materials: experimental methods[A]. In: Lamb JP, editor. Proceedings of the 10th U.S. National Congress of Applied Mechanics[C], 1987
    [170] C.D.Martin. The strength of massive Lac du Bonnet granite around underground opening[D]. PhD thesis, University of Manitoba, 1993.
    [171]尤明庆,苏承东.岩石的非均质性与杨氏模量的确定方法[J].岩石力学与工程学报,2003,22(5):757–761.
    [172] D.A.Lockner, J.D.Byerlee, V.Kuksenko, et al. Observation of quasi-static fault growth from acoustic emissions[A]. n: Evans B, Wong T.-f, editors. Fault mechanics and transport properties of rocks[C]. New York: Academic press, 1992. p. 3–31.
    [173] C.D.Martin, Chandler NA. The progressive fracture of Lac du Bonnet granite[J]. International Journal of Rock Mechanics and Mining Sciences 1994,31(6):43–59.
    [174]徐永福,张耀华,吴正根等.砂岩脆-韧性变形转化的特征[J].河海大学学报,1995,23(5):63–68.
    [175] E.Hoek, E.T.Brown. Empirical strength criterion for rock masses[J]. Journal of Geotechnical. Engineering. Div., ASCE, 1980, 106(GT9):1013–1035.
    [176]G.Mostyn,K.Douglas. Strength of intact rock and rock mass[A].In: Proceedings of the International Conference on Geotechnical Engineering(GeoEng2000,Melbourn,Australian)[C].2000.
    [177] E.霍克,E.T.布朗著.岩石地下工程[M].连志升,田良灿,王维德等译.北京:冶金工业出版社,1986.
    [178]瓦尔特.韦德卡著.岩石力学[M].曾国熙等译.浙江:浙江大学出版社,1996.
    [179]余寿文,冯西桥编著.损伤力学[M].北京:清华大学出版社,1997.
    [180]尹双增著.断裂·损伤理论及应用[M].北京:清华大学出版社,1992.
    [181]С.Л.伏尔柯夫著.强度统计理论[M].吴学蔺译.北京:科学出版社,1965.
    [182]伍法权著.统计岩体力学原理[M].武汉:中国地质大学出版社,1993
    [183] D.Krajcinovic, M.A.G.Silva. Statistical aspects of the continuous damage theory[J]. International Journal of Solids Structures,1982,18(7):551–562.
    [184]唐春安.岩石破裂过程中的灾变[M].北京:煤炭工业出版社,1993.
    [185]吴政,张承娟.单向荷载作用下岩石损伤模型及其力学特性研究[J].岩石力学与工程学报,1996,15(1):55–61.
    [186]曹文贵,方祖烈,唐学军.岩石损伤软化统计本构模型之研究[J].岩石力学与工程学报,1998,17(6):628–633.
    [187]曹文贵,赵明华,刘成学.基于Weibull分布的岩石损伤软化模型及其修正方法研究[J].岩石力学与工程学报,2004,23(19):3223–3231.
    [188]曹文贵,赵明华,刘成学.基于统计损伤理论的莫尔-库仑岩石强度判据修正方法之研究[J].岩石力学与工程学报,2005,24(14):2403–2408.
    [189]曹文贵,李翔.岩石损伤软化统计本构模型及参数确定方法的新探讨[J].岩土力学,2008,29(11):2952–2956.
    [190] J.Lemaitre,J.L.Chaboche著.固体材料力学[M].余天庆,吴玉树译.北京:国防工业出版社,1997.
    [191] F.D.Adams, E.D.Williamson. On the compressibility of rocks and minerals at high pressures[J]. Journal of The Franklin Institute,1923,(195):475–529.
    [192] M.Nishihara. Stress-strain-time relations of rocks[J]. Doshisha Eng. Rev.,1958,(8):32–55.
    [193] J.C.耶格,N.G.W.库克著.岩石力学基础(第三版)[M].中国科学院工程力学研究所译.北京:科学出版社,1981.
    [194]康亚明,刘长武,贾延等.岩石的统计损伤本构模型及临界损伤度研究[J].四川大学学报(工程科学版),2009,41(4):42–47.
    [195]谢和平著.岩石混凝土损伤力学[M].徐州:中国矿业大学出版社,1991.
    [196] K.G.斯塔格,O.C.晋基维茨主编.工程实用岩石力学[M].成都地址学院工程地质教研室译.北京:地质出版社,1978.
    [197] P.A.Cundall. Computer model for simulating progressive large scale movements in blocky systems[A]. Proceedings of the Symposium of the International Society of Rock Mechanics[C]. Nancy,France,1971,Vol.1,Paper No.II–8.
    [198] P.A.Cundall. The measurement and analysis of acceleration in rock slopes[D]. Ph.D. Dissertation, University of London, Imperial College of Science and Technology, 1971.
    [199]王泳嘉.离散单元法—一种适用于节理岩石力学分析的数值方法[A].第一届全国岩石力学数值计算及模型试验讨论会论文集[C],1986:32–37.
    [200]侴万禧.离散单元法的基本原理及其在岩体工程中的应用[A].第一届全国岩石力学数值计算及模型试验讨论会论文集[C],1986:43–46.
    [201] P.A.Cundall, O.D.L.Strack. A discrete numerical model for granular assemblies[J]. Geotechnique,1979(29):47–65.
    [202] A.Drescher, De Jossein de Jong. Photoelastic verification of a mechanical model for the flow of a granular material[J]. Journal of the Mechanics and Physics of Solids,1972,20(3):337–351.
    [203] O.D.L.Strack, P.A.Cundall. The distinct element method as a tool for research in granular media,Part I[R]. Report to the National Science Foundation,Minnesota:University of Minnesota,1978.
    [204] O.D.L.Strack. The distinct element method as a tool for research in granular media,Part II[R].Report to the National Science Foundation,Minnesota:University of Minnesota,1979.
    [205]王泳嘉,邢纪波.离散单元法及其在岩土力学中的应用[M].沈阳:东北工学院出版社,1991.
    [206]邢纪波,俞良群.颗粒复合材料破坏行为的梁-颗粒模型研究[J].应用基础与工程科学学报,1997,5(2):193–198.
    [207]邢纪波,俞良群,张瑞丰.用于模拟颗粒增强复合材料破坏过程的梁-颗粒细观模型的实验验证[J].实验力学,1998,13(3):377–382.
    [208]邢纪波,俞良群,王泳嘉.三维梁-颗粒模型与岩石材料细观力学行为模拟[J].岩石力学与工程学报,1999,16(6):627–630.
    [209]张德海,邢纪波,朱浮声.三维梁-颗粒模型在岩石材料破坏模拟中的应用[J].岩土力学,2004,25(增刊):33–36.
    [210] P.A.Cundall, O.D.L.Strack. Particle flow code in 2 Dimension[M]. Itasca Consulting Group,Inc.,1999.
    [211]周健,池永,池毓蔚等.颗粒流方法及PFC2D程序[J].岩土力学,2000,21(3):271–274.
    [212]周健,池毓蔚,池永等.砂土双轴试验的颗粒流模拟[J].岩土工程学报,2000,22(6):701–704.
    [213]周健,池永.砂土力学性质的细观模拟[J].岩土力学,2003,24(6):901–906.
    [214]周健,池永.土的工程力学性质的颗粒流模拟[J].固体力学,2004,25(4):377–382.
    [215]周健,王家全,曾远等.土坡稳定分析的颗粒流模拟[J].岩土力学,2009,30(1):86–90.
    [216]杜明芳,张昭,周健.筒仓压力及其流态的颗粒流数值模拟[J].特种结构,2004,21(4):39–41.
    [217]周健,张昭,杜明芳等.漏斗形状改变对筒仓压力影响的细观研究[J].特种结构,2006,23(4):14–16.
    [218]曾庆有,周健.不同墙体位移方式下被动土压力的颗粒流模拟[J].岩土力学,2005,26(增刊):43–47.
    [219]周健,彭述权,樊玲.刚性挡土墙主动土压力颗粒流模拟[J].岩土力学,2009,29(3):629–633.
    [220]周健,张刚,孔戈.渗流的颗粒流细观模拟[J].水利学报,2006,37(1):28–32.
    [221]周健,姚志雄,张刚.砂土渗流过程的细观数值模拟[J].岩土工程学报,2007,28(7):977–981
    [222] D.O.Potyondy, P.A.Cundall. A bonded-particle model for rock[J]. International Journal of Rock Mechanics and Mining Science,2004(41):1329–1364.
    [223]叶勇,徐西鹏.岩石类脆性材料的离散元建模方法研究[J].郑州轻工业学院学报(自然科学版),2008,23(5):62–66.
    [224]刘顺桂,刘海宁,王思敬.断续节理直剪试验与PFC2D数值模拟分析[J].岩石力学与工程学报,2008,27(9):1828–1836.
    [225]陈文胜,王桂尧,刘辉等.岩石力学离散单元计算方法中的若干问题探讨[J].岩石力学与工程学报,2005,24(10):1639–1644.
    [226] N.Sabatakakis, G.Koukis, G.Tsiambaos etc. Index properties and strength variation controlled by microstructure for sedimentary rocks[J]. Engineering Geology,2008,97(5):80–90.
    [227]徐永福,孙长龙,俞鸿年等.常温下砂岩的变形特征及其影响因素[J].岩土力学,1995,16(1):70–77.
    [228] H.B.Miihlhaus. I.Vardoulakis. The thickness of shear bands in granular materials[J]. Geotechnique, 1988,38(2):271–284.
    [229] Y.Jeoungseok. Application of experimental design and optimization to PFC model calibration in uniaxial compression simulation[J]. International Journal of Rock mechanics and Mining Sciences, 2007,44(5):871–889.
    [230] M.S.Bruno, R.B.Nelson. Microstructural analysis of the inelastic behavior of sedimentary rock.[J]. Mech Mater,1991,12(1):95–118.
    [231] C.F.Jeff Wu,Michael Hamada著.试验设计与及参数优化[M].张润楚,郑海涛,兰燕等译.北京:中国统计出版社,2003.
    [232]孙其诚,王光谦著.颗粒物质力学导论[M].北京:科学出版社,2009.
    [233] B.R.劳恩,T.R.威尔肖著.脆性固体断裂力学[M].陈颙,尹详础译.北京:地震出版社,1985.
    [234] ZX.Zhang. An empirical relation between mode I fracture toughness and the tensile strength of rock[J]. International Journal of Rock mechanics and Mining Sciences,2002,39(4):1–6.
    [235]黄志鹏,朱可善,郭映忠.重庆砂岩三点弯曲断裂及声发射试验研究[J].地下空间,1998, 18(1):23–26.
    [236] T.Backers. Fracture toughness determination and micromechanics of rock under mode I and mode II loading[D]. PhD thesis, University of Potsdam, 2005.
    [237] L.米勒主编.岩石力学[M].李世平,冯震海译.北京:煤炭工业出版社,1981.
    [238] E.Hoek.Strength of jointed rock masses[J].Geotechnique,1983,23(3):187–223.
    [239] E.Hoek, P.Marinos. A brief history of the development of the Hoek-Brown failure criterion[J].Soils and Rocks, 2007,2(1):1–13.
    [240] Z.T.Bieniawski. Engineering Rock Mass Classfication [M]. New York: John Wiley & Sons,1989.
    [241] E.Hoek, E.T.Brown. Practical estimates for rock mass strength[J]. International Journal of Rock Mechanics and Mining Sciences.1997,34(8):1165–1186.
    [242] P.Marinos, E.Hoek. GSI: A geologically friendly tool for rock mass strength estimation[A].In:Proceedings fo the 2000 International Conference on Geotechnical and Geological Engineering(Melbourn, Australia, 2000) [C]. 2000.
    [243] E.Hoek, C.Carranza-Torres, B.Corkum. Hoek-Brown failure criterion-2002 Edition[A].Proc. NARMS-TAC Conference[C], Toronto, 2002, 1, 267–273.
    [244] E.Hoek, M.S.Diederichs. Empirical estimation of rock mass modulus[J]. International Journal of Rock Mechanics and Mining Sciences. 2006,43(5):203–215.
    [245] A.Palmstrom, R.Singh. The deformation modulus of rock masses: comparisons between in situ tests and indirect estimates[J]. Tunneling Underground Space Technol 2001,16(2):115–31.
    [246]于远忠,宋建波.经验参数m,s对岩体强度的影响[J].岩土力学,2005,26(9):1461–1463.
    [247] H.Sonmez, R.Ulusay. Modifications to the geological strength index (GSI) and their applicability to stability of slopes[J]. International Journal of Rock Mechanics and Mining Sciences. 1999,36(3):743–760.
    [248] M.Cai, P.K.Kaiser, H.Uno, etc. Estimation of rock mass deformation modulus and strength of jointed hard rock masses using the GSI system[J]. International Journal of Rock Mechanics and Mining Sciences. 2004,41(2):3–19.
    [249] G. Russo. A new rational method for calculating the GSI[J]. Tunnelling and Underground Space Technology. 2009,24(6):103–111.
    [250] A.Palmstrom. Characterizing rock masses by the RMi for use in practical rock engineering. Part 1: The development of the rock mass index [J]. Tunneling and Underground Space Technology,1996,11(2):138–142.
    [251] A.Palmstrom. Characterizing rock masses by the RMI for use in practical rock engineering. Part 2: Some practical applications of the rock mass index[J].Tunneling and Underground Space Technology,1996,11(3):287–303.
    [252]韩凤山.大体积节理化岩体强度与力学参数[J].岩石力学与工程学报,2004,23(5):777–780.
    [253]中华人民共和国国家标准.工程岩体分级标准(GB 50218-94)[S].北京:中国计划出版社,1994.
    [254]中华人民共和国国家标准.水利水电工程地质勘察规范(GB50287-99)[S].北京:中国计划出版社,1999.
    [255]张倬元,王士天,王兰生编著.工程地质分析原理(第二版)[M].北京:地质出版社.1994.
    [256]郑颖人,陈祖煜,王恭先等编著.边坡与滑坡工程治理[M].北京:人民交通出版社.2007.
    [257] J.M.Duncan. State of the art: limit equilibrium and finite-element analysis of slopes[J]. Journal of Geotechnical Engineering,1996,122(7): 577–596.
    [258] O.C.Zienkiewicz,C.Humpheson,R.W.Lewis. Associated and non-associated visco-plasticity and plasticity in soil mechanics[J]. Geotechnique,1975,25(4):671–689.
    [259] F.S.Wong. Uncertainties in FE modeling of slope stability[J]. Computer & Structures,1984,19(2):777–791.
    [260] T.Matsui,K-C.San. Finite element slope stability analysis by shear strength reduction technique[J]. Soils and Foundations, 1992,32(1):59–70.
    [261] D.V.Griffths,P.A.Lane. Slope stability analysis by finite elements[J]. Géotechnique,1999,49(3):387–403.
    [262]宋二祥.土工结构安全系数的有限元计算[J].岩土工程学报,1997,19(2):1–7.
    [263]史恒通,王成华.土坡有限元稳定分析若干问题的探讨[J].岩土力学,2000,21(2):152–155.
    [264]郑宏,李春光,李焯芬,等.求解安全系数的有限元法[J].岩土工程学报,2002,24(5):626–628.
    [265]赵尚毅,郑颖人,时卫民等.用有限元强度折减法求边坡稳定安全系数[J].岩土工程学报,2002,24(3):343–346.
    [266]郑颖人,赵尚毅.有限元强度折减法在土坡与岩坡中的应用[J].岩石力学与工程学报, 2003, 23(19):3381–3388.
    [267]郑颖人,赵尚毅,孔位学.极限分析有限元法讲座Ⅰ—岩土工程极限分析有限元法[J].岩土力学, 2005, 26(1):163–168.
    [268]郑颖人,赵尚毅,邓楚键等.有限元极限分析法发展及其在岩土工程中的应用[J].中国工程科学,2006,8(12):39–61.
    [269]张鲁渝,时卫民,郑颖人.平面应变条件下土坡稳定有限元分析[J].岩土工程学报, 2002, 24(4):487–490.
    [270]刘波,韩彦辉主编. FLAC原理、实例与应用指南[M].北京:人民交通出版社,2005.
    [271]宗全兵,徐卫亚.基于广义Hoek-Brown强度准则的岩质边坡开挖稳定性分析[J].岩土力学,2008,29(11):3071–3076.
    [272]林杭,曹平,李江腾等.基于广义Hoek-Brown准则的边坡安全系数间接解法[J].煤炭学报,2008,33(10):1147–1151.
    [273]黄宜胜,李建林,常晓林.基于抛物线型D-P准则的岩质边坡稳定性分析[J],岩土力学,2007,28(7):1448–1452.
    [274]吴顺川,金爱兵,高永涛.基于广义Hoek-Brown准则的边坡稳定性强度折减法数值分析[J].岩土工程学报,2006,28(11):1975–1980.
    [275]李远耀,殷坤龙,代云霞.基于广义Hoek-Brown准则强度折减法的岩坡稳定性分析[J].岩土力学,2008,28(增):347–342.
    [276]林杭,曹平,赵延林等.强度折减法在Hoek-Brown准则中的应用[J].中南大学学报(自然科学版),2007,20(2):1000–1005.
    [277] R.E.Hammah,T.E Yacoub,B.Corkum,etc. The shear strength reduction method for the generalized Hoek-Brown criterion[A]. In Proceedings of the 40th U.S. Symposium on Rock Mechanics[C],Alaska Rocks 2005,Anchorage, Alaska.
    [278]刘建华,朱维申,李术才.岩土介质三维快速拉格朗日数值分析方法研究[J],岩土力学,2006,27(4):525–529.
    [279]重庆市地方标准.重庆地质灾害防治工程勘察规范(DB50143-2003)[S].重庆:重庆市建设委员会,2003.
    [280]殷跃平,胡瑞林.三峡库区巴东组(T2b)紫红色泥岩工程地质特征研究[J].工程地质学报,2004,12(2):124–135.
    [281] K.Terzaghi. Stability of steep slopes in hard unweathered rock[J]. Geotechnique, 1962, 12(4): 251–270.
    [282] L.Müller. The stability of rock bank slopes and the effect of rock water on same[J]. International Journal of Rock Mechanics and Mining Science, 1964, 1(4): 475-504.
    [283] B.S.Stimpson. Physical Properties of Rock. University of California, Berkeley, March 1976,70.
    [284] M.A.卡森,M.J.柯克拜著.坡面形态与形成过程[M].窦葆璋译.北京:科学出版社,1984.
    [285] W.M.Davis. The geographical cycle[J]. Geographical Journal. 1899,14(5):481–504.
    [286]刘宝珺主编.沉积岩石学[M].北京:地质出版社,1980.
    [287] R.L.舒斯特,R.J.克利泽克编.滑坡的分析与防治[M].铁道部科学研究院西北研究所译.北京:中国铁道出版社,1987.
    [288] R.J.Sterrett,T.B.Edil. Ground-Water Flow Systems and Stability of a Slope[J]. GROUND WATER,1982,20(1):5–11.
    [289]邓荣贵,付小敏,邓林.四川宝珠寺水库滑坡地质灾害及典型滑坡特征分析[J].成都理工大学学报(自然科学版),2005,32(5):518-524.
    [290]王志旺,杨健,张保军等.水库库岸滑坡稳定性研究[J].岩土力学,2004,25(11):1837–1840.
    [291]史文兵,辛全才,张志彬.三峡库区石包嘴滑坡形成机理及治理措施[J].水土保持研究,2006,13(5):225–226.
    [292]地质矿产部编写组.长江三峡工程库岸稳定性研究[M].北京:地质出版社,1988
    [293]地质矿产部水文地质工程地质司地质矿产部情报研究所选编.国外工程地质研究[M].北京:地质出版社,1986:117–123.
    [294]张奇华,丁秀丽,张杰.三峡库区奉节河段库岸蓄水再造研究[J].岩石力学与工程学报,2002,21(7):1007–1010.
    [295]吴益平,唐辉明,余宏明.三峡库区奉节县新址白马小区库岸再造工程地质研究[J].岩土力学,2003,24(增刊):361–364.
    [296]李雪平,王智济,李中社.偏最小二乘回归法在库岸再造预测中的应用[J].地质科技情报,2005,24(增刊):180–183.
    [297]贾洪彪,马淑芝,王智济.三峡库区巫山县城新址岩质库岸再造预测[J].地质科技情报,2005,24(增刊):189–191.
    [298]尚彦军,杨志法,廖秋林等.雅鲁藏布江大拐弯北段地质灾害分布规律及防治对策[J].中国地质灾害与防治学报,2001,12(4):30–40.
    [299]廖秋林,李晓,尚彦军等.水岩作用对雅鲁藏布大拐弯北段滑坡的影响[J].水文地质工程地质,2002,29(5):19–21.
    [300]廖秋林,李晓,李守定等.水岩作用对川藏公路102滑坡形成与演化的影响[J].工程地质学报,2003,11(4):390–395.
    [301]李定夺,李晓,张年学等.三峡库区宝塔滑坡泥化夹层泥化过程的水岩作用[J].岩土力学,2006,10(10):1841–1846.
    [302]尹宏磊,徐千军,李仲奎.抗剪强度随干湿循环变化对边坡安定性的影响[J].水利学报,2008,39(5):568–572.
    [303] D.F.科茨著.雷化南等译.岩石力学原理(第二版)[M].北京:冶金工业出版社,1989.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700