用户名: 密码: 验证码:
地震层析成像方法的研究及其在金属矿复杂模型模拟中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文首先回顾了地震层析成像技术的发展历史,详细阐述了有限差分走时计算方法和阻尼最小二乘反演方法的原理与各自的优缺点。在Vidale有限差分方法的基础上进行了改进,通过计算基块体中的射线数来对网格进行重新划分,使其适用于不规则网格参数化的反演计算。利用改进后的有限差分层析成像方法分别对云南腾冲及其邻区、日本西南九州岛弧地区的天然地震资料以及甘肃省天水——武都地区的人工地震测深资料进行反演,并对各地区的深部速度结构、构造特征与火山、地震之间的关系进行研究与讨论。
     云南腾冲火山及龙陵地震区的层析成像结果表明,腾冲火山区浅表层的高速异常很可能是冷却凝固后的岩浆侵入体或早期火山作用中难以挥发的高密度残留体;两侧低速异常主要是盆地沉积、火山堆沉积等因素引起的;5—20km以下为明显的低速异常,宽度在20km左右,是现今壳内岩浆活动的主要区域,是地幔岩浆源区物质上升的通道。此外,龙陵地震的震源分别位于龙陵断裂与怒江断裂一带低速与高速体的突变区域,震源之间呈低速异常,岩石强度较小;震源两侧为高速体,岩石强度大,这一横向上速度及岩石强度的极度不均,使得该区应力积累也分布不均,成为龙陵地震发震的主要原因。
     日本九州岛弧成像结果表明,以高速为主要特征的菲律宾海板块大角度俯冲至九州岛弧下150km深度以下,并且俯冲板块上覆60-110km的低速体是由于海洋地壳以及沉积层脱水作用引起地幔物质的部分熔融,熔融物质的上升为该区火山活动的主要原因。此外,富水流体进入弧前地幔,使得弧前地幔中的部分橄榄岩蛇纹石化,降低了地震波速度。此外,云仙岳下方低速的岩浆通道一直延伸至100km,樱岛下的低速异常也十分显著,同时在莫霍面深度附近还伴有大量低频地震活动,说明该火山比较活跃,将来有喷发的可能。
     西秦岭天水-武都地区层析成像结果显示,该区基底界面起伏较大,断裂丰富且复杂,多呈直立产状,延伸较大,多数断层切割基底。礼县——西和之间的低速异常反映了沉积盆地的结构特征,结晶基底深度在5km左右。武山以东速度等值线横向变化明显,表现为褶皱。成县盆地速度变化平缓且速度值相对较高,基底埋深较浅,深度不到3km。礼县以西的南北向断裂为一条上涌低速异常带,以往研究证实其为南北向超壳深断裂,并与青藏高原东北缘出露的地幔岩石包体有关。研究区浅部构造走向近东西向,与秦岭北缘断裂带的影响有关;深部存在北东向或北北东向构造,与天水地区的地震发育有关。历史上天水地区发生的8级地震震中位于断层3上,反映出大震地壳上部复杂的速度特征与断层结构。
     最后,根据金属矿的地质特征,通过分析有限差分层析成像方法的理论基础、特点及优势,认为层析成像方法在金属矿勘探中具有一定的可行性。本文对有限差分层析成像程序进行了改进,使其适用于金属矿地区起伏地表的激发与接收,并通过金属矿复杂速度模型进行理论验证。结果表明有限差分层析成像对地层或岩石等横向不均匀介质具有很好的恢复能力,给金属矿深部找矿的研究提供了新的技术发展思路。
As the theoretical backgrounds, the article firstly retrospects the development of seismic tomography method and the basic theory of finite difference travel time calculation method and the damping least square inversion method(DLSQR) with discussion of their advantages and disadvantages respectively. Based on Vidale’s pioneering work on seismic ray tracing using finite difference method, we modify the program to calculate the number of rays crossing the basis block. The meshes are redivided to adapt to the inversion using irregular mesh parameterization technique. The modified program is applied to the study of the crustal structure of Tengchong volcanic area and Kyushu island arc area using earthquake travel-time records. To study the upper crust structure in Tianshui earthquake area (M8.0, 1654), we use the active sources observed data of Tianshui—Wudu area in Gansu province. Issues we address in this study include the relations between deep crustal velocity structure and the magmatic characteristics beneath Tengchong volocanoes, the origin of volcanoes in Kyushu and features of the faults around Tianshui M8.0 earthquake area in Gansu.
     The tomographic results of Tengchong volcanoes and Longling earthquakes (M7.3 & M7.4) areas show that the shallow high-velocities may correspond to condensed intrusive magma messes or non-volatile high-density remnants of early volcanic eruption. The low-velocities may represent basin deposits or partial melting volcanic rocks. A prominent low-velocity zone at depth of about 5-20km under delineates the channel through which the magma upwells. This is one of the main regions where magmatic activities in the crust happen. Furthermore, the two Longling earthquakes are located on the Longling fault and Nujiang fault, between which the geological feature is low velocity and weak rock stress state. The high-velocity zones east of the Nujiang fault and west of the Longling fault are available locations for regional stress accumulations. It leads to an uneven stress distribution across the Nujiang and Longling faults causing the two earthquakes.
     In the tomographic study of the volcanoes in Kyushu, the results show that the high-velocity Philippine Sea slab subducts to the 150km depth with a wide angle beneath Kyushu. The low-velocity zone at depth of 60-110km above the subducting slab maybe result from the partical melting of the mantle substance caused by dehydration of oceanic crust and sediments and serpentinization of the forearc mantle. The upwelling of melting substance is the main reason of volcanic activities. Furthermore, low-velocity magma channel extends to 100km depth beneath the Unzen Mount. The pronounced low-velocity anomalies and the high-frequency seismic activities in the Sakurajima area manifest that the volcanoes are active and likely to erupt in the future.
     The Tianshui—Wudu seismic profiles suggest that the interface of basement fluctuates greatly in this area. Geometry of the faults are mostly complicated with large dip angles. Most of these faults extend to great depth and cut through the basement. The low-velocity zone between Li county and Xihe county reflects the existence of Xi-li sedimentary basin, the basement of which is about 5km in depth. The pronounced changing of the velocity contour on the east of Wu Mountain is consistent with the fold region nearby. The Cheng county basin has a relatively high velocity with gently changing. The basement depth is less than 3km. The north-south fault on the west of Li county represents a low-velocity channel. Other researches have proposed that the fault is NS supracrustal fault and related to the cropping-out of mantle rock xenoliths at northeast margin of the Tibetan Plateau. On the study area, the shallow subsurface EW oriented features are influenced by the northern margin fault zone of the Qinling; while the deep NE/NNE trending structures may be related to the earthquakes in Tianshui. The epicenter of the Tianshui earthquake ( M8.0) is located on the EW oriented Fault through Li county which has complex velocity feature and structure.
     Finally, according to the geologic features of metal ore, after analyzing the theoretical basis, traits and advantages of finite difference tomography method, we consider that this technique has some feasibilities on the metal ore prospecting. We modify the finite difference tomography program to adapt to shooting and receiving on the fluctuant ground surface in the metal ore area and investigate the technique with complex model computing.The results illustrate that this method has great ability to renew the model with laterally varied velocity, and may bring us some new kinds of ideas on deep ore prospecting.
引文
Abers G A, Roecker S W. Deep structure of an arc-continent collision:Earthquake relocation and inversion for upper mantle P and S wave velocities beneath Papua New Guinea[J]. J. Geophys. Res., 1991, 96, 6379~6401
    Ajo-Franklin J B, Urban J A, Harris J M. Using resolution-constrained adaptive meshes for traveltime tomography[J]. Journal of Seismic Exploration, 2006,14: 371~392
    Aki K, Christoffersson A, Husebye A. Three-dimensional seismic-velocity anomalies in the crust and upper-mantle under the U.S.G.S. California seismic array (abstract). Eos, Trans. Am. Geophys. Union,1974, 56: 1145~1154
    Aki K, Christoffersson A, Husebye E S. Determination of the three-dimensional seismic structure of the lithosphere, J Geophys Res, 1977, 82: 277~296
    Aki K, Lee W H K. Determination of three-dimensional anomalies under a seismic array using first P-arrival times from local earthquakes. J Geophys Res, 1976, 81: 4381~4399
    Anderson D I, Dziewonski A M. Seismic tomography[J]. Scientific American, 1984, 251(4):58~66
    Ankeny L A , Braile L W , Olsen K H. Upper crustal structure beneath the Jemez Mountains volcanic field, New Mexico, determined by three-dimensional simultaneous inversion of seismic refraction and earthquake data[J]. J Geophys Res,1986, 91: 6188~6198
    Asakawa E, Kawanaka T. Seismic ray tracing using linear travel time interprolation[J]. Geophysical Prospecting, 1993,41(1):99~111
    Backus G, Gilbert F. Numerical applications of a formalism for geophysical inverse problems. Geophys J R Astron Soc, 1967, 11: 247~276
    Backus G, Gilbert F. The resolving power of gross Earth data. Geophys JR Astron Soc, 1968, 16: 169~205
    Backus G, Gilbert F. Uniqueness in the inversion of inaccurate gross earth data.
    Philos Trans R Soc London Ser A, 1970, 266: 123~192
    Bai Z, Wang C. Tomographic investigation of the upper crustal structure and seismotectonic environments in Yunnan Province[J]. Acta Seismologia Sinica, 2003, 16(2): 127~139
    Benz H M , Smith R B. Simultaneous inversion for lateral velocity variations and hypocenters in the Yellow stone region using earthquake and refraction data[J]. J Geophys Res, 1984, 89: 1208~1220
    Bernd, Milkereit, etal. Development of 3-D seismic exploration technology for deep nickel-copper deposits-A case history from the Sudbury basin, Canada[J]. Geophysics, 2000, 11: 1890~1899
    Bijwaard H, Spakman W, Engdahl E R. Closing the gap between regional and global travel time tomography. J Geophys Res, 1998, 103: 30,055~30,078
    Bishop T N, Bube K P, Cutler R T, et al. Tomography determination of velocity and
    depth in laterally varying media[J]. Geophysics, 1985, 50(4):903~923
    Bleibinhaus F, Hole J A, Ryberg T, et al. Structure of the California Coast Ranges and San Andreas Fault at SAFOD from seismic waveform inversion and reflection imaging[J]. J. Geophys. Res,2007,112, B06315, doi:10.1029/2006JB004611.
    Bleibinhaus F, Lester R W, Hole J A. Applying waveform inversion to wide-angle seismic surveys[J]. Tectonophysics, 2009,472: 238~248
    Bohm, G, Galuppo P, Vesnaver A. 3D adaptive tomography using Delaunay triangles and Voronoi polygons[J]. Geophysical Prospecting, 2000, 48:723~744
    Bulant P. Two-point ray tracing in 3-D, Pure appl[J]. Geophys, 1996, 148: 421~447
    Cassell B R. A method for calculating synthetic seismograms in laterally varying media[J]. Geophys J R Astr Soc, 1982, 69: 339~354
    Cerveny V, Molotkov I A, Psencik, I. Ray method in seismology: Univerzita Karlova[M], Prague.1977
    Cerveny V, Psencik I. SEIS83-numerical modeling of seismic wavefield in 2-D laterally varying layered structures by the ray-method[A]. In: EngdahlE R ed.
    Documentation of Earthquake Algorithm [C]. Boulder, Colo: WorldData Center for Solid Earth Geophysics, Rep. 1984, SE-35: 36~40
    Cerveny V. Seismic Ray Theory[M]. Cameridge University Press. 2001
    Christensen N I. Poisson's ratio and crustal seismology, J Geophys Res, 1996,101:3139~3156
    Crosson R S. Crustal strueture modeling of earthquake data1. SimuItaneous 1east squares estimation of hypocenter and veloeity parameter[J]. J.Geophys. Res., 1976,81:3036~3046
    Cox B E. Tomographic inversion of focusing operators[D]. Delft University of Technology. 2004
    Daily W D. Underground oil-shale retort monitoring using geotomography[J]. Geophysics, 1984, 49: 1701~1711
    David F, Aldridge, Douglas W, et al. Two-dimensional Tomographic Inversion with Finite-difference Traveltimes[J]. Journal of Seismic Exploration, 1993, 2: 257~274
    Dines K A, Lytle R J. Computerized geophysical tomography[J]. Proc IEEE, 1979,67(7):1065~1073
    Dziewonski A M, Anderson D L. Seismic tomography of the Earth's interior. Amer Sci, 1984, 72: 483~494
    Dziewonski A M, Hager B H, O'Connell R J. Large-scale heterogeneities in the lower mantle. J Geophys Res, 1997, 82: 239~255
    Dziewonski A M. Mapping the lower mantle: determination of lateral heterogeneity in P velocity up to degree and order 6. J Geophys Res,1984, 89: 5929~5952
    Eberhart-Phillips D. Three-dimensional velocity structure in northern California Coast Ranges from inversion of local earthquake arrival times[J]. Bull Seism Soc Am, 1986,76, 1025-1052.
    Engdahl E R, Hilst R, Buland R. Global teleseismic earthquake relocation with improved travel times and procedures for depth determination, Bull Seism SocAm, 1998, 88: 722~743
    Ettrich N, Gajewski D. Wave front construction in smooth media for prestack depth migration[J] .Pageophys, 1996, 148: 481~502
    Grechka V Y, Mcmechan G A. 3-D two-point ray tracing for heterogeneous,weakly transversely isotropic media[J]. Geophysics, 1996, 61: 1883~1894
    Gudmundsson O, Brandsdottir B, Menke W, Sigvaldason G E. The crustal magma chamber of the Katla volcano in south Iceland revealed by 2-D seismic undershooting[J]. Geophys J Int, 1994, 119: 277~296
    Gustavsson, Ivansson, et al. Seismic borehole tomography-measurement system and field studies[J]. Proc. IEEE, 1986,74(2):339~346
    Hasegawa A, Yamamoto A. Deep, low-frequency microearthquakes in or around seismic low-velocity zones beneath active volcanoes in northeastern Japan[J]. Tectonophysics, 1994,233:233~252
    Hole J A, Brocher T M, Klemperer S L, et al. Three-dimensional seismic velocity structure of the San Francisco Bay area[J], J. Geophys. Res, 2000, 105(13): 859–874.
    Hole J A, Zelt C A. 3-D finite-difference reflection traveltimes[J]. Geophys. J.Int, 1995, 121: 427~434
    Hole J A, Zelt C.A, Pratt R G. Advances in controlled-source seismic imaging[J]. Eos, 2005, 86(18): 177~181
    Hole J A. Nonlinear High-Resolution Three-Dimensional Seismic Travel Time Tomography[J].Journal of Geophysical Research.1992,97(B5): 6553~6562
    Horen H, Zamora M, Dubuisson G. Seismic waves velocities and anisotropy in serpentinized peridotites from Xigaze ophiolite: abundance of serpentine in slow spreading ridge[J]. Geophysical Research Letters, 1996, 23, 9~12.
    Huang J, Zhao D, Zheng S. Lithospheric structure and its relationship toseismic and volcanic activity in southwest China. J Geophys Res,2001, 107,doi:10.1029/ 2000JB000137
    Huang J, Zhao D. High-resolution mantle tomography of China and surrounding regions. J Geophys Res, 2006, 111, doi:10.1029/ 2005JB004066
    Humphreys E, Clayton R W. Adaptation of back projection tomography to seismic travel time problems. J Geophys Res, 1988, 93: 1073~1085
    Inoue H, Fukao Y, Tanabe K, et al. Whole mantle P-wave travel time tomography. Phys Earth Planet Inter, 1990, 59: 294~328
    Jiang C S. Volcanoes and earthquakes in Tengchong area, Yunnan p rovince, China[J ]. J Seis Res, 1985,8(1):107~120
    Jiang G, Zhao D, Zhang G. Seismic tomography of the Pacific slab edge under Kamchatka, Tectonophysics, 2009, 465: 190~203
    Julian B R, Gubbins D. 3-D seismic ray tracing, Geophysics, 1977, 43: 95~113
    Julian B R, Gubbins D. Three-dimensional seismic ray tracing[J]. Geophys, 1977, 43: 95~113
    Kioshi N. A three-dimensional robust seismic ray tracer for volcanic regions[J]. Earth Planets Space, 2001,53:101~109
    Koketsu K, Sekine S. Pseudo-bending method for three-dimensional seismic ray tracing
    in a spherical earth with discontinuities. Geophys J ,2002, 132: 339~346. Lambare G, Lucio P S, Hanyga A. Two-dimensional multivalued traveltime and amplitude maps by uniform sampling of a ray field[J]. Geophys J Int, 1996, 125: 584~598
    Lees J M, Crosson R S. Tomographic inversion for three-dimensional velocity structure at Mount St. Helens using earthquake data. J Geophys Res,1989, 94: 5716~5729
    Lees J M. Seismic tomography of magmatic systems, J. Volcanol. Geotherm. Res., 2007, 167: 37~56
    Lei J, Zhao D, Su Y. Insight into the origin of the Tengchong intraplate volcano and seismotectonics in southwest China from local and teleseismic data, J Geophys Res, 114, doi:10.1029/ 2008JB005881
    Leidenfrost A, Ettrich N, Gajewski D, Kosloff D. Comparison of six different methods for calculating traveltimes[J]. Geophys Prospect, 1999, 47: 269~297
    Lévěque J J, Rivera L, Wittlinger G .On the use of the checker-board test to assess the resolution of tomographic inversions, Geophys J Int, 1993, 115
    Liang C T, Song X D, Huang J L. Tomographic inversion of Pn travel times in China[J]. J.Geophys.Res.,2004, 109, B11304, doi: 10.1029/2003JB002789
    Lucio P S, Lambare G, Hanyga A. 3D multivalued travel time and amplitude maps[J]. Pageoph, 1996, 148: 449~479.
    Mohamed K S,Tetsuzo S. Imaging of Vp,Vs,and Poisson’s ratio anomalies beneath Kyushu, southwest Japan: Implications for volcanism and forearc mantle wedge serpentinization[J]. ScienceDirect,2008,31:404~428
    Molina I, Kumagai H, Pennec L, et al. Three-dimensional P-wave velocity structure of Tungurahua Volcano, Ecuador. J. Volcanol. Geotherm. Res., 2005, 147 (1-2):144~156
    Nagamune T, Tashiro H. Shape of the Wadati-Benioff zone beneath. Kyushu, Japan(in Japanese with English abstract). Journal of the Seismological Society of Japan, 1989,42:13~19
    Nakajima J, Hasegawa A. Subduction of the Philippine Sea plate beneath southwestern Japan: Slab geometry and its relationship to arc magmatism[J]. J Geophys Res,2007,112,doi:10.1029/2006JB004770
    Natale G D, Troise C, Trigila R, et al. Seismicity and 3-D substructure at Somma-Vesuvius volcano: evidence for magma quenching. Earth Planet. Sci. Lett., 2004, 221: 181~196
    Nercessian A, Hirn A, Tarantola A. Three-dimensional seismic transmission prospecting of Mont Dore Volcano,France[J ]. Geophys J R astr Soc, 1984, 76: 307~315
    Nolet G. Seismic Tomography[M]. Reidel, Dordrecht, Holland. 1987. Nolet G. Seismic wave progagation and seismic tomography, in Seismic Tomography[M]. Reidel, Norwell, Mass,1998.
    Nolet G. Solving or resolving inadequate and noisy tomographic systems.JComp Phys, 1985, 61,463~61,482
    Oda H, Tanaka T, Seya K. Subducting oceanic crust on the Philippine Sea plate inSout hwest Japan[J]. Tectonophysics, 1990, 172, 175~189
    Ohkura T. Structure of the upper part of the Philippine Sea plate estimated by later phases of upper mantle earthquakes in and around Shikoku, Japan[J].Tectonophysics,2000,321:17~36.
    Paige C C, Saunders M A. LSQR: An algorithm for sparse linear equations and sparse least squares. TOMS,1982,8(1):43~71
    Park J, Morgan J K, Zelt C A, et al. Volcano-tectonic implications of 3-D velocity structures derived from joint active and passive source tomography of the island of Hawaii. J. Geophys. Res., 2009, 114, B09301, doi:10.1029/2008JB005929
    Pascal P, Isabelle L. Finite difference compution of traveltimes in very contrasted velocity models: a massively parallel approach and its associated tools[J]. Geophys. J. Int,1991,105:271~284.
    Paul S, Sergey F. 3-D traveltime computation using Huygens wavefront tracing[J]. Geophysics, 2001, 66(3): 883~889.
    Pereyra V, Lee W H K, Keller H B. Solving two-point seismicray tracing problems in a heterogeneous medium[J]. Bull Seism Soc Am, 1980, 70: 79~99
    Perez M A, Bancroft J C. Finite-difference anisotropic traveltimes and raypaths[J]. CREWES Research Report,2001,13:445~461
    Perez M A, Bancroft J.C. Traveltime computation through isotropic media via the eikonal equation[J]. CREWES Research Report, 2000, 12:181~200
    Pratt R G, Worthington M H. The application of diffraction tomography to crosshole seismic data[J]. Geophysics, 1984, 53:1284~1294
    Prothero W A, Taylor W J, Eickemeyer J A. A fast, two- point,three-dimensional raytracing algorithm using a simple step search method[J]. Bull Seism Soc Am, 1988, 78: 1190~1198
    Qin F, Luo Y, Kim B O. Finite-difference solution of the eikonal equation along expanding wavefronts[J]. Geophysics, 1992, 57(3): 478~487
    Rawlinson N, Houseman G A, Collins C D N. Inversion of seismic refraction and wide-angle reflection traveltimes for 3-D layered crustal structure[J]. Geophys J Int, 2001, 145: 381~401
    Reidel D, Norwell, Sambridge M, et al. Adaptive whole Earth tomography, Geochem Geophys Geosyst, 2003,4, doi:10.1029/2001GC000213
    Roecker S, Thurber C, Roberts K, et al. Refining the image of the San Andreas Fault near Parkfield, California using a finite difference travel time computation technique[J]. Tectonophysics, 2006, 426: 189~205
    Salah M K, Seno T. Imaging of Vp,Vs and Poisson’s ratio anomalies beneath Kyushu, southwest Japan: Implications for volcanism and forearc mantle wedge serpentinization. Journal of Asian Earth Sciences,2008,31:404~428
    Sambridge M, Faletic R. Adaptive whole earth tomography[J]. Geochem Geophys Geosyst,2003,4,doi:10.1029/2001GC000213
    Sambridge M S, Gudmundsson O. Tomographic systems of equations with irregular cells[J]. Journal of Geophysical Research,1998,103(B1):773~781
    Sambridge M S, Kennett B L N. Boundary value ray tracing in a heterogeneous medium: a simple and versatile algorithm[J]. Geophys J Int, 1990, 101: 157~168
    Sambridge M, Gudmundsson O. Tomographic systems of equations with irregular cells. J Geophys Res, 1998, 103: 773~781
    Seno T, Sakurai T, Stein S. Can the Okhotsk plate be discriminated from the North American plate?. J Geophys Res, 1996, 101: 11305~11315
    Sethian J A. A fast marching level set method for monotonically advancing fronts, Proc[J]. Nat Acad Sci, 1996, 93: 1591~1595
    Shangguan Z G, Zhao C P, Li H Z, et al. Evolution of hydrothermal explosions at Rehai geothermal field, Tengchong volcanic region, China. Geothermics, 2005, 34:518~526
    Sherburn S, White R S, Chadwick M. Three-dimensional tomographic imaging of the Taranaki volcanoes, New Zealand. Geophys. J. Int., 2006, 166: 957~969
    Shito A, Shibutani T. Anelastic structure of the upper mantle beneath the northern Philippine Sea[J]. Phys.Earth Planet.Int,2003a,140:319~329
    Shito A, Shibutani T. Nature of heterogeneity of the upper mantle beneath the northern Philippine Sea as inferred from attenuation and velocity tomography[J]. Phys.Earth Planet.Int,2003b,140:331~341
    Somerstein. Radio-frequency geotomography for remotely probing the interior of operating mini and commercial-sized oil-shale retorts[J].Geophysics, 1984,49(8):1288~1300
    Su W, Dziewonski A M. Simultaneous inversion for 3-D variations in shear and bulk velocity in the mantle[J]. Phys Earth Planet Inter, 1997,100: 135~156
    Tanimoto T, Anderson D L. Mapping convection in the mantle. Geophys[J]. Res. Lett.,1984,11:287~290
    Tatsumi Y. Formation of the volcanic front in subduction zones[J]. Geophys. Res. Lett, 1986,13:717~720
    Tatsumi Y. Migration of fluid phase and genesis of basalt magmas in subduction zones[J]. J.Geophys.Res,1989,102:4697~4707
    Thurber C H, Phillips D E. Local earthquake tomography with flexible gridding[J]. Computers & Geosciences, 1999, 25:809~818
    Thurber C H. Earthquake locations and three-dimensional crustal structure in the Coyote Lake area. central California. J Geophys Res, 1983,88: 8226~8236
    Thurber C H. Hypocenter-velocity structure coupling in local earthquake tomography[J]. Physics of the Earth and Planetary Interiors, 1992, 75(1-3): 55~62
    Tian Y, Zhao D, Sun R, et al. Seismic imaging of the crust and upper mantle beneath the North China Craton. Phys Earth Planet Inter, 2009,172: 169~182
    Um J, Thurber C. A fast algorithm for two-point seismic ray tracing. Bulletin of the Seismological Society of America, 1987, 77(3): 972~986
    Van D H, Widiyantoro S, Engdahl E R. Evidence for deep mantle circulation from global tomography. Nature, 1997, 386: 578~584
    Vidale J E. Finite-difference calculation of traveltimes in three dimensions[J]. Geophysics,1990,55(5):521~526
    Vidale J E. Finite-difference traveltime calculation[J]. Bull. Seis. Soc. Am., 1988, 78(6):2062~2076
    Vinje V E A. 3-D ray modellingby wavefront construction in open models[J]. Geophys Prospect, 1993, 64: 1912~1919
    Wang Z, Zhao D. Seismic imaging of the entire arc of Tohoku and Hokkaido in Japan using P-wave, S-wave and sP depth-phase data[J]. Phys Earth Planet Inter, 2005, 152: 144~162
    Williamsom P R. Tomographic inversion in reflection seismology[J]. Geophys. J. Int., 1990, 100:255~274
    Wong J. Crosshole seismic imaging for sulfide orebody delineation near Sudbury, Ontario, Canada[J]. Geophysics, 2000, 65(6):1900~1907
    Woodhouse J H, Dziewonski A M. Mapping the upper mantle:three-dimensional modeling of earth structure by inversion of seismic waveforms[J].J. Geophys. Res., 1984, 89:5953~5986
    Xia S, Zhao D, Qiu X. Tomographic evidence for the subducting oceanic crust and forearc mantle serpentinization under Kyushu, Japan[J]. Tectonophysics, 2008, 449: 85~96
    Zelt C A,Smith R B. Seismic traveltime inversion for 2-D crustal velocity structure[J]. Geophys.J.Int, 1992, 108: 16~34
    Zelt C A. Lateral velocity resolution from three-dimensional seismic refraction data[J]. Geophys. J. Int., 135, 1101~1112, 1998
    Zhang H, Thurber C. Adaptive mesh seismic tomography based on tetrahedral and Voronoi diagrams: application to Parkfield, California, J Geophys Res, 2005,110, doi:10.1029/2004JB003186.
    Zhang H, Thurber C H. Double-difference tomography: The method and its application
    to the Hayward Fault, California[J]. Bull. Seism. Soc. Am,2003,93: 1875~1889
    Zhao D P, Hasegawa A, Horiuchi S. Tomographic imaging of P and S wave velocity structure beneath northeastern Japan[J]. J Geophys Res, 1992, 97(B13): 19909~19928
    Zhao D, Hasegawa A, Kanamori H. Deep structure of Japan subduction zone as derived from local, regional, and teleseismic events. J Geophys Res,2004, 99, 22,313~22,329.
    Zhao D, Hasegawa A, Horiuchi S. Tomographic imaging of P and S wave velocity structure beneath northeastern Japan[J]. J Geophys Res, 1993, 97:19,909~19,928
    Zhao D, Kanamori H, Negishi H,et al. Tomography of the source area of the 1995 Kobe earthquake: Evidence for fluids at the hypocenter[J]. Science, 1996, 274: 1891~1894.
    Zhao D, Hasegawa A, Horiuchi S. Tomographic imaging of Pand S wave velocity structure beneath Northeastern Japan[J]. J Geophys Res, 1992, 97: 19909~19928
    Zhao D. Global tomographic images of mantle plumes and subducting slabs: insight into deep Earth dynamics[J]. Phys Earth Planet Inter, 2004, 146: 3~34
    Zhao D. New advances of seismic tomography and its applications to subduction zones and earthquake fault zones: A review, The Island Arc, 10, 68~84
    Zhao D. Seismic structure and origin of hotspots and mantle plumes[J]. Earth Planet. Sci. Lett, 2001, 192: 251~265
    安昌强,宋仲和,陈国英,等.中国西北地区剪切波三维速度结构[J].地球物理学报,1993,3:51~59
    白登海,廖志杰,赵国泽,等.从MT测深结果推论腾冲热海热田的岩浆热源[J].科学通报,1994,39(4):344~347
    白志明.深地震测深剖面的层析成像研究及其应用[D].中国地震局地球物理研究所, 2002. 白志明,王椿镛.云南地区上部地壳结构和地震构造环境的层析成像研究[J].地震学报,2003,25(2):117~127
    曹令敏.隐伏矿床定位预测理论和技术的研究现状及发展趋势[J].地球物理学进展, 2010, 25(3): 1037~1045.
    常旭,王辉.地震CT法隐伏矿脉空间定位研究[J].地球物理学报, 1998, 41(3) : 408~415
    陈国英,宋仲和.利用长周期面波研究华北地区地壳与上地幔结构的横向非均匀性[J].地球物理学报, 1990,4:47~53
    陈国英,宋仲和,安昌强,等.中国北部及其邻区地壳上地幔三维速度结构[J].地球物理学报,1995:38(3):321~328
    陈虹,黄志贤.穿过青藏高原的面波传播路径与速度结构[J].地球物理学报,1998, 41(增刊):270~280
    丁志峰,何正勤,孙为国,等.青藏高原东部及其边缘地区的地壳上地幔三维速度结构. 地球物理学报, 1999, 42: 197~205
    郭飚,刘启元,陈九辉,等.青藏高原东北缘-鄂尔多斯地壳上地幔地震层析成像研究[J]. 地球物理学报, 2004, 47: 790~797
    郭飚,刘启元,陈九辉,等.中国境内天山地壳上地幔结构的地震层析成像[J].地球物理学报, 2006, 49: 1693~1700
    郭守年,董志平,蒋梅,等.天水地震区综合地球物理剖面的建立于壳幔结构[J].西北地震学报,1997,19(3):44~51
    韩新民,周瑞琦,周真恒.腾冲火山地区地质研究评述[J ].地震地磁观测研究, 1996,17 (6):20~30
    何洋.基于波前构建的射线走时和振幅计算[D].吉林大学. 2004
    皇甫岗,姜朝松.腾冲火山研究.昆明:云南科技出版社,,2000,46~57
    黄忠贤,陈虹,王贵华,等.面波偏振与中国大陆岩石圈横向不均匀性[J].地球物理学报, 1994, 37(4): 456~468
    金安蜀,刘福田,孙永智.北京地区地壳和上地幔的三维P波速度结构[J].地球物理学报, 1980, 23: 172~182
    阚荣举,赵晋明.腾冲火山地区的壳幔构造[A].见:陈运泰,阚荣举,滕吉文,等主编. 中国固体地球物理学进展[C].北京:海洋出版社, 1994. 23~30
    赖晓玲,李松林,宋占龙,等.南北构造带天水、武都强震区地壳和上地幔顶部结构[J].地球科学,2009,34(4):651~657
    雷建设,周蕙兰,赵大鹏.帕米尔及邻区地壳上地幔P波三维速度结构的研究[J].地球物理学报, 2002, 45: 802~811
    雷建设,周蕙兰.中国西南及邻区上地幔P波三维速度结构[J].地震学报, 2002, 24: 126~134
    韩金良,张宝林.隐伏金矿床定位预测研究现状与展望[J].黄金科学技术, 2000, 8(5): 1~12.
    李大明,李齐,陈文寄.腾冲火山区上新世以来的火山活动[J].岩石学报,2000,16(3):362~370
    李清河,闵祥林,郭健康,等.天水—礼县地区地壳速度结构[J].西北地震学报, 1991, 2: 51~60
    李清河,郭建康,周民都,等.成县—西吉剖面地壳速度结构[J].西北地震学报, 1991, S1:40~46
    李文杰,魏修成,宁俊瑞,等.一种改进的利用程函方程计算旅行时的方法[J].石油地球物理勘探.2008,43(5):589~594
    李振春,刘玉莲,张建磊,等.基于矩形网格的有限差分走时计算方法[J].地震学报,2004,26(6): 644~650
    李志伟,胥颐,郝天珧,等.环渤海地区的地震层析成像与地壳上地幔结构[J].地球物理学报, 2006, 49:797~804
    李志伟,胥颐,郝天珧,等.台湾地区的壳幔P波速度和Vp/Vs波速比结构研究[J].中国科学D辑:地球科学. 2009, 39(9): 1191~1199
    林长佑,张云琳,梁恕信,等.内蒙、甘、宁某些地区地球上部电导率分布的横向变化特征[J].西北地震学报,1983,1:34~45
    林长佑,武玉霞,杨长福,等.天水地区深部构造走向及区域应力场[J].地震研究,1996,19(2):175~183
    梁光河,蔡新平,王杰,等.浅层地震勘探在云南北衙地区隐伏金矿预测中的应用[J].黄金科学技术, 2000 ,8(6) : 1~9.
    梁中华,唐建民,滕智猛,等.天水地震区地壳浅层速度结构[J].西北地震学报,1991,13(增刊):16~21.
    刘福田.震源位置和速度结构的联合反演——理论和方法[J].地球物理学报, 1984, 27(2):167~175
    刘福田,曲克信,吴华,等.中国大陆及其邻近地区的地震层析成象[J].地球物理学报, 1989, 32: 281~291
    刘光鼎.回顾与展望——21世纪的固体地球物理[J].地球物理学进展, 2002,6(17): 191~197.
    刘光鼎,郝天珧.应用地球物理方法寻找隐伏矿床[J].地球物理学报, 1995, 38(6): 850~854
    刘光鼎,郝天珧,刘伊克.中国大地构造宏观格架及其与矿产资源的关系[J].科学通报, 1996, 42(2): 115~118.
    刘建华,刘福田,吴华,等.中国南北带地壳和上地幔的三维速度图象[J].地球物理学报, 1989, 32, 143~152
    刘清林.地震初至波射线路径的追踪[J].石油物探, 1993, 32: 14~20
    刘瑞丰,陈培善,李强.云南及其邻近地区三维速度图像[J].地震学报, 1993,15(1):61~67
    刘伊克,常旭.地震层析成像反演中解的定量评价及其应用[J].地球物理学报, 2000, 43: 251~256
    楼海,王椿镛,皇甫岗,等.云南腾冲火山区上部地壳三维地震速度层析成像[J].地震学报,2002,24(3):243~251
    吕子强.初至波地震层析成像研究[D].中国地震局兰州地震研究所. 2009
    闵祥仪,周民都,郭健康,等.灵台——阿木去乎剖面地壳速度结构[J].西北地震学报,1991,13(增刊):32~39
    莫宣学,赵志丹,邓晋福,等.青藏新生代钾质火山活动的时空迁移及向东部玄武岩省的过渡:壳幔深部物质流的暗示[J].现代地质,2007,21(2) :255~264
    穆治国,佟伟, Curtis G H.腾冲火山活动的时代和岩浆来源问题[J].地球物理学报, 1987,30(3):261~270
    裴先治,丁仨平,李佐臣,等.西秦岭北缘早古生代天水—武山构造带及其构造演化[J].地质学报,2009,83(11):1547~1564
    秦嘉政,皇甫岗,张俊伟.腾冲火山及周围地区的地壳Q值特征[J].地震研究, 1999, 21 (4) : 358~361
    荣立新.应用于金属矿勘查中的地面地震层析成像技术[J].物探化探计算技术, 2007, 29(增刊): 125~128.
    宋仲和,安昌强,陈立华,等.中国大陆和边缘海的上地幔P波速度结构[J].地震学报, 1986, 3: 37~48
    孙若昧,刘福田,刘建华.四川地区的地震层析成像[J].地球物理学报,1991, 34: 708~716
    佟伟,章铭陶.腾冲地热[M].北京:科学出版社,1989
    王椿镛,韩渭滨,吴建平,等.松潘-甘孜造山带的地壳结构[J].地震学报, 2003,25(3):229~241
    王椿镛, Mooney W D,王溪莉,等.川滇地区地壳上地幔三维速度结构研究[J].地震学报, 2002,24(1):1~16
    王椿镛,张先康,丁志峰,等.大别造山带上部地壳结构的有限差分层析成像[J].地球物理学报,1997,40(4):495~502
    王华忠,方正茂.地震波旅行时计算[J].石油地球物理勘探, 1999,34: 155~163
    韦伟,赵大鹏,石耀霖.西南日本火山区三维地震成像研究[J].地学前缘, 2010,17(3): 1~9
    吴振利,李家彪,阮爱国.地震层析成像及其国内研究进展[J].东海海洋, 2003, 21: 54~64.
    谢富仁,张世民,窦素琴.青藏高原北、东边缘第四纪构造应力场演化特征[J].地震学报, 1999, 21(5):502~512
    熊熊,滕吉文.青藏高原东缘地壳运动与深部过程的研究[J].地球物理学报,2007,45(4):507~515.
    徐明才,高景华.地面地震层析技术在金属矿勘查中的试验研究[J].物探与化探, 2005, 29(4): 299~303
    徐明才,高景华.地震层析技术及其应用研究[J].物探化探计算技术, 2004, 26(4): 289~204
    胥颐,李建华,郝天珧,等.中国东部海域及邻区岩石层地幔的P波速度结构与构造分析[J].地球物理学报, 2006,49(4):1053~1061
    薛建,曾昭发,王者江,等.金属矿地震勘探物理模拟实验技术[J].吉林大学学报, 2004, 34(3):464~470
    许忠淮,汪素云,裴顺平.青藏高原东北缘地区Pn波速度的横向变化[J].地震学报, 2003,25(1):24~31
    姚振兴,李白基,梁尚鸿,等.青藏高原地区瑞利波群速度和地壳结构[J].地球物理学报, 1981,24(3):287~295
    杨文采,李幼铭.应用地震层析成像[M].北京:地质出版社, 1993
    杨文采.地球物理反演的理论与方法[M].地质出版社,1997
    于更新.有限差分模拟走时波场的地震层析成像方法与应用研究[D].中国地质大学(北京). 2006
    于湘伟,陈运泰,王培德.京津唐地区中上地壳三维P波速度结构[J].地震学报, 2003,25(1):1~14
    喻学惠,张春福.甘肃西秦岭新生代碱性火山岩的Sr-Nd同位素及微量元素地球化学特征[J].地学前缘, 1998 ,5(4):319~328
    喻学惠,莫宣学,苏尚国,等.甘肃礼县新生代火山喷发碳酸岩的发现及意义[J].岩石学报, 2003,19(1):105~112
    赵大鹏,雷建设,唐荣余.中国东北长白山火山的起源:地震层析成像证据[J].科学通报, 2004, 49: 1439~1446
    赵永贵,王超凡.地震CT在寻找隐伏铜镍矿中的应用[J].地球物理学报, 1996 ,39(2) : 272~278.
    赵永贵,王超凡.地震CT及其地质解释[J].地质科学, 1997 ,32(1) : 96~102.
    朱金明,王丽燕.地震波走时的有限差分法计算.地球物理学报, 1999, 35: 86~92.
    朱介寿,曹家敏,蔡学林,等.欧亚大陆西太平洋面波层析成像及岩石圈结构,中国大陆地震学与地球内部物理学研究进展.北京:地震出版社,2004
    朱露培,曾融生,刘福田.京津唐张地区地壳上地幔三维P波速度结构[J].地球物理学报,1990,33(3):267~277
    邹谨敞.卫星影像解释天水—礼县地区的东北向线性构造[J].西北地震学报, 1984, 6(1): 99~101
    邹谨敞,吴增益.甘肃地震构造.见:马杏垣等主编.中国岩石圈动力学图集.北京:中国地图出版社,1989

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700