用户名: 密码: 验证码:
东营凹陷古近系沙四上亚段滩坝砂体固体—流体相互作用与有效储层预测
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
滩坝砂体是近年来油气勘探的一个新的热点领域,次生孔隙是滩坝砂体中的一种重要的孔隙类型,次生孔隙的产生是形成有效孔隙的重要条件。本文以东营凹陷古近系沙四上亚段滩坝砂体为研究对象,综合运用岩心观察、薄片鉴定、扫描电镜观察、能谱分析、全岩X衍射、岩心物性分析等多种技术方法,结合层序地层划分、沉积体系展布、构造演化史、有机质热演化史、油气成藏史等研究成果,从固体-流体相互作用的过程入手,对滩坝砂体次生孔隙的形成机制和演化过程进行了系统研究,划分了流体演化阶段,建立了次生孔隙成因分布模式,并在此基础上形成了以固体、流体和成岩环境为依据的“五参数固体-流体有效储层评价和预测方法”,根据此方法可以对砂体有效储层的发育情况进行评价和预测。
     研究区发现的次生孔隙主要为钙质胶结物溶蚀孔隙和石英溶蚀孔隙,属于不同的流体环境下作用的产物。不同成因类型的次生孔隙在平面上分布具有一定的规律性,凹陷南坡砾质滩坝发育带主要是钙质胶结物溶蚀次生孔隙发育,远岸滩坝和中央共振带滩坝主要是石英溶蚀产生的次生孔隙发育,而近岸滩坝和三角洲控制滩坝储层中可见两种类型次生孔隙共存。不同沉积相带次生孔隙类型不同主要是由于不同沉积区固体和流体性质的差异,此外不同成因的次生孔隙共存的现象更反映了流体演化过程的复杂性和阶段性。根据流体来源和流体性质的变化,结合盆地埋藏史、构造演化史和有机质热演化史等,将整个埋藏时期的流体演化划分了五个阶段:初始流体成岩阶段、围岩流体成岩阶段、外来流体成岩阶段、排烃流体成岩阶段和排烃后流体成岩阶段,确定了每个流体演化阶段的流体来源和持续时间。根据不同次生孔隙发育带成岩现象的不同,进一步建立了各个带流体性质、固体颗粒和物性演化的正演模型。总结了影响次生孔隙发育的五个主要参数:方解石、白云石、石英、流体pH值和埋深。依据五个参数之间的相互作用关系,建立了三种矿物随埋深和流体pH值变化的溶蚀-沉淀图版。根据该图版形成了“五参数固体-流体有效储层评价和预测方法”,并通过选取不同次生孔隙发育带的多口重点井对该方法的验证,证明了方法具有较强的适用性和可靠性。最后,利用该方法对博兴洼陷两个代表性开发区块的重点产油层进行了储层的评价和预测,也取得了很好的效果。
Beach-bar sand has becoming a very important target of petroleum exploration in recent years. Secondary pore is a momentous style in the sandstone of beach and bar and plays an important role in the forming of effective reservoir. In this article we focus on the case study of beach-bar sand bodies of the upper part of the forth member of Shahejie Formation of Paleogene in Dongying Depression. Based on the integrated research of core observation, thin section identification, SEM observation, SEM/EDX analysis, core X-ray diffraction analysis and core physical properties analysis and so on, combined with sequence stratigraphy, depositional system distribution, tectonic evolution, thermal history of organic matter, and oil and gas accumulation history research results, a systematic study about the formation mechanism and evolution of secondary pore has been done from the research of the solid-liquid process. After this, the fluid evolution can be divided and the distribution pattern of secondary pore genesis can be found. According to the relationship of solid, fluid and diagenetic environments,“evaluation and prediction method of effective reservoir with five parameters of solid-fluid”come into being. Using this method we can evaluate and predict the development of effective reservoir in sand bodies.
     Secondary porosity which can be found in the study area include calcareous cement dissolved porosity and quartz dissolved pores. They are produced in different fluid environments. Different genetic types of secondary porosity distributed in the plane with a certain regularity: gravelly beach and bar in the southern slope of depression mainly develops calcareous cement secondary dissolution porosity, the bar far from shore and in the central resonance belt mainly develops quartz dissolution secondary porosity, and the bar near shore and controlled by delta develops two types of secondary porosity. The differences of secondary pore developed in different sedimentary facies are mainly due to the difference of solid and fluid characteristics; also it reflects the complexity and stages of the fluid evolution. According to the source of fluid and changes of fluid properties, combing the basin burial history, tectonic evolution history and thermal history of organic matter, fluid evolution could be divided into five stages during the whole burial history, such as diagenetic stage of the initial fluid, diagenetic stage of surrounding fluid, diagenetic stage of external fluid, diagenetic stage of hydrocarbon expulsion fluid and diagenetic stage of fluid after the hydrocarbon expulsion. The source and duration of fluid in each stage can be determined. Depending on the differences of diagenetic phenomenon, forward model of liquid properties, solid and reservoir properties evolution was established in every secondary porosity zone. There are five main parameters which were summarized can influence the content of secondary porosity in sandstone. They are calcite, dolomite, quartz, pH value of fluid and burial depth. Calcite, dolomite, quartz are solid parameters, while the pH value is a fluid parameter and burial depth is a diagenetic environment parameter. Based on the research of interaction among these five parameters, a dissolution-precipitation plate of the three minerals can be established. The X-axis stand for pH and the Y-axis is depth separately. This changed the criteria for the classification of fluid by simple acidic and alkaline in reservoir research. Formed a "evaluation and prediction method of effective reservoir with five parameters of solid-fluid" and it’s applicability and reliability can be confirmed by several wells in every secondary porosity development zone. Finally, we take the key oil production in two typical development blocks as examples, and make an evaluation and prediction of effective reservoir which has achieved good results.
引文
Atwater G. I., Miller E. E. The effect of decrease in porosity with depth on future development of oil and gas reserves in south Louisiana. Bulletin of the American Association of Petroleum Geologists, 1965, 49(3): 334
    Bloch S.. Role of secondary porosity and permeability in predrill prediction of total porosity and permeability in sandstones. AAPG Bulletin, 1991, 75(3): 543-544
    Block S.. Importance of reservoir quality prediction in exploration, in Michel, Wilson, M. D., eds., Reservoir quality assessment and prediction in clastic rocks. Tulsa, Okla.: Society for Sedimentary Geology (SEPM) Short Course 30. 1994. 5-8
    Boles J.R. Secondary porosity reactions in the Stevens Sandstones, San Joaquin Valley,California. In:Clastic Diagenesis (Eds D.A.McDonald & R.C.Surdam). Memoir 37,American Association of Petroleum Geologists, Tulsa, OK.1984, 217-225.
    Byrnes A. P.. Empirical methods of reservoir quality prediction, in Wilson M. D., eds., Reservoir Quality Assessment and Prediction in Clastic Rocks. Tulsa, Okla.: Society for Sedimentary Geology (SEPM) Short Course 30. 1994. 9-22
    Clifton H. E. Supply, segregation, successions, and significance of shallow marine conglomeratic deposits. Bulletin of Canadian Petroleum Geology, 2003, 51(4): 370-388.
    Crocker M. E., Marchin L. M.. Wettability and adsorption characteristics of crude-oil asphaltene and polar fractions. Journal of Petroleum Technology, 1988, 49(4): 470-474
    Curtis C. D. Link between aluminum mobility and destruction of secondary porosity. AAPG Bulletin, 1983, 67(3): 380-384
    Dove P. M, Nix C. J.. The influence of the alkaline earth cations, magnesium, calcium, and barium on the dissolution kinetics of quartz, Geochim Cosmochim Acta, 1997, 61(16): 3329-3340.
    Dove P. M., The dissolution kinetics of quartz in sodium chloride solutions at 25℃to 300℃, American Journal of Science, 1994. 294: 665-712.
    Fothergill C. A., The cementation of oil reservoir sands and its origin. in Fourth World Petroleum Congress, Rome: Proceedings, Section 1, 1955: 301-314.
    Garrels R. M., Mackenzie F. T.. Origin of the chemical compositions of some springs and lakes . in: Gould R. F. eds., Equilibrium Concepts in Natural Water Systems . Advances in Chemistry, 1967. 67: 222-242.
    Garrels R. M., Thompson M. E.. A chemical model for sea water at 25℃and one atmospheric total pressure. American Journal of Science, 1962, 260: 57-66.
    Gaupp R., Matter A., Platt J. et al., Diagenesis and fluid evolution of deeply buried Permian (Rotliegende) gas reservoirs, northwest Germany. American Association of Petroleum Geologists Bulletin, 1993, 77(7): 1111-1128
    Greg P., James G., John L.. Interpretational application of spectral decomposition in reservoir characterization. The Leading Edge, 1999, 18(3): 353-360
    Handin, J., Hagar R. V., Friedman G. M., and Feather J. N. Experimental deformation of sedimentary rocks under confining pressure: pore pressure tests. AAPG Bulletin, 1963, 47: 717-755.
    Hayes J. B., Sandstone diagenesis—the hole trouth, in Scholle P. A. and Schiuger P. R. eds., Aspects of diagenesis: SEPM Special Publication, 1979, 26: 127-139
    Helgeson H. C., Garrels R M, Mackenzie F T. Evaluation of irreversible reactions in geochemical processes involving minerals and aqueous solutions. II. Applications. Geochim Cosmochim Acta, 1969, 33(4): 455-481.
    Helgeson H. C.. Evaluation of irreversible reactions in geochemical processes involving minerals and aqueous solutions. I. Thermodynamic reactions. Geochim Cosmochim Acta, 1968, 32(8): 853-877. Hogg M. D.. Secondary porosity in Miocene sandstones of Louisiana Gulf Coast and its significance in reservoir properties. AAPG Bulletin, 1985, 69(2): 266
    Huang W. L., Longo J. M.. The effect of organic on feldspar dissolution and the development of second porosity. Chemistry Geology, 1992, 98: 271-292
    Larese R. E., Thomas J.B.,Pittman E.D. Development of secondary porosity in reservoir sandstones by dissolution of silicate mineral constituenets. 1980, AAPG Bulletin, 64(5): 737
    Marchand A.M.E., Smalley P.C., Haseldine R.S. et al.. Note on the importance of hudrocarbon fill for reservoir quality prediction in sandstones. American Association of Petroleum Geologists Bulletin,2002,86(9):1561-1571.
    Meshri I. D. On the reactivity of carbonic and orgnic acids and generation of secondary porosity. SEPM Special Publication, 1986, 28:123-128
    Nedkvitne T., Karlsen D. A., Bjrфykke K. et al. Relationship between reservoir diagenetic evolution and petroleum emplacement in the U la field, North Sea. Marine and Petroleum Geology, 1993, 10(6): 255-270
    Patricia M. Dove. The dissolution kinetics of quartz in sodium chloride solutions at 25°to300°. American Journal of Science,1994,294:665-712.
    Parnell J.. Secondary porosity in hydracarbon-bearing transgressive sandstones on an unstable lower
    Paleozoic continental shelf, Welsh Borderland. Geological Society Special Publications, 1987, 36: 297-312
    Pettijohn F. J., Potter P. E. and Siever R.. Sand and Sandstone. New York: Springer-Verlag, 1972. Robert H.G., Carlos R.. Recrystallization in quartz overgrowths. Journal of Sedimentary Research, 2002, 72(3): 432-440
    Saigal G. C., Bjrфykke K., Larter S. R.. The effects of oil emplacement on diagenetic processes: examples from the Fulmar Reservoir sandstones, Central North Sea. American Association of Petroleum Geologists, Bulletin, 1992, 76:1024-1033
    Schmidt V., McDonald D. A.. Role of secondary porosity in sandstone digenesis. AAPG Bulletin, 1977. 61(8): 1390-1391
    Schmidt V., McDonald D. A. The role of secondary porosity in the course of sandstong diagenesis, in Scholle P. A. and Schiuger P. R., eds., Aspects of diagenesis: SEPM Special Publication, 1979, 26: 175-207
    Schmoker J. W., Krystinik K. B. and Halley R. B. Selected characteristics of limestone and dolomite reservoirs in the United States. AAPG Bulletin, 1985, 69: 733-741.
    Surdam R.C., Boese S.W., Crossey G.J. The chemistry of secondary porosity. AAPG Memoir, 1984, 37:127-151
    Surdam R. C., Crossey L. J., Hagen E. S. Organic-inorganic and sandstone diagenesis. AAPG Bulletin, 1989, 73: 1-23
    Taylor J R. The influence of calcite dissolution on reservoir porosity in Miocene sandstones, Picaron field, offshore Texas Gulf Coast. Journal of Sedimentary Petrology, 1989, 60: 322-334
    Tillman R. W., Jordan D. W., Sedimentology and subsurface geology of deltaic facies, Admire 650′Sandstone, EL Dorado field, Kansas. Reservoir Sedimentology, 1987, 40: 221-291.
    Tseng H. Y. and Pottorf R. J.. Fluid inclusion constraints on petroleum PVT and compositional history of the Greater Alwyn–South Brent petroleum system, southern North Sea: Marine and Petroleum Geology, 2002, 19: 797–809
    Vail P.R. and Wornardt W. Jr.. An integrated approach to exploration and development in the 90`s:well log-seimic sequence stratigraphy analysis: Transactions-Gulf Coast Association of Geological
    Societies, 1991, 41: 630-650
    蔡春芳.沉积盆地流体-岩石相互作用研究现状.地球科学进展,1996,11(6):575-579.
    蔡春芳,梅博文,马亭等.塔里木盆地有机酸来源、分布及对成岩作用的影响.沉积学报,1997,15(3):103-108
    操应长,王艳忠,徐涛玉等.东营凹陷西部沙四上亚段滩坝砂体有效储层的物性下限及控制因素.沉积学报,2009,27(2):230-237
    曾大乾,李淑贞.中国低渗透砂岩储层类型及地质特征.石油学报,1994,15(1):38-45.
    陈丽华,赵澄林,纪友亮等.碎屑岩天然气储集层次生孔隙的三种成因机理.石油勘探与开发,1999,26(5):77-79
    陈萍.地震反演技术在泌阳凹陷储层预测中的应用.大庆石油地质与开发,2005,24(6):95-96.
    陈忠,罗蛰潭,沈明道等.论砂岩储层次生孔隙的形成机制.成都理工学院学报,1996,23(增刊):35-41
    陈忠,罗蛰潭,沈明道等.由储层矿物在碱性驱替剂中的化学行为到砂岩储层次生孔隙的形成.世界地质,1996,18(2):15-19
    戴金星,戚厚发,郝石生.天然气地质学概论.北京:石油工业出版社,1989
    邓宏文,高晓鹏,赵宁等.济阳坳陷北部断陷湖盆陆源碎屑滩坝成因类型、分布规律与成藏特征.古地理学报,2010,12(6):737-747
    冯有良.东营凹陷下第三系层序地层格架及盆地充填模式.地球科学,1999,24(6):635-642.
    关效如.我国东部高纯二氧化碳成因.石油实验地质,1990,12(3):248-257
    郭春清,沈忠民,张林晔等.砂岩储层中有机酸对主要矿物的溶蚀作用及机理研究综述.地质地球化学,2003,31(3):53-56.
    黄福堂,邹信方,张作祥.地层水中主要酸类对储层物性影响因素研究.大庆石油地质与开发,1998,17(30):7-9
    黄洁,朱如凯,侯读杰等.深部碎屑岩储层次生孔隙发育机理研究进展.地质科技情报,2007,26(6):76-82
    黄思静,黄可可,张雪花等.碳酸盐倒退溶解模式的化学热力学基础—与CO2有关的溶解介质.成都理工大学学报(自然科学版),2009,36(5):457-464
    黄思静,张雪花,刘丽红等.碳酸盐成岩作用研究现状与前瞻.地学前缘,2009,16(5):219-231
    蒋凌志,顾家裕,郭彬程.中国含油气盆地碎屑岩低渗透储层的特征及形成机理.沉积学报,2004,22(1):13-18.
    姜在兴.沉积学(第二版),北京:石油工业出版社,2010:83-105
    兰素清,陆明华.多种地球物理方法组合在储层预测中的应用.勘探地球物理进展,2002,25(6):43-46
    李丕龙,姜在兴,马在平.东营凹陷储集体与油气分布.北京:石油工业出版社,2000:1-5
    李阳,蔡进功,刘建民.东营凹陷下第三系高分辨率层序地层研究.沉积学报,2002,20(2):210-216
    李义军.浅述次生孔隙的成因.西北地质,2002,35(1):65-69
    李忠,李蕙生.东濮凹陷深部次生孔隙成因与储层演化研究.地质科学,1994,29(3):267-275
    梁卫,张晓宇.铁岭—昌图盆地上侏罗统砂岩储层次生孔隙形成机制研究.矿物岩石,1994,14(3):62-68
    刘惠民.济阳坳陷滩坝砂岩油藏取得重大突破.油气地质与采收率,2010,17(3):44
    刘琼,何生,陈振林等.江汉盆地西南缘白垩系渔洋组砂岩储集层成岩作用和孔隙演化.矿物岩石,2007,27(2):78-85
    卢焕勇,袁佩芳,祝总祺等.胜利油田下第三系沙河街组烃源岩热解产物初析.西北大学学报(自然科学版),1996,26(6):515-518
    马丽娟,高平,金学新等.东营南坡东部沙河街组四段储层成因及预测方法.地质科技情报,2002,21(3):55-60.
    邱隆伟,姜在兴,操应长等.泌阳凹陷碱性成岩作用及其对储层的影响.中国科学(D辑),2001,31(9):752-759
    邱隆伟,姜在兴,陈文学等.一种新的储层孔隙成因类型—石英溶解型次生孔隙.沉积学报,2002,20(4):621-627
    邱隆伟,赵伟,刘魁元.碱性成岩作用及其在济阳坳陷的应用展望.油气地质与采收率,2007,14(2):10-15
    裘亦楠,薛叔浩,应凤翔.中国陆相油气储集层.北京:石油工业出版社.1997
    沈照理,王焰新.水-岩相互作用研究的回顾与展望.地球科学——中国地质大学学报,2002,27(2):127-133
    寿建峰,朱国华.砂岩储层孔隙保存的定量预测研究.地质科学,1998,32(2):224-249
    司学强,张金亮.博兴洼陷沙四上亚段滩坝砂岩次生孔隙形成机制.地质科技情报,2008,27(1):59-63
    覃建雄,张长俊,徐国盛.西昌盆地上三叠统白果湾组砂岩储层次生孔隙成因探讨.中国海上油气, 1996,10(2):83-89
    田景春,曾允孚,张长俊等.东营凹陷沙河街组层序地层及地层格架研究.矿物岩石,1994,14(02):37-46.
    王成,赵海玲,邵红梅等.松辽盆地北部登娄库组砂岩次生孔隙形成时期与油气成藏.岩石矿物学杂志,2007,26(3):253-258
    王鹏,赵澄林.东濮凹陷杜桥白地区深部储集层次生孔隙成因探讨.石油勘探与开发,2001,28(4):44-46
    吴富强,鲜学福,胡雪等.次生孔隙形成机制探讨—以渤南洼陷为例.油气地质与采收率,2003,10(1):3-5
    谢继容.砂岩次生孔隙形成机制.天然气勘探与开发,2000,23(1):52-55
    徐维胜,赵培荣,聂鹏飞等.石灰岩、白云岩储层孔隙度—渗透率关系研究.石油与天然气地质,2008,29(6):806-811.
    杨晓宁,陈洪德,寿建峰等.碎屑岩次生孔隙形成机制.大庆石油学院学报,2004,28(1):4-6
    杨晓萍,赵文智,邹才能等.低渗透储层成因机理及优质储层形成与分布.石油学报,2007,28(4):57-61
    应凤祥,罗平,何东博等.中国含油气盆地碎屑岩储集层成岩作用与成岩数值模拟.北京:石油工业出版社,2004
    袁静,王乾泽.东营凹陷下第三系深部碎屑岩储层次生孔隙垂向分布及成因分析.矿物岩石,2001,21(1):43-47
    张思亭,刘耘.不同pH值条件下石英溶解的分子机理.地球化学,2009,38(6):549-557
    张枝焕,常象春,曾溅辉.水—岩相互作用研究及其在石油地质中的应用.地质科技情报,1998,17(3):69-74
    张枝焕,胡文瑄,曾溅辉等.东营凹陷下第三系流体—岩石相互作用研究.沉积学报,2000,18(4):560-566
    张忠民,朱伟,赵澄林.辽河盆地下第三系深部碎屑岩储层次生孔隙演化模式及其分布.大庆石油学院学报,2002,26(3):12-14
    张宗檩,操应长,高永进等.东营凹陷沙三段—沙一段层序地层与油气.石油勘探与开发,2003,30(3):29-31.
    赵澄林.储层沉积学.北京:石油工业出版社.1998
    赵勇.东营凹陷北带构造-层序-成藏动力学研究:博士学位论文.广州:中国科学院地球化学研究所,2005
    钟大康,朱筱敏,张枝焕等.东营凹陷古近系砂岩储集层物性控制因素评价.石油勘探与开发,2003,30(3):95-98
    朱筱敏,王英国,钟大康等.济阳坳陷古近系储层孔隙类型与次生孔隙成因.地质学报,2007,81(2):197-204
    邹才能等.油气勘探开发实用地震新技术.北京:石油工业出版社.2002
    邹灵.东营凹陷南部缓坡带沙四段滩坝砂储层分布及成藏主控因素.油气地质与采收率,2008,15(2):34-36

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700