用户名: 密码: 验证码:
慢病毒介导的RNA干扰对人非小细胞肺癌化疗多药耐药性的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的研究与肿瘤细胞多药耐药性(MDR)相关的两个基因MDR1、MRP对非小细胞肺癌(NSCLC)的多药耐药性的关系。采用RNA干扰技术(RNAi),构建表达Si-MDR1和Si-MRP的重组慢病毒PTM-Si-MDR1、PTM-Si-MRP,转染人肺癌细胞A549及其耐顺铂细胞株A549/DDP,研究化疗药物对RANi后细胞的杀伤效果,探讨治疗NSCLC的新方法。研究共分三部分:第一部分MDR1、MRP基因SiRNA有效位点的筛选;第二部分Si-MDR1、Si-MRP重组慢病毒载体的构建;第三部分Si-MDR1,Si-MRP逆转A549/DDP细胞耐药性的体外及体内研究。
     方法(1)MDR1、MRP基因各设计四个干扰位点,合成SiRNA片段,分别连接质粒载体pSUPER并转染人肺癌细胞A549。48小时后,荧光显微镜观察重组质粒对A549细胞的转染效率,荧光定量PCR检测MDR1、MRP在mRNA水平上的表达,筛选出有效干扰位点用于慢病毒包装。(2)采用PTM、pHelper1.0、pHelper0慢病毒载体系统介导Si-MDR1、Si-MRP的表达。转染293T细胞得到大量重组慢病毒,转染Hela细胞进行病毒滴度测定。重组慢病毒转染宿主细胞A549、A549/DDP两天后,流式细胞仪检测转染效率、荧光定量PCR和Western Blot检测MDR1、MRP在mRNA水平和蛋白水平上的干扰效率。(3)三种化疗药物顺铂(DDP)、阿霉素(ADM)、健择(Gemzer)分别作用A549-Si-MDR1及A549/DDP-Si-MDR1细胞24小时后,荧光显微镜观察EGFP阳性细胞形态变化。(4)PTM、PTM-Si-MDR1、PTM-Si-MRP在体外分别感染A549及A549DDP细胞(MOI=10)1周后,加入不同浓度的化疗药物:Gemzer、ADM、DDP,作用48小时后CCK-8试剂盒检测细胞凋亡情况。(5)建立PTM、PTM-Si-MDR1、PTM-Si-MR稳定转染的A549及A549/DDP细胞株,在BALB/c裸鼠体内建立原位肺癌异种移植模型,给予药物后观察动物体重、肿瘤生长及多处转移情况,全面评价MDR表型。
     结果(1)成功设计MDR1、MRP基因的SiRNA干扰片段,并构建MDR1、MRP SiRNA筛选质粒,pSUPER-Si-MDR1、pSUPER-Si-MRP筛选有效干扰位点。(2)成功将构建的筛选质粒转染到人肺癌细胞A549及其耐顺铂细胞株A549/DDP中,转染48小时后,荧光显微镜检测绿色荧光蛋白确定转染效率约47.9%。(3)采用荧光定量PCR检测转染48小时后A549细胞中MDR1、MRP在mRNA水平上的表达情况。结果显示,MDR1、MRP基因得到特异高效的沉默,证明pSUPER-Si-MDR1, pSUPER-Si-MRP质粒构建成功,是有效的SiRNA表达质粒。(4)筛选出的有效干扰位点序列用于慢病毒包装。转染293T细胞进行扩增,荧光显微镜及流式细胞仪检测转染效率,结果证明包装好的慢病毒载体能高效转染293T细胞,转染效率85%,并能稳定表达SiRNA。(5)重组慢病毒转染Hela细胞进行滴度测定,为5×108TU/ml。(6)PTM-Si-MDR1、PTM-Si-MRP均以MOI=10转染A549两天后,流式细胞仪检测转染效率,PTM-Si-MDR1转染效率为77.3%,PTM-Si-MRP转染效率80.8%。(7) Real-time PCR、Western Blot检测转染两天的A549细胞MDR1、MRP在mRNA水平和蛋白水平上的表达,计算MDR1抑制效率为72%,MRP抑制效率为69%,抑制效果明显。(8)化疗药物DDP(50ug/ml)、ADM(1ug/ml)、Gemzer(200ug/ml)作用于A549-Si-MDR1细胞(转染一周)24小时后,明场及荧光显微镜下观察细胞形态,发现细胞皱缩,形态发生变化,出现凋亡现象。(9)不同浓度的DDP、ADM、Gemzer分别作用于RNAi后的细胞A549 ( A549-PTM、A549-PTM-Si-MRP、A549-PTM-Si-MDR1)和A549/DDP(A549/DDP-PTM、A549/DDP-PTM-Si-MRP、A549/DDP-PTM-Si-MDR1),48小时后CCK-8法检测细胞活性,结果显示RNAi后,A549/DDP细胞中,三组药物的Si-MRP、Si-MDR干扰组和对照组相比较,其敏感性有明显提高;A549细胞中MRP、MDR干扰组和对照组对药物的敏感性无明显差异。(10)在肺癌原位异种移植裸鼠模型体内,与PTM空载体转染的A549/DDP耐药株相比,稳定转染PTM-Si-MDR1、PTM-Si-MRP至A549/DDP耐药株,可显著降低原发肿瘤大小及对侧肺转移、远处皮下转移率,完全逆转其MDR表型。
     结论我们首次把慢病毒介导的RNAi技术用于人肺癌中多药耐药性基因的研究,并证明它能持久抑制人肺癌细胞A549及其耐顺铂细胞株A549/DDP中的MDR1、MRP基因表达,在细胞、基因及蛋白多个水平,通过体外和体内实验多方面证实以MDR1、MRP作为RNAi的靶基因可完全逆转A549/DDP的MDR表型。本研究为肿瘤尤其是NSCLC的临床化疗提供了实验依据和新的思路,结果提示对于继发性耐药的肿瘤病人,应用RNAi等基因治疗方法辅助化疗药物,极有可能在临床上提高缓解率、增强肿瘤细胞对药物的敏感性,延长化疗后患者的生存期。
Objective Multi-drug resistance gene MDR1 and multi-drug resistance related protein gene MRP are two factors generating multi-drug resistance, which were selected in this research to study the effects of multi-drug resistance in non small cell lung cancer (NSCLC). Using RNA interference, we constructed two recombinants mediated by lentivirus vector PTM-Si-MDR1 and PTM-Si-MRP to express Si-MDR1 and Si-MRP. After transfected these recombinants to human lung cancer cell A549 and DDP-resistant cell A549/DDP, we studied their resistance to Gemzer, ADM, and DDP. We expected to find a novel way to cure NSCLC by our research. This research involved three parts: (1) Screening of efficient interfering sites of Si-MDR1 and Si-MRP. (2) Construction of Si-MDR1 and Si-MRP recombinant lentivirus. (3) Drug resistance of A549-Si-MDR1 and A549-Si-MRP cells.
     Methods (1) Four interfering sites of MDR1 and MRP gene were designed respectively, then chemosynthesised SiRNA fragments and transfected to human lung cancer cell A549 linked with vector pSUPER. The transfection efficiency was detected by fluorescence microscope; MDR1 and MRP gene expression in A549 cell were detected by real-time PCR 48 hours after transfection. The efficient sites for packing recombinant lentivirus were screened. (2) Using the lentivirus system of PTM, pHelper1.0 and pHelper2.0 to mediate Si-MDR1 and Si-MRP expression. 293T cells were transfected for amplification and Hela cells were transfected for lentivirus titer determination. After host cells A549 and A549/DDP transfected for 2 days, transfection efficiency was determined by FACS; the suppression of MDR1 and MRP gene in mRNA level and protein level were determined by real-time PCR and Western Blot respectively. (3) A549-Si-MDR1 and A549/DDP-Si- MDR1 cell treated with three drugs (DDP, ADM and Gemzer) for 24 hours, then the morphous of EGFP positive cells were detected by fluorescence microscope. (4)One week after PTM, PTM-Si-MDR1, and PTM-Si-MRP transfected into A549 and A549/DDP cells (MOI=10), the cells treated with DDP, ADM and Gemzer with different dose for 48 hours, then cytoactive was determined using CCK-8 kit. (5) Follwing the establishment of stable transfected A549 and A549/DDP cell lines by PTM, PTM-Si-MDR1, and PTM-Si-MRP lentivirus, the primary lung cancer xenograft model was established in BALB/c nude mice. After administrating chemotheraphy drugs, the MDR phenotype was assessed in vivo by primary tumor weight calculation and multi-site metastasis assessment.
     Results (1) Designed SiRNA fragments of MDR1 and MRP genes, constructed screening plasmids pSUPER-Si-MDR1 and pSUPER-Si-MRP to select efficient interfering sites. (2) Transfected the recombinant plasmids to human lung cancer cell A549 and DDP-resistant cell A549/DDP. Transfection efficiency was about 47.9%, determined by fluorescence microscope. (3) Determined MDR1 and MRP gene expression in A549 cell in mRNA level by real-time PCR, 48 hours after transfection. MDR1 and MRP were silenced specificly and efficiently. Thus the plasmid pSUPER-Si-MDR1 and pSUPER-Si-MRP were successful to express SiRNA. (4) Packed two lentivirus vectors using the efficient interfering sites, transfected into 293T cell for amplification. Transfection efficiency was high to 85%, determined by fluorescence microscope and FACS. Results proved that the plasmids could transfect 293T with high efficiency and express SiRNA stably. (5) Recombinant lentivirus titers were determined, being about 5×108TU/ml. (6) A549 and A549/DDP were transfected by PTM-Si-MDR1, PTM-Si-MRP and PTM (blank vector), the transfection efficiencies of PTM-Si-MDR1 and PTM-Si-MRP were 77.3% and 80.8% respectively, determined by FACS. (7) The MDR1 and MRP gene expression in A549 were determined by real-time PCR after transfection 2 days. Suppression efficiencies of MDR1 and MRP were 72% and 69%, which were both obvious. (8) Being treated with three chemotherapy drugs: DDP (50ug/ml), ADM(1ug/ml)and Gemzer (200ug/ml) for 24 hours, A549-SiMDR1 cells (one week after transfection) shrinked and lost morphous, which were typical characters of apoptosis. (9) A549 cells (A549-PTM, A549-Si-MRP, A549-Si-MDR1) and A549/DDPcells (A549/DDP-PTM, A549/DDP-Si-MRP, A549/DDP- Si-MDR1) were treated with DDP, ADM and Gemzer with different doses, and determined cytoactive of each cell group after 48 hours. Results showed that, the sensitivity of A549/DDP to 3 drugs were all boosted. (10) As compared with PTM-transfected A549/DDP group, the primary tumer weight and metastasis ratio of contralater lung and distant organs were all decreased significantly in both the stable-transfected PTM-Si-MDR1 and PTM-Si-MRP A549/DDP group. These date indicated that the MDR phenotype was completely reversed by RNAi technology targeting MDR1 and MRP mRNAs.
     Conclutions The lentivirus vector-mediated RNA interference can suppress MDR1 and MRP gene expression remarkably in A549 and DDP-resistant A549/DDP cells to last, and can improve the effects on killing cancer cells. Our research offered experimental prove to raise NSCLC chemotherapy effect clinically, and to prolong the survival time of patients after chemotherapy.
引文
1. Goldman B. Multidrug resistance: can new drugs help chemotherapy score against cancer [J]. J Natl Cancer Inst, 2003, 95 (4): 255
    2. Morimoto E, Inase N, Mlyake S, et al. Adenovirus-mediated suicide gene transfer to small cell lung carcinoma uSing a tumor-specific promoter[J]. Anticancer Res, 2001, 21(2): 329~332
    3. Tanaka M, Inase N, Mlyake S, et al. Neuron specific enolase promoter for suicide gene therapy in small lung cancinoma[J]. Anticancer Res, 2001,21(2): 291~294
    4. Motohashi, Kurihara T, Kawase M, et al. Drug resistance reversal, anti-mutagenicity and antiretroviral effect of phthalimidoand chloroethylphenothiazines [J]. Anticancer, 1997, Res, 17:3537~3544
    5. Scagliotti GV, Novello S, Selvaggi G. Multidrug resistance in non-small-cell lung cancer[J]. Ann Oncol, 1999, 10 Suppl 5: 83~86
    6. Varma MV, Ashokraj Y, Dey CS, et al. P-glycoprotein inhibitors and their screening-a perspective from bioacailability enhancement [J]. Pharmacol Res, 2003, 48 (4): 347
    7. Thomas H, Coley HM. Overcoming multidrug resistance in cancer: an update on the clinical strategy of inhibiting p-glycoprotein [J]. Cancer Control, 2003, 10(2): 159
    8. Sui GH, Soohoo C, Afarel B, Gay F, Shi Y, Forrester WC, Shi Y A DNA vector-based RNAi technology to suppress gene expression in mammalian cells[J]. Proc Natl Acad Sci USA 2002; 99: 5515~5520
    9. Fire A,Xu S,Montgomery MK,et al. Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans[J]. Nature. 1998, 391(6669): 806~811.
    10. Fire A. RNA-triggered gene Silencing[J]. Trends Genet. 1999, 15(9): 358~363.
    11. Nieth C, Priebsch A, Stege A, et al. Modulation of the clasSical multidrug resistance (MDR) phenotype by RNA interference (RNAi) [J]. FEBS Lett, 2003, 545(2~3): 144~150
    12. Rubinson DA, Dillon CP, Kwiatkowski AV, et al. A Lenitivirus-based system to functionally Silence genes in primary mammalian cells, stem cells and transgenic mice by RNA interference[J]. Nat Genet, 2003, 33(3): 401~406
    13. Cockrell AS, Kafri T. Gene delivery by lentivirus vectors. MolBiotechnol, 2007, 36(3):184-204.
    14. Sumimoto H, Kawakami Y. Lentiviral vector-mediated RNAi and its use for cancer research. Future Oncol, 2007, 3(6):655-664.
    15. Morris KV, Rossi JJ. Lentiviral- mediated delivery of siRNAs for antiviral therapy. Gene Ther, 2006, 13(6):553-558.
    16. Kafri T, van Praag H, Gage FH. Lentiviral vectors: regulated gene expression[J]. Mol Ther, 2000,1(6): 516~521
    17. Case SS, Price MA, Jordan CT, et al. Stable transduction of quiescent CD34(+)CD38(-) human hematopoietic cells by HIV-1-based lentiviral vectors[J]. Proc Natl Acad Sci USA, 1999,96(6): 2988~2993
    18. Morris KV, RosSi JJ. Lentiviral mediated delivery of SiRNAs for antiviral therapy[J]. Gene Ther, 2006, 13(6): 553~558
    19. Singer O, Marr RA, Rockenstein E, et al. Targeting BACE1 with SiRNAs ameliorates Alzheimer disease neuropathology in a transgenic model[J]. Nat Neurosci, 2005,8(10): 1343~1349
    20. Hui EK, Yap EM, An DS, et al. Inhibition of influenza virus matrix (M1) protein expression and virus replication by U6 promoter-drivenand lentivirus-mediated delivery of SiRNA[J]. J Gen Virol, 2004, 85(7): 1877~1884
    21. Karam JA, Lotan Y, Ashfaq R, et al. Survivin expression in patients with non-muscle-invaSive urothelial cell carcinoma of the bladder[J]. Urology 2007; 70: 482~486
    22. Wohlbold L, van der Kuip H, Miething C,et al. Inhibition of bcr-abl gene expression by small interfering RNA senSitizes for imatinib mesylate (ST1571) [J]. Blood 2003; 102: 2236~2239
    23. Semizarov D, Forst L, Sarthy A, et al. Specificity of short interfering RNA determined through gene expression Signatures[J]. Proc Natl Acad Sci USA 2003; 100:6347~6352
    24. McCarthy BA, Mansour A, Lin YC, et al. RNA interference of IL-10 in leukemic B-1 cells[J]. Cancer Immun 2004; 4:6
    25. Bertrand JR, Pottier M, Vekris A, et al. Comparison of antisense oligonucleotides and SiRNAs in cell culture and in vivo[J]. Biochem Biophys Res Commun 2002; 296:1000~1004
    26. Soutschek J, Akinc A, Bramlage B, et al. Therapeutic Silencing of an endogenous gene by systemic administration of modified SiRNAs[J]. Nature 2004; 432: 173~178
    27. Karagiannis TC, El-Osta A. RNA interference and potential therapeutic applications of short interfering RNAs[J]. Cancer Gene Ther 2005; 12: 787~795
    28. Elbashir SM, HarborthJ , Lendeckel W ,Yalcin A ,Weber K , Tuschl T .Duplexes of
    21-nucleotide RNAs mediate RNA interference in cultured mammalian cells[J]. Nature 2001; 411: 494~498
    29. Christiane N , Axel P , Alexandra S , et al1 Modulation of the clasSical multidrug resistance (MDR) phenotype by RNA interference ( RNAi ) [ J ] . FEBS Letters , 2003 , 545 ( 223 ) :14421501
    30.彭智,肖志坚,王一,等SiRNA逆转K562/ A02细胞多药耐药的研究[J ] .中华血液学杂志, 2004 , 25 (1) : 5271
    31. Yague E , Higgins CF , Raguz S1 Complete reversal of multidrug resistance by stable expression of small interfering RNA targeting MDR1 [ J ] . Gene Therapy 2004 , 11 ( 14 ) :1170-1174
    32. Gao Z, Fields GZ. Co-transfection of MDR1 and MRP antisense RNAs abolished the drug resistance in multidrug resistant human lung cancer cells [J]. Anticancer Res, 1998:18 (4C): 3073~3076
    33. Wu H , Hait WN , Yang JM et al1 Small Interfering RNA induced SuppresSion of MDR1 ( P-Glycoprotein) Restores SenSisentivity to Multidrug resistant Cancer Cells [
    34. Yuan B,Latek R,Hossbach M,et al. SiRNA Selection Server: an automated SiRNA oligonucleotide prediction server[J]. Nucleic Acids Res. 2004, 32(Web Server issue): W130~134.J ] . Cancer Res ,2003 , 63 (4) : 1515 -1519
    35. Tuschl T, Borkhardt A. Small interfering RNAs: a revolutionary tool for the analySis of gene function and gene therapy[J]. Mol Interv. 2002, 2(3):158~167.
    36. Zahler MH, Irani A, Malhi H, et al. The application of a lentiviral vector for gene transfer in fetal human hepatocytes[J]. J Gene Med, 2000,2(3): 186~193
    37. Pellinen R, Hakkarainen T, Wahlfors T, et al. Cancer cells as targets for lentivirus - mediated gene transfer and gene therapy [ J ]. Int J Oncol, 2004, 25 (6) : 1753~1762
    38. Indraccolo S, HabelerW, Tisato V, et al. Gene transfer in ovarian cancer cells: a comparison between retroviral and lentiviralvectors[ J ]. Cancer Res, 2002, 62 (21) : 6099~6107
    39. Gerolami R, Uch R, Faivre J, et al. Herpes Simp lex virus thymidine kinase - mediated suicide gene therapy for hepatocellular carcinoma uSing H IV - 1 - derived lentiviral vectors[ J ]. J Hepatol, 2004, 40 (2) : 291~297
    40. Jiang YR, Ma DX, Chen XL, et al. Killing effect of double suicide genes mediated by lentivirus on lymphoma cells [J]. Ai Zheng, 2003, 22 (9) : 916~921
    41. Breckpot K, DullaersM, Bonehill A, et al. Lentivirally transduced dendritic cells as a tool for cancer immunotherapy [J]. J GeneMed, 2003, 5 (8) : 654~667
    42. Metharom P, Ellem KA, Schmidt C, et al. Lentiviral vector-mediated tyroSinase - related p rotein 2 gene transfer to dendritic cells for the therapy ofmelanoma [J]. Hum Gene Ther, 2001, 12(18) : 2203~2213.
    43. Sumimoto H, Yamagata S, Shimizu A, et al. Gene therapy for human small - cell lung carcinoma by inactivation of Skp - 2 with virally mediated RNA interference [J]. Gene Ther, 2005, 12(1) : 95~100.
    44. Katayama K, Koichiro W, Miyoshi H, et al. RNA interfering approach for clarifying the PPARγpathway uSing lentivirus vectors expresSing short hairpin RNA[J]. FEBS Letters, 2004; 560(3): 178
    45. Berns K, Hijmans EM, Mullenders J, et al. A large-scale RNAi screen in human cells identifies new components of the p53 pathway [J]. Nature, 2004; 428(6981): 431
    46. Biedle JL, Riehm H. Cellular resistance to actinomycin D in Chinese hamaster cells in vitro: cross~resistance, radioautographic and cytogenetic studies [J]. Cancer Res, 1970. 1174.
    47. Juliano R L, Ling V. A surface glycoprotein modulating drug permeability in Chinese hamster ovary cell mutants [J]. Biochem Biophys Acta, 1976, 455:152
    48. Cole S P, Bhardwaj G, Gerlach J JH, et al. Overexpression of a transporter gene in a multidrug resistance human lung cancer cell line [J]. Science, 1992, 258(5088): 1650~1654
    49. Eijdems EM, de Haas M, Timmerman AJ, et al. Reduced topoisomerase II activity in multidrug-resistance human non-small cell lung cancer cell lines [J]. Br J Cancer, 1995, 71:40~47
    50. Wessel L, Jensen PB, Falck J, et al. Loss of amino acids 1490 lysser-lys1490 in the COOH-terminal region of topoisomerase II alpha in human small cell lung cancer cells selected for resistance to etopoSide results in an extranuclear enzyme localization [J]. Cancer Res, 1997; 57(20): 4451~4454
    51. Dingemans AC, van Ark-Otte J, Span S, et al. TopoisomeraseⅡalpha and other drug resistance markers in advanced non-small cell lung cancer [J]. Lung Cancer, 2001; 32:117~128
    52. Ogiso Y,Tomida A,Tsuruo T. Nuclear localization of proteasomes participates in stress-inducible resistance of solid tumor cells to topoisomerase II-directed drugs [J]. Cancer Res,2002,62(17):5008~5012.
    53. Oguri T, Fujiwara Y, Miyazaki M, et al. Induction of gamma-glutamylcysteine synthetase gene expression by platinum drugs in peripheral mononuclear cells of lung cancer patients [J]. Ann Oncol, 1999; 10:455~460
    54. Loles BF, et al. Cancer Res, 2000;60:573~57
    55. Glazer RI. The protein kinase ABC’s of Signal transduction as targets for drug development [J]. Curr Pharm Des, 1998; 4(3): 277~290
    56. Reid JC, Nair SS, Kashani JH, et al. Detecting dysfunctional behavior in adolescents: the examination of relationships uSing neural networks[J]. Proc Annu Symp Comput Appl Med Care, 1994, 743~746
    57. J Prados, C Melguizo, A Fernandez, et al. Inverse expression of MDR 1 and c-myc genes in a rhabdomyosarcoma cell line resistant to actinomycin d [J]. J Pathol, 1996, 180 (1): 85~89
    58. Shin HJC, Lee JS, Aong WK, et al . Study of multidrug resistance (mdr1) gene in non small cell lung cancer [J]. Anticancer Res, 1992 ,12 :367-370
    59.成善泉,熊永炎,等.非小细胞肺癌多药耐药性病理学检测的临床意义.肿瘤防治研究2007;34(2):106-109
    60.陈桃香,余少平,熊永炎,等.多药耐药基因与细胞凋亡基因产物在非小细胞肺癌中的表达及意义[J ].肿瘤防治研究,2004 ,31(1):9211.
    61. Roy S,Kenny E,Kennedy S,et al MDR/P-gp and MRP-1 mRNA and protein expression in NSCLC Anticancer Res 2007 May-Jun;27(3A):1325-30
    1. Fire A, Xu S, Montgomery MK, Kostas SA, Driver SE,Mello CC. Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature 1998;391(6669):806-11.
    2. Elbashir SM, Harborth J, Lendeckel W, Yalcin A, Weber K,Tuschl T. Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells. Nature 2001;411(6836):494-8.
    3. Pai SI, Lin YY, Macaes B, Meneshian A, Hung CF,Wu TC. Prospects of RNA interference therapy for cancer. Gene Ther 2006;13(6):464-77.
    4. Hannon GJ. RNA interference. Nature 2002;418(6894):244-51.
    5. Dorsett Y, Tuschl T. siRNAs: applications in functional genomics and potential as therapeutics. Nat Rev Drug Discov 2004;3(4):318-29.
    6. Martin SE, Caplen NJ. Applications of RNA interference in mammalian systems. Annu Rev Genomics Hum Genet 2007;8:81-108.
    7. Lage H. Potential applications of RNA interference technology in the treatment of cancer. Future Oncol 2005;1(1):103-13.
    8. Rana TM. Illuminating the silence: understanding the structure and function of small RNAs. Nat Rev Mol Cell Biol 2007;8(1):23-36.
    9. Nykanen A, Haley B,Zamore PD. ATP requirements and small interfering RNA structure in the RNA interference pathway. Cell 2001;107(3):309-21.
    10. Fuchs U, Borkhardt A. The application of siRNA technology to cancer biology discovery. Adv Cancer Res 2007;96:75-102.
    11. Wang Y, Zhu H, Quan L, Zhou C, Bai J, Zhang G, Zhan Q,Xu N. Downregulation of survivin by RNAi inhibits the growth of esophageal carcinoma cells. Cancer Biol Ther 2005;4(9):974-8.
    12. Li QX, Zhao J, Liu JY, Jia LT, Huang HY, Xu YM, Zhang Y, Zhang R, Wang CJ, Yao LB, Chen SY,Yang AG. Survivin stable knockdown by siRNA inhibits tumor cell growth and angiogenesis in breast and cervical cancers. Cancer Biol Ther 2006;5(7):860-6.
    13. Rosa J, Canovas P, Islam A, Altieri DC,Doxsey SJ. Survivin modulates microtubule dynamics and nucleation throughout the cell cycle. Mol Biol Cell 2006;17(3):1483-93.
    14. Rahman KW, Li Y, Wang Z, Sarkar SH,Sarkar FH. Gene expression profiling revealed survivin as a target of 3,3'-diindolylmethane-induced cell growth inhibition and apoptosis in breast cancer cells. Cancer Res 2006;66(9):4952-60.
    15. Thomas H, Coley HM. Overcoming multidrug resistance in cancer: an update on the clinical strategy of inhibiting p-glycoprotein. Cancer Control 2003;10(2):159-65.
    16. Greenberg PL, Lee SJ, Advani R, Tallman MS, Sikic BI, Letendre L, Dugan K, Lum B, Chin DL, Dewald G, Paietta E, Bennett JM,Rowe JM. Mitoxantrone, etoposide, and cytarabine with or without valspodar in patients with relapsed or refractory acute myeloid leukemia and high-risk myelodysplastic syndrome: a phase III trial (E2995). J Clin Oncol 2004;22(6):1078-86.
    17. van der Holt B, Lowenberg B, Burnett AK, Knauf WU, Shepherd J, Piccaluga PP, Ossenkoppele GJ, Verhoef GE, Ferrant A, Crump M, Selleslag D, Theobald M, Fey MF, Vellenga E, Dugan M,Sonneveld P. The value of the MDR1 reversal agent PSC-833 in addition to daunorubicin and cytarabine in the treatment of elderly patients with previously untreated acute myeloid leukemia (AML), in relation to MDR1 status at diagnosis. Blood 2005;106(8):2646-54.
    18. Friedenberg WR, Rue M, Blood EA, Dalton WS, Shustik C, Larson RA, Sonneveld P,Greipp PR. Phase III study of PSC-833 (valspodar) in combination with vincristine, doxorubicin, and dexamethasone (valspodar/VAD) versus VAD alone in patients with recurring or refractory multiple myeloma (E1A95): a trial of the Eastern Cooperative Oncology Group. Cancer 2006;106(4):830-8.
    19. Fracasso PM, Goldstein LJ, de Alwis DP, Rader JS, Arquette MA, Goodner SA, Wright LP, Fears CL, Gazak RJ, Andre VA, Burgess MF, Slapak CA,Schellens JH. Phase I study of docetaxel in combination with the P-glycoprotein inhibitor, zosuquidar, in resistant malignancies. Clin Cancer Res 2004;10(21):7220-8.
    20. Sandler A, Gordon M, De Alwis DP, Pouliquen I, Green L, Marder P, Chaudhary A, Fife K, Battiato L, Sweeney C, Jordan C, Burgess M,Slapak CA. A Phase I trial of a potent P-glycoprotein inhibitor, zosuquidar trihydrochloride (LY335979), administered intravenously in combination with doxorubicin in patients with advanced malignancy. Clin Cancer Res 2004;10(10):3265-72.
    21. Morschhauser F, Zinzani PL, Burgess M, Sloots L, Bouafia F,Dumontet C. Phase I/IItrial of a P-glycoprotein inhibitor, Zosuquidar.3HCl trihydrochloride (LY335979), given orally in combination with the CHOP regimen in patients with non-Hodgkin's lymphoma. Leuk Lymphoma 2007;48(4):708-15.
    22. Lage H. MDR1/P-glycoprotein (ABCB1) as target for RNA interference-mediated reversal of multidrug resistance. Curr Drug Targets 2006;7(7):813-21.
    23. Sims-Mourtada J, Izzo JG, Ajani J,Chao KS. Sonic Hedgehog promotes multiple drug resistance by regulation of drug transport. Oncogene 2007;26(38):5674-9.
    24. Corich L, Aranda A, Carrassa L, Bellarosa C, Ostrow JD,Tiribelli C. The cytotoxic effect of unconjugated bilirubin in human neuroblastoma SH-SY5Y cells is modulated by the expression level of MRP1 but not MDR1. Biochem J 2009;417(1):305-12.
    25. Nieth C, Priebsch A, Stege A,Lage H. Modulation of the classical multidrug resistance (MDR) phenotype by RNA interference (RNAi). FEBS Lett 2003;545(2-3):144-50.
    26. Wu H, Hait WN,Yang JM. Small interfering RNA-induced suppression of MDR1 (P-glycoprotein) restores sensitivity to multidrug-resistant cancer cells. Cancer Res 2003;63(7):1515-9.
    27. Kowalski P, Surowiak P,Lage H. Reversal of different drug-resistant phenotypes by an autocatalytic multitarget multiribozyme directed against the transcripts of the ABC transporters MDR1/P-gp, MRP2, and BCRP. Mol Ther 2005;11(4):508-22.
    28. Priebsch A, Rompe F, Tonnies H, Kowalski P, Surowiak P, Stege A, Materna V,Lage H. Complete reversal of ABCG2-depending atypical multidrug resistance by RNA interference in human carcinoma cells. Oligonucleotides 2006;16(3):263-74.
    29. Materna V, Stege A, Surowiak P, Priebsch A,Lage H. RNA interference-triggered reversal of ABCC2-dependent cisplatin resistance in human cancer cells. Biochem Biophys Res Commun 2006;348(1):153-7.
    30. Luo KQ, Chang DC. The gene-silencing efficiency of siRNA is strongly dependent on the local structure of mRNA at the targeted region. Biochem Biophys Res Commun 2004;318(1):303-10.
    31. Yoshinari K, Miyagishi M,Taira K. Effects on RNAi of the tight structure, sequence and position of the targeted region. Nucleic Acids Res 2004;32(2):691-9.
    32. Kurreck J. siRNA efficiency: structure or sequence-that is the question. J Biomed Biotechnol 2006;2006(4):83757.
    33. Duan Z, Brakora KA,Seiden MV. Inhibition of ABCB1 (MDR1) and ABCB4 (MDR3) expression by small interfering RNA and reversal of paclitaxel resistance in human ovarian cancer cells. Mol Cancer Ther 2004;3(7):833-8.
    34. Xu D, Kang H, Fisher M,Juliano RL. Strategies for inhibition of MDR1 gene expression. Mol Pharmacol 2004;66(2):268-75.
    35. Xu D, McCarty D, Fernandes A, Fisher M, Samulski RJ,Juliano RL. Delivery of MDR1 small interfering RNA by self-complementary recombinant adeno-associated virus vector. Mol Ther 2005;11(4):523-30.
    36. Lacroix M. Persistent use of "false" cell lines. Int J Cancer 2008;122(1):1-4.
    37. Kaszubiak A, Holm PS,Lage H. Overcoming the classical multidrug resistance phenotype by adenoviral delivery of anti-MDR1 short hairpin RNAs and ribozymes. Int J Oncol 2007;31(2):419-30.
    38. Shi Z, Liang YJ, Chen ZS, Wang XW, Wang XH, Ding Y, Chen LM, Yang XP,Fu LW. Reversal of MDR1/P-glycoprotein-mediated multidrug resistance by vector-based RNA interference in vitro and in vivo. Cancer Biol Ther 2006;5(1):39-47.
    39. Liscovitch M, Ravid D. A case study in misidentification of cancer cell lines: MCF-7/AdrR cells (re-designated NCI/ADR-RES) are derived from OVCAR-8 human ovarian carcinoma cells. Cancer Lett 2007;245(1-2):350-2.
    40. Stege A, Priebsch A, Nieth C,Lage H. Stable and complete overcoming of MDR1/P-glycoprotein-mediated multidrug resistance in human gastric carcinoma cells by RNA interference. Cancer Gene Ther 2004;11(11):699-706.
    41. Yague E, Higgins CF,Raguz S. Complete reversal of multidrug resistance by stable expression of small interfering RNAs targeting MDR1. Gene Ther 2004;11(14):1170-4.
    42. Li CB, Zhang F, Shi YR, Wei XY, Yang Y,Niu RF. [Reversing multidrug resistance in breast cancer cell line MCF-7/ADR by small interfering RNA.]. Ai Zheng 2004;23(12):1605-10.
    43. Vanhecke D, Janitz M. Functional genomics using high-throughput RNA interference. Drug Discov Today 2005;10(3):205-12.
    44. Altieri DC. Validating survivin as a cancer therapeutic target. Nat Rev Cancer 2003;3(1):46-54.
    45. Uchida H, Tanaka T, Sasaki K, Kato K, Dehari H, Ito Y, Kobune M, Miyagishi M,Taira K, Tahara H,Hamada H. Adenovirus-mediated transfer of siRNA against survivin induced apoptosis and attenuated tumor cell growth in vitro and in vivo;Adenovirus-mediated transfer of siRNA against survivin induced apoptosis and attenuated tumor cell growth in vitro and in vivo. Mol Ther 2004;10;10(1;1):162-71;162-71.
    46. Kappler M, Bache M, Bartel F, Kotzsch M, Panian M, Wurl P, Blumke K, Schmidt H, Meye A,Taubert H. Knockdown of survivin expression by small interfering RNA reduces the clonogenic survival of human sarcoma cell lines independently of p53. Cancer Gene Ther 2004;11(3):186-93.
    47. Biedler JL, Riehm H. Cellular resistance to actinomycin D in Chinese hamster cells in vitro: cross-resistance, radioautographic, and cytogenetic studies. Cancer Res 1970;30(4):1174-84.
    48. Lage H. An overview of cancer multidrug resistance: a still unsolved problem. Cell Mol Life Sci 2008;65(20):3145-67.
    49. Modok S, Mellor HR,Callaghan R. Modulation of multidrug resistance efflux pump activity to overcome chemoresistance in cancer. Curr Opin Pharmacol 2006;6(4):350-4.
    50. Szakacs G, Paterson JK, Ludwig JA, Booth-Genthe C,Gottesman MM. Targeting multidrug resistance in cancer. Nat Rev Drug Discov 2006;5(3):219-34.
    51. Pichler A, Zelcer N, Prior JL, Kuil AJ,Piwnica-Worms D. In vivo RNA interference-mediated ablation of MDR1 P-glycoprotein. Clin Cancer Res 2005;11(12):4487-94.
    52. Matsui Y, Kobayashi N, Nishikawa M,Takakura Y. Sequence-specific suppression of mdr1a/1b expression in mice via RNA interference. Pharm Res 2005;22(12):2091-8.
    53. Xiao H, Wu Z, Shen H, Luo AL, Yang YF, Li XB,Zhu DY. In vivo reversal of P-glycoprotein-mediated multidrug resistance by efficient delivery of stealth RNAi. Basic Clin Pharmacol Toxicol 2008;103(4):342-8.
    54. Stein U, Walther W, Stege A, Kaszubiak A, Fichtner I,Lage H. Complete in vivo reversal of the multidrug resistance phenotype by jet-injection of anti-MDR1 short hairpin RNA-encoding plasmid DNA. Mol Ther 2008;16(1):178-86.
    55. Walther W, Siegel R, Kobelt D, Knosel T, Dietel M, Bembenek A, Aumann J, Schleef M, Baier R, Stein U,Schlag PM. Novel jet-injection technology for nonviral intratumoralgene transfer in patients with melanoma and breast cancer. Clin Cancer Res 2008;14(22):7545-53.
    56. Walther W, Stein U, Fichtner I,Schlag PM. Low-volume jet injection for efficient nonviral in vivo gene transfer. Mol Biotechnol 2004;28(2):121-8.
    57. Walther W, Stein U, Fichtner I, Kobelt D, Aumann J, Arlt F,Schlag PM. Nonviral jet-injection gene transfer for efficient in vivo cytosine deaminase suicide gene therapy of colon carcinoma. Mol Ther 2005;12(6):1176-84.
    58. Scotto KW. Transcriptional regulation of ABC drug transporters. Oncogene 2003;22(47):7496-511.
    59. Stratford AL, Fry CJ, Desilets C, Davies AH, Cho YY, Li Y, Dong Z, Berquin IM, Roux PP,Dunn SE. Y-box binding protein-1 serine 102 is a downstream target of p90 ribosomal S6 kinase in basal-like breast cancer cells. Breast Cancer Res 2008;10(6):R99.
    60. Bargou RC, Jurchott K, Wagener C, Bergmann S, Metzner S, Bommert K, Mapara MY, Winzer KJ, Dietel M, Dorken B,Royer HD. Nuclear localization and increased levels of transcription factor YB-1 in primary human breast cancers are associated with intrinsic MDR1 gene expression. Nat Med 1997;3(4):447-50.
    61. Kaszubiak A, Kupstat A, Muller U, Hausmann R, Holm PS,Lage H. Regulation of MDR1 gene expression in multidrug-resistant cancer cells is independent from YB-1. Biochem Biophys Res Commun 2007;357(1):295-301.
    62. Honma K, Iwao-Koizumi K, Takeshita F, Yamamoto Y, Yoshida T, Nishio K, Nagahara S, Kato K,Ochiya T. RPN2 gene confers docetaxel resistance in breast cancer. Nat Med 2008;14(9):939-48.
    63. Voinnet O. Induction and suppression of RNA silencing: insights from viral infections. Nat Rev Genet 2005;6(3):206-20.
    64. Zheng ZM, Tang S,Tao M. Development of resistance to RNAi in mammalian cells. Ann N Y Acad Sci 2005;1058:105-18.
    65. Yang W, Wang Q, Howell KL, Lee JT, Cho DS, Murray JM,Nishikura K. ADAR1 RNA deaminase limits short interfering RNA efficacy in mammalian cells. J Biol Chem 2005;280(5):3946-53.
    66. Lu S, Cullen BR. Adenovirus VA1 noncoding RNA can inhibit small interfering RNA and MicroRNA biogenesis. J Virol 2004;78(23):12868-76.
    67. Sledz CA, Holko M, de Veer MJ, Silverman RH,Williams BR. Activation of the interferon system by short-interfering RNAs. Nat Cell Biol 2003;5(9):834-9.
    68. Persengiev SP, Zhu X,Green MR. Nonspecific, concentration-dependent stimulation and repression of mammalian gene expression by small interfering RNAs (siRNAs). RNA 2004;10(1):12-8.
    69. Williams BR. Role of the double-stranded RNA-activated protein kinase (PKR) in cell regulation. Biochem Soc Trans 1997;25(2):509-13.
    70. Jagus R, Joshi B,Barber GN. PKR, apoptosis and cancer. Int J Biochem Cell Biol 1999;31(1):123-38.
    71. Justesen J, Hartmann R,Kjeldgaard NO. Gene structure and function of the 2'-5'-oligoadenylate synthetase family. Cell Mol Life Sci 2000;57(11):1593-612.
    72. Dong B, Silverman RH. 2-5A-dependent RNase molecules dimerize during activation by 2-5A. J Biol Chem 1995;270(8):4133-7.
    73. Castelli JC, Hassel BA, Maran A, Paranjape J, Hewitt JA, Li XL, Hsu YT, Silverman RH,Youle RJ. The role of 2'-5' oligoadenylate-activated ribonuclease L in apoptosis. Cell Death Differ 1998;5(4):313-20.
    74. Hornung V, Guenthner-Biller M, Bourquin C, Ablasser A, Schlee M, Uematsu S, Noronha A, Manoharan M, Akira S, de Fougerolles A, Endres S,Hartmann G. Sequence-specific potent induction of IFN-alpha by short interfering RNA in plasmacytoid dendritic cells through TLR7. Nat Med 2005;11(3):263-70.
    75. Judge AD, Sood V, Shaw JR, Fang D, McClintock K,MacLachlan I. Sequence-dependent stimulation of the mammalian innate immune response by synthetic siRNA. Nat Biotechnol 2005;23(4):457-62.
    76. Sioud M. Induction of inflammatory cytokines and interferon responses by double-stranded and single-stranded siRNAs is sequence-dependent and requires endosomal localization. J Mol Biol 2005;348(5):1079-90.
    77. Grimm D, Streetz KL, Jopling CL, Storm TA, Pandey K, Davis CR, Marion P, Salazar F,Kay MA. Fatality in mice due to oversaturation of cellular microRNA/short hairpin RNA pathways. Nature 2006;441(7092):537-41.
    78. Ohrt T, Merkle D, Birkenfeld K, Echeverri CJ,Schwille P. In situ fluorescence analysis demonstrates active siRNA exclusion from the nucleus by Exportin 5. Nucleic Acids Res2006;34(5):1369-80.
    79. Lewis BP, Burge CB,Bartel DP. Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell 2005;120(1):15-20.
    80. Birmingham A, Anderson EM, Reynolds A, Ilsley-Tyree D, Leake D, Fedorov Y, Baskerville S, Maksimova E, Robinson K, Karpilow J, Marshall WS,Khvorova A. 3' UTR seed matches, but not overall identity, are associated with RNAi off-targets. Nat Methods 2006;3(3):199-204.
    81. Jackson AL, Bartz SR, Schelter J, Kobayashi SV, Burchard J, Mao M, Li B, Cavet G,Linsley PS. Expression profiling reveals off-target gene regulation by RNAi. Nat Biotechnol 2003;21(6):635-7.
    82. Semizarov D, Frost L, Sarthy A, Kroeger P, Halbert DN,Fesik SW. Specificity of short interfering RNA determined through gene expression signatures. Proc Natl Acad Sci U S A 2003;100(11):6347-52.
    83. Scacheri PC, Rozenblatt-Rosen O, Caplen NJ, Wolfsberg TG, Umayam L, Lee JC, Hughes CM, Shanmugam KS, Bhattacharjee A, Meyerson M,Collins FS. Short interfering RNAs can induce unexpected and divergent changes in the levels of untargeted proteins in mammalian cells. Proc Natl Acad Sci U S A 2004;101(7):1892-7.
    84. Fedorov Y, Anderson EM, Birmingham A, Reynolds A, Karpilow J, Robinson K, Leake D, Marshall WS,Khvorova A. Off-target effects by siRNA can induce toxic phenotype. RNA 2006;12(7):1188-96.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700