用户名: 密码: 验证码:
地下水不确定性问题的多模型分析方法及应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
不确定性是客观世界的固有属性,普遍存在于各个学科领域。对地下水模型进行不确定性分析,一直是水文地质学的研究热点和难点。最近十年,多模型分析(Multiple Model Analysis, MMA)的方法开始受到学者们的重视,并得到了广泛的应用。
     本文从岩性分布、渗透系数随机分布和岩体复杂构造三方面开展了多模型分析。首先,选取常见的河间地块问题,以渗流区岩性分布的不确定性为研究对象,构建了多模型方案,模拟得到了预测潜水位及其置信区间。岩性分布不确定性由置信区间的变化得到了很好的体现,验证了多模型分析方法的实用性。
     基于非稳定井流溶质运移问题,评价了建模过程中网格单元尺度选择和渗透系数场随机生成过程中抽样、插值等不确定因素对模拟的影响。分析了不同位置观测孔的浓度变化特征以及污染羽形态差异,结果表明网格单元尺度对模拟结果影响最大,抽样误差次之,克里格插值方法最小。研究还指出了AICc准则评价网格尺度、渗透系数随机分布等不确定性的局限性。
     针对雅砻江锦屏二级水电站工程区的隧洞涌水问题,在MODFLOW环境下建立了5种工况下的三维稳定流模型,讨论了复杂构造所引起的参数方案不确定性,利用UCODE程序优化了参数,使用多模型方法预测了防渗前后隧洞群的总涌水量分别为40.35 m~3/s和31.19 m~3/s。
     包括渗透结构在内的各种水文地质条件的不确定性,都应该作为多模型分析的对象。在系统分析概念模型不确定性的基础之上,选用分布式地下水数值模拟程序MODFLOW,建立了太原地区岩溶地下水系统的多模型分析框架,全面、系统地研究了1956年至1994年气候变化和人类活动影响下的晋祠泉和兰村泉泉流量衰减过程。
     研究取得了几点认识:1)将东山岩溶水系统纳入研究区的模拟效果更好;2)晋祠、兰村泉域地下水系统不存在所谓的可变边界;3)渗透系数垂向上衰减程度的差异所引起的不确定性大于补给方式;4)晋祠泉对降雨量变化较敏感,降水量减少和开采增加都是致使晋祠断流的重要原因。
     网格尺度不确定性对模拟有着重要影响,但往往被研究者忽视,为了探讨评价此类不确定性的方法,进行了数值试验。试验分析了模型网格大小不同所导致的渗透系数分布的差异,以及布置井、河流和观测孔等要素的变化,基于AICc的多模型分析结果表明,传统的信息量准则并不适于评价网格尺度因素引起的模拟不确定性。为此,提出了基于网格尺度的信息量准则GIC (Grid Information Criterion),实现了对AICc准则的改进。
Uncertainty is one of the inherent natures of the whole world, and exists in all scientific subjects. It has been a focus to analyze and assess the uncertainties in groundwater modeling. In the recent decade, hydrogeologists have paid increasing attention to Multiple Model Analysis (MMA), making it more and more popular in modeling practices.
     MMA was applied to study the uncertainties due to the permeability of media including the lithologic character, the random distribution of hydraulic conductivity, and the complicated structure of fractured media. First, we studied a common problem about groundwater seepage to parallel ditches. According to the uncertainty of lithology distribution, a serial of models were constructed to predict the elevation of water table and calculate its confidence interval. The practicablity of MMA was verified by the correspondence between water level variation and lithologic heterogeneity.
     Then we evaluated the scale effect of grid on solute transport simulation on the basis of a transit well flow. The errors of sampling and interpolation were also taken into account in the process of generation of the random hydraulic conductivity field. The characteristics of observed concentration at three points and the difference of contaminant plume patterns were compared. Results show that the grid scale has the most influence on simulation, the sampling error next, and the kriging interpolation method the least. Additionally, this study pointed out the corrected Akaike’s Information Criterion (AICc) is deficient to evaluate the uncertainty of grid scale as well as the randomicity of hydraulic conductivity.
     Third, three-dimensional steady state flow models under five different scenarios were established within MODFLOW, to predict the water inflow in tunnels of JinpingⅡhydropower station. We discussed the parameterization uncertainty caused by conceptualization of complex fracture structure. UCODE was employed to optimize parameters, the models selected by MMA forecasted water inflows in all tunnels before and after waterproof protections, and the results are 40.35 and 31.19 m~3/s, respectively.
     Besides the permeability of media, uncertainties of hydrogeological conditions need to be studied. After thoroughly illustrating the uncertainties of conceptualization for karst groundwater system in Taiyuan area, we applied the distribuated hydrogeological model MODFLOW to simulate the attenuation process of discharge rate of Jinci and Lancun springs from 1956 to 1994. Both climate change and human activities are the main factors concerned.
     Understandings obtained including: 1) it is better to take the East Mountain area into consideration to be an entire problem domain. 2) there is no so-called variable boundary between Jinci and Lancun groundwater subsystems. 3) uncertaity resulted from different degrees of depth-decay of hydraulic conductivity is greater than that caused by various recharge patterns. 4) Jinci springs are more sensitive to changes of interannual rainfall; both the reduction of precipitation and the increase of groundwater exploitation caused the springs stopped flow.
     It is often neglected by modelers that the uncertainty of grid scale plays important role to numerical simulation. We conducted experiments to explore the methods to assess this uncertainty. Different sizes of grid cell with respect to the same hydrogeological problem can result in resolution variation of hyaulic conductivity, and lead to other design changes related to elements such as wells, rivers, and observations etc. MMA results using AICc show that the traditional information criterion is not suitable for evaluation of grid scale effect. Therefore, we proposed a new criterion named Grid Information Criterion (GIC), and proved it is an improvement of AICc by a numerical test.
引文
Anderson, M. P. and W. W. Woessner. Applied Groundwater Modeling: Simulation of Flow and Advective Transport. San Diego: Academic Press, Inc., 1991
    Beven, K. and A. Binley. The future of distributed models: model calibration and uncertainty prediction. Hydrological Processes, 1992. 6: 279– 298.
    Bianchi, M. and C. Zheng. SGeMS: A Free and Versatile Tool for Three-Dimensional Geostatistical Applications. Ground Water, 2009. 47(1): 8 - 12.
    Blasone, R.-S., J. A. Vrugt, H. Madsen, et al. Generalized likelihood uncertainty estimation (GLUE) using adaptive Markov Chain Monte Carlo sampling. Advances in Water Resources, 2008. 31(4): 630 - 648.
    Burnham, K. P. and D. R. Anderson. Model Selection and Multi-Model Inference: A Practical Information-Theoretic Approach. New York: Springer-Verlag, 2002
    Carney, C. P. and E. P. Poeter. Development of Characterization Approaches and a Management Tool for the Groundwater-Surface Water System in the Vicinity of Sutherland Reservoir and Gerald Gentlemen Station Lincoln County, Nebraska: Completion Report No. 212. Colorado Water Institute, 2009
    Carrera, J. and S. P. Neuman. Transient and Steady State Conditions: 1. Maximum Likelihood Method Incorporating Prior Information. Water Resources Research, 1986. 22(2): 199 - 210.
    Cooley, R. L. and R. L. Naff. Regression modeling of ground-water flow: U. S. Geological Survey Techniques in Water-Resources Investigations, book 3, Chapter B4, 1990
    Freeze, R. A. A Stochastic-Conceptual Analysis of One-Dimensional Groundwater Flow in Nonuniform Homogeneous Media. Water Resources Research, 1975. 11(5): 725 - 741.
    Freeze, R. A., J. Massmann, L. Smith, et al. Hydrogeological Decision Analysis: 1. A Framework. Ground Water, 1990. 28(5): 738 - 766.
    Hao, Y., Y. Zhu, Y. Zhao, et al. The Role of Climate and Human Influences in the Dry-up of the Jinci Springs, China. Journal of the American Water Resources Association, 2009. 45(5): 1228 - 1237.
    Harbaugh, A. W., E. R. Banta, M. C. Hill, et al. MODFLOW-2000, The U.S. Geological Survey Modular Ground-Water Model——User Guide to Modularization Concepts and the Ground-Water Flow Process: U.S. Geological Survey Open-File Report 00-92, 2000
    Hill, M. C., E. R. Banta, A. W. Harbaugh, et al. MODFLOW-2000, The U.S. Geological Survey Modular Ground-Water Model - User Guide to the Observation, Sensitivity, and Parameter - Estimation Processes and Three Post - Processing Programs, Open - File Report 00-184. Denver, Colorado, 2000
    Hill, M. C. and C. R. Tiedeman. Effective Groundwater Model Calibration, with Analysis of Sensitivities, Predictions, and Uncertainty. New York: Wiley and John Sons, Inc., 2007
    Konikow, L. F. The Secret to Sucessful Solute-Transport Modeling. Ground Water, 2011. 49(2): 144 - 159.
    Li, H. and D. Zhang. Efficient and Accurate Quantification of Uncertainty for Multiphase Flow with the Probabilistic Collocation Method. Society of Petroleum Engineers Journal, 2008. 14(4): 665 - 679.
    Neuman, S. P. Maximum likelihood Bayesian averaging of alternative conceptual mathematical models. Stochastic Environmental Research and Risk Assessment, 2003. 17(5): 291 - 305.
    Neuman, S. P. and P. J. Wierenga. A comprehensive strategy of hydrogeologic modeling and uncertainty analysis for nuclear facilities and sites (NUREG/CR-6805). Washington, D.C.: U.S. Nuclear Regulatory Commission, 2003
    Poeter, E. P. and D. Anderson. Multimodel ranking and inference in ground water modeling. Ground Water, 2005. 43(4): 597 - 605.
    Poeter, E. P. and M. C. Hill. A computer code for Multi-Model Analysis: U.S. Geological Survey Techniques and Methods 6-E3, 2007
    Poeter, E. P., M. C. Hill, E. R. Banta, et al. UCODE_2005 and Six Other Computer Codes for Universal Sensitivity Analysis, Calibration, and Uncertainty Evaluation: U.S. Geological Survey Techniques and Methods 6-A11, 2005
    Refsgaard, J. C., J. P. van der Sluijs, J. Brown, et al. A framework for dealing with uncertainty due to model structure error. Advances in Water Resources, 2006. 29: 1586 - 1597.
    Singh, V. P., S. K. Jain and A. Tyagi. Risk and Reliability Analysis: A Handbook for Civil and Environmental Engineers. Reston, Virginia: ASCE Press, 2007
    Ye, M., P. D. Meyer, Y.-F. Lin, et al. Quantification of model uncertainty in environmental modeling. Stochastic Environmental Research and Risk Assessment, 2010. 24: 807– 808. Ye, M., S. P. Neuman and P. D. Meyer. Maximum likelihood Bayesian averaging of spatial variability models in unsaturated fractured tuff. Water Resources Research, 2004. 40, W05113, doi: 10.1029/2003WR002557.
    Zhang, D. Stochastic Methods for Flow in Porous Media: Coping with Uncertainties. San Diego: Academic Press, 2002
    Zheng, C. and G. D. Bennett. Applied Contaminant Transport Modeling: Theory and Practice. New York: Van Nostrand Reinhold, 1995
    Zheng, C. and P. P. Wang. MT3DMS: A Modular Three-Dimensional Multispecies Transport Model for Simulation of Advection, Disperion, and Chemical Reactions of Contaminants in Groundwater Systems; Documentation and User's Guide: Engineer Research and Development Center, U.S. Army Corps of Engineers, 1999
    陈崇希,唐仲华.地下水流动问题数值方法.武汉:中国地质大学出版社, 1990
    陈彦,吴吉春.含水层渗透系数空间变异性对地下水数值模拟的影响.水科学进展, 2005. 16(4): 482 - 487.
    陈昌礼,杨谦.锦屏水电枢纽辅助洞工程关键技术问题及对策分析.四川水力发电, 2004. 23(1): 58 - 59.
    承继成,郭华东,史文中.遥感数据的不确定性问题.北京:科学出版社, 2004
    崔亚莉,王婉丽,杨广元.基于LHS方法的地下水随机模拟及开采量风险性评价.地学前缘, 2010. 17(6): 134 - 140.
    董少刚,唐仲华,马腾,等.太原盆地地下水数值模拟.水资源保护, 2009. 25(2): 25 - 27, 94.
    董艳辉,李国敏,郭永海. SRTM3 DEM在区域地下水数值模拟中的应用.工程勘察, 2008.(11): 41 - 43.
    杜斌.太原市西山岩溶区汾河与地下水相互作用研究.太原理工大学学报, 2010. 41(3): 272 - 277.
    冯玉明,常发强.太原地区水文地质概念模型.山西水利科技, 1996.(114增刊): 6 - 11.
    郭清海,王焰新,马腾,等.山西岩溶大泉近50年的流量变化过程及其对全球气候变化的指示意义.中国科学D辑地球科学, 2005. 35(2): 167 - 175.
    郭清海,马瑞,王焰新,等.盆-山地下水系统演化及其水资源-环境效应——以太原盆地为例.北京:科学出版社, 2010
    韩冬梅,徐恒力,梁杏.北方岩溶大泉地下水系统的圈划:以太原盆地东西山地区为例.地球科学——中国地质大学学报, 2006. 31(6): 885 - 890.
    韩行瑞,鲁荣安,李庆松,等.岩溶水系统——山西岩溶大泉研究.北京:地质出版社, 1993
    何宇彬,吴琼,徐超.太原地区喀斯特水资源研究.上海:同济大学出版社, 1997
    黄润秋,王贤能,陈龙生.深埋隧道涌水过程的水力劈裂作用分析.岩石力学与工程学报, 2000. 19(5): 573 - 576.
    蒋业放.山西太原地下水流系统数值模拟.河北地质学院学报, 1996. 19(3 - 4): 380 - 384.
    蒋小伟,万力,杜强,等.基于地质统计学的NDVI图像估值技术.地学前缘, 2008. 15(4): 71 - 80.
    金芳义.汾河二库蓄水对兰村泉域岩溶水及西张盆地孔隙水影响的研究:[硕士学位论文]. 太原:太原理工大学. 2010
    李向阳.水文模型参数优选及不确定性分析方法研究:[博士学位论文].大连:大连理工大学. 2006
    李国敏,陈崇希.克立格法在地下水数值模型中的应用.地质科技情报, 1995. 14(3): 95 - 99.
    李术才,李树忱,张庆松,等.岩溶裂隙水与不良地质情况超前预报研究.岩石力学与工程学报, 2007. 26(2): 217 - 225.
    李砚阁,杨昌兵,耿雷华,等.北方岩溶大泉流量动态模拟及其管理.水科学进展, 1998. 9(3): 275 - 281.
    刘丹,查坤,李启彬.基于模糊类比法的秦岭Ⅰ线特长隧道涌水量预测.现代隧道技术, 2005. 42(3): 46 - 48, 53.
    刘苏峡,夏军,莫兴国.无资料流域水文预报(PUB计划)研究进展.水利水电技术, 2005. 36(2): 9 - 12.
    陆乐,吴吉春.地下水数值模拟不确定性的贝叶斯分析.水利学报, 2010. 41(3): 264 - 271.
    马祖陆,周春宏,张之淦,等.四川锦屏落水洞岩溶地下水示踪.中国岩溶, 2006. 25(3): 201 - 210.
    钱家忠,汪家权,葛晓光,等.我国北方型裂隙岩溶水流及污染物运移数值模拟研究进展. 水科学进展, 2003. 14(4): 509 - 512.
    钱海涛,谭朝爽,马平.岩体渗透性空间对河谷地下水形态的控制作用——以洮河九甸峡水利枢纽坝区为例.工程地质学报, 2009. 17(6): 788 - 795.
    任国澄,朱国荣,江思珉. UCODE在反求水文地质参数中的应用及其并行求解.勘察科学技术, 2010.(3): 7 - 10, 31.
    任旭华,束加庆,单治钢,等.锦屏二级水电站隧洞群施工期地下水运移、影响及控制研究. 岩石力学与工程学报, 2009. 28(增1): 2891 - 2897.
    芮孝芳,刘方贵,邢贞相.水文学的发展及其所面临的若干前沿科学问题.水利水电科技进展, 2007. 27(1): 75 - 79.
    束龙仓,朱元甡.地下水资源评价中的不确定性因素分析.水文地质工程地质, 2000.(6): 6 - 8.
    束龙仓,朱元甡.晋祠泉域地下水开采决策的风险分析.河海大学学报, 2000. 28(6): 90 - 93.
    孙才志,宫辉力.山西晋祠泉复流时间的人工神经网络预测.山地学报, 2001. 19(4): 372 - 376.
    孙才志,王金生,林学钰.山西晋祠泉在引水条件下的可再生性研究.中国岩溶, 2001. 20(1): 11 - 16.
    夏强,王旭升,鲁林波.利用MODFLOW模拟井流的误差特征.工程勘察, 2007.(10): 29 - 32,37.
    夏泽勇,李军,吴旭敏,等.雅砻江锦屏二级水电站引水隧洞和辅助洞施工期导水及地下水处理规划报告(咨询本).杭州:中国水电顾问集团华东勘测设计研究院, 2008
    熊立华,卫晓婧,万民.水文模型两种不确定性研究方法的比较.武汉大学学报(工学版), 2009. 42(2): 137 - 142.
    许国安,邵宇.锦屏二级水电站引水隧洞三维渗流分析.长江科学院院报, 2009. 26(增): 18 - 22.
    徐军祥,邢立亭.济南泉域岩溶水数值预报与供水保泉对策.地质调查与研究, 2008. 31(3): 209 - 213.
    薛禹群.中国地下水数值模拟的现状与展望.高校地质学报, 2010. 16(1): 1 - 6.
    薛禹群,朱学愚,吴吉春,等.地下水动力学(第二版).北京:地质出版社, 1997
    薛禹群,谢春红.地下水数值模拟.北京:科学出版社, 2007
    杨金忠,蔡树英,王旭升.地下水运动数学模型.北京:科学出版社, 2009
    杨锁林.晋祠泉流量衰减分析.山西水利, 2005.(6): 81 - 83.
    叶守泽,夏军.水文科学研究的世纪回眸与展望.水科学进展, 2002. 13(1): 93 - 104.
    尹雄锐,夏军,张翔,等.水文模拟与预测中的不确定性研究现状与发展.水力发电, 2006. 32(10): 27 - 31.
    殷丹,苏小四,李砚阁,等. ANN技术在岩溶地下水可开采量平价中的应用——以山西晋祠泉域为例.吉林大学学报(地球科学版), 2006. 36(增刊): 55 - 59.
    万力,蒋小伟,王旭升.含水层的一种普遍规律:渗透系数随深度衰减.高校地质学报, 2010. 16(1): 7 - 12.
    王大纯,张人权,史毅虹,等.水文地质学基础.北京:地质出版社, 1995
    王媛,王飞,倪小东.基于非稳定渗流随机有限元的隧洞涌水量预测.岩石力学与工程学报, 2009. 28(10): 1986 - 1994.
    王浩,陆垂裕,秦大庸,等.地下水数值计算与应用研究进展综述.地学前缘, 2010. 17(6): 1 - 12.
    卫晓婧,熊立华,万民,等.融合马尔科夫链-蒙特卡洛算法的改进通用似然不确定性估计方法在流域水文模型中的应用.水利学报, 2009. 40(4): 464 - 473.
    文佩仙.兰村泉域地下水资源开发利用现状及对策.山西水利科技, 2002.(总145): 79 - 82.
    吴世勇,王坚,王鸽.锦屏水电站辅助洞工程地下水及治理对策.岩石力学与工程学报, 2007. 26(10): 1959 - 1967.
    吴晓芳.兰村泉域岩溶地下水动态研究:[硕士学位论文].长春:吉林大学. 2007
    赵兰霞,左海凤,崔木花,等.兰村泉域地下水位预测研究.人民黄河, 2007. 29(3): 49 - 50.
    赵永贵,蔡祖煌.岩溶地下水系统的研究——以太原地区为例.北京:科学出版社, 1990 中国地下水科学战略研究小组.中国地下水科学的机遇与挑战.北京:科学出版社, 2009
    朱嵩,毛根海,刘国华,等.改进的MCMC方法及其应用.水利学报, 2009. 40(8): 1019 - 1023.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700