用户名: 密码: 验证码:
空间变化地震动激励下大跨度结构的反应研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
大跨度结构作为重要的公众设施,世界各国一直都十分重视其抗震性能的研究。大跨度结构在地震发生时其支承点受到的地震动激励均不相同,应深入研究地震动空间变化效应对大跨度结构地震反应的影响。针对目前空间变化地震动场合成技术的不够完善以及大跨度多支承结构多点地震激励反应分析的不够全面,本文在合理模拟空间变化地震动场的基础上,针对几种典型的大跨度结构,包括大跨度桥梁结构、输电塔-线体系和空间钢结构,进行了多点激励下的地震反应分析,分别考查了引起地震动空间变化的行波效应、部分相干效应、局部场地效应及其组合效应对结构反应的影响。本文的研究内容主要包括以下几个方面:
     (1)人工合成非平整非均匀场地的空间变化地震动时程曲线。在空间变化地震动传统三角级数合成方法的基础上进行了进一步的研究,基于经验相干函数模型和修正金井清功率谱密度函数模型模拟了非平整场地地震动的空间变化,基于波传播理论推导出的频响函数考虑局部场地效应的影响,其中对于非均匀多土层场地情况,地表面的空间地震动由包含面内波和面外波的基岩地震动通过土壤层模拟生成。综合采用三角级数法、波动理论和随机振动法提出了非平整均匀场地和非平整多土层场地的多点地震动合成方法,并人工合成了非平整场地的空间变化地震动时程曲线。利用该方法合成的空间地震动既考虑了地震动的空间相关性和非平稳特性,还考虑了局部场地效应的影响,可以应用于非平整场地上大跨度结构多点激励地震反应的研究。
     (2)进行了空间变化地震动激励下桥梁相邻结构的最大相对位移反应研究,该位移为避免结构碰撞所必需的模数式伸缩缝最小间距。基于相干函数和我国抗震设计规范定义的反应谱分别模拟了四类场地的空间变化地震动,数值计算了桥梁相邻结构在模拟的不同视波速和相干程度空间地震动激励下的相对位移反应,以此确定不同类型场地上为避免桥梁相邻结构碰撞所必需的伸缩缝最小间距,并分析了地震动空间变化、场地条件和结构振动特性对桥梁相邻结构最大相对位移反应的影响。分析结果表明:桥梁所在场地越软,相邻结构间的相对位移反应越大;地震动的空间变化对桥梁相邻结构相对位移反应有着重要影响,当桥梁相邻结构拥有相似的振动频率时影响最大。抗震设计标准推荐调整相邻结构基本频率相近而减小相邻结构间的相对位移,从而达到避免结构碰撞的建议仅在地震动空间变化效应可以忽略的前提下有效。
     (3)针对输电塔-线体系这种大跨度的高柔结构,分析了其在非平整场地空间变化地震动作用下的结构非线性反应并进行了详细的数值模拟。考虑导线的几何非线性,建立了输电塔-线体系的三维有限元模型。利用生成的非平整非均匀场地空间相关多点地震动时程,首先对非平整场地上的这种复杂大跨度结构进行了地震动一致激励、行波激励和全面考虑地震动空间变化的多点激励下的地震反应分析;然后分别研究了非平整多土层场地地震动多维激励和局部场地条件差异对大跨越输电塔-线体系地震反应的影响。分析结果表明了考虑地震动多维效应和空间变化对研究输电塔-线体系地震反应的重要性,为该类结构体系的抗震设计提供了有意义的参考。
     (4)分析了考虑场地效应的空间变化地震动水平向和竖向共同作用下大跨度拱桁架结构的反应,研究了拱桁架结构可不考虑地震动空间变化影响的界限跨度。空间变化地震动是根据抗震规范定义的特定场地2%阻尼比反应谱和经验相干函数模拟生成。分别分析了由行波传播、相干损失和不同局部场地条件引起的地震动空间变化对结构反应的影响,研究了空间地震动水平向作用和水平向与竖向共同作用下结构反应的差异。此外,对抗震规范定义的四种类型场地上不同跨度的拱桁架结构进行了多点激励分析和一致激励分析,比较了不同激励情况下结构杆件内力反应,给出了四种类型场地上拱桁架结构可不考虑地震动空间变化影响的最小跨度,所获得的结果可为拱桁架结构的实际抗震设计提供有益的信息和建议。最后,比较分析了大跨空间平板网架结构在地震动一致激励、行波激励和多点激励下的支承柱和上部杆件内力反应情况,分析结果表明忽略地震动的空间变化可能严重低估大跨度空间网架结构的地震反应。
The seismic properties of large-span structures, used as important public facilities, are always the focus research to be paid more attention all over the world. Due to the seismic excitations on supporting points of large-span structures are not uniform when earthquake occurrence, the effect of ground motion spatial variation on seismic response of large-span structures should be studied thoroughly. Considering the generation technique of spatially varying ground motion field still not perfect and the seismic response analysis of large-span multi-supported structures subjected to spatial ground motions are not comprehensive at present, seismic responses of several typical large-span structures, including large-span bridge structure, electrical transmission tower-line system and spatial steel structure, are analyzed under multi-support excitations based on the reasonable simulation of spatially varying ground motion field in this study. The influence of ground motion spatial variation induced by wave passage effect, coherency loss effect and local site effect on structure response are studied respectively, and the combined three effects are also studied. The main aspects of research work in this thesis are listed as follows:
     (1) Generation of spatially varying ground motion time histories corresponding to an uneven heterogeneous site. Based on traditional trigonometric series method, further research on generation technique of spatially varying ground motion is conducted. The ground motion spatial variations of the uneven site are simulated randomly based on an empirical coherency loss function and a filtered Kanai-Tajimi power spectral density function. The local site effect is considered by a transfer function derived from wave propagation theory. In view of heterogeneous site with multiple soil layers, the spatial ground motions of ground surface are simulated by the base rock motions propagating into the soil site, including out-of-plane wave and in-plane waves. With the trigonometric series method, the wave propagation theory and the random vibration method, the methods of simulating spatially varying ground motions corresponding to uneven homogeneous site and uneven site with multiple soil layers are performed, and the spatial ground motion time histories of the uneven site are generated. The generated spatial ground motions by this method considering ground motion spatial correlation, non-stationary property and local site effect, which can be used to analyze seismic response of large-span structures on an uneven site subjected to spatially varying ground motions.
     (2) The maximum relative displacement response between two adjacent bridge segments subjected to spatially varying ground motions is investigated, the relative displacement is the minimum gap that a modular expansion joint system must have to avoid pounding between bridge segments. The simulated spatially varying ground motions corresponding to four soil types are individually compatible with response spectrum defined in Chinese seismic design code, and are compatible with an empirical coherency loss function between each other. Numerical calculations of the relative displacement response between two adjacent bridge segments to spatial ground motions with different wave velocities and coherency losses are conducted, which can be used to determine the minimum gap that a expansion joint must have to avoid pounding between bridge segments on different site conditions. Moreover, the influences on maximum relative displacement response between two adjacent bridge segments induced by ground motion spatial variation, site condition and structural vibration characteristics are investigated. Numerical results indicate that the softer is the site, the larger is the relative displacement response between two adjacent structures. The effect of ground motion spatial variation on the relative displacement response is significant, especially when the vibration frequencies of two adjacent bridge segments are similar. To reduce the relative displacement and preclude pounding between adjacent structures, the design recommendation of adjusting the adjacent structures to have similar fundamental frequencies is valid only when the effect of ground motion spatial variation can be neglected.
     (3) Due to the large-span and high-rise flexible characteristics of a transmission tower-line system, the nonlinear responses of the structural system on an uneven site are analyzed subjected to spatially varying ground motions and comprehensive numerical simulations are carried out. A three-dimensional finite element model of the transmission tower-line system is established considering the geometric nonlinearity of transmission lines. Using the generated spatially varying ground motion time histories of the uneven heterogeneous site, seismic responses of the complex large-span structures on the uneven site under uniform excitation, wave-passage excitations and the multi-support excitations comprehensively considering ground motion spatial variation are analyzed. Discussions on the effects of the multi-component ground motions and the different local site conditions on responses of the example transmission tower-line system on uneven site with multiple soil layers are made. These investigations demonstrate the importance of considering the simultaneous multiple earthquake ground motion components and ground motion spatial variations on seismic responses of transmission tower-line system, which provide useful reference for practical seismic design of the structural system.
     (4) Seismic response of a large dimension steel trussed arch structure subjected to the combined spatially varying horizontal and vertical ground motions including site effect are analyzed, and the limitation span of trussed arch structure which is not required to consider the effect of ground motion spatial variation is investigated. The simulated spatial ground motions are individually compatible with the design response spectrum with 2% damping for specific site conditions defined in the Chinese seismic design code, and are compatible with an empirical coherency loss function between each other. The effects of ground motion spatial variations induced by wave propagation, coherency loss and changing site conditions on structural responses are discussed, respectively. The differences between structural responses subjected to horizontal ground motions and simultaneous vertical and horizontal ground motions are studied. Moreover, the responses of different span trussed arch structure on four site conditions defined in the design code are investigated under uniform excitation and multi-support excitations, and the internal forces of the structure induced by different excitation cases are compared. The minimum spans of trussed arch structure on four site conditions which are not required to consider the effect of ground motion spatial variation are given. The results obtained provide useful information and suggestion for practical design of steel trussed arch structure. Finally, the internal force responses of the supporting columns and upper bars in a large-span plate type truss structure induced by uniform excitation, wave-passage excitations and multi-support excitations are studied and some differences are reached. The analyzed results show that neglecting ground motion spatial variation may lead to a substantially under-estimated seismic response of large-span spatial truss structure.
引文
[1]李宏男.建筑抗震设计原理[M].北京:中国建筑工业出版社,1996.
    [2]李英民,刘立平.汶川地震建筑震害与思考[M].重庆:重庆大学出版社,2008.
    [3]刘先明.大跨度空间网格结构多点输入反应谱理论的研究与应用[D].南京:东南大学,2003.
    [4]李宏男.结构多维抗震理论[M].北京:科学出版社,2006.
    [5]潘旦光,楼梦麟,范立础.多点输入下大跨度结构地震反应分析研究现状[J].同济大学学报,2001,29(10):1213-1219.
    [6]史志利,李忠献.随机地震动场多点激励下大跨度桥梁地震反应分析方法[J].地震工程与工程振动,2003,23(4):124-130.
    [7]李正农,楼梦麟.大跨度桥梁结构地震动输入问题的研究现状[J].同济大学学报,1999,27(5):592-597.
    [8]Hao H. Effects of spatial variation of ground motions on large multiply-supported structures [R]. Report No. UCB/EERC-89-06, University of California at Berkeley,1989.
    [9]林家浩,张亚辉,赵岩.大跨度结构抗震分析方法及近期进展[J].力学进展,2001,31(3):350-360.
    [10]全伟.大跨桥梁多维多点地震反应分析研究[D].大连:大连理工大学,2008.
    [11]星谷胜.随机振动分析[M].北京:地震出版社,1977.
    [12]冯启民,胡聿贤.空间相关地面运动的数学模型[J].地震工程与工程振动,1981,1(3):1-8.
    [13]Harichandran R S, Vanmarcke E H. Stochastic variation of earthquake ground motion in space and time [J]. Journal of Engineering Mechanics,1986,112(2):154-175.
    [14]Loh C H, Yeh Y T. Spatial variation and stochastic modeling of seismic differential ground movement [J]. Earthquake Engineering and Structural Dynamics,1988,16(5): 583-596.
    [15]Loh C H, Lin S G. Directionality and simulation in spatial variation of seismic waves [J]. Engineering Structures,1990,12:1-27.
    [16]屈铁军,王君杰,王前信.空间变化的地震动功率谱的实用模型[J].地震学报,1996,18(1):55-62.
    [17]Abrahamson N A, Schneider J F, Stepp J C. Empirical spatial coherence functions for application to soil-structure interaction analyses [J]. Earthquake Spectra,1991,7(1): 1-27.
    [18]王君杰,陈虎.面向设计应用的地震动空间相干函数模型[J].地震工程与工程振动,2007,27(1):16-23.
    [19]Hao H, Oliveira C S, Penzien J. Multiple-station ground motion processing and simulation based on SMART-I array data [J]. Nuclear Engineering and Design,1989,111: 293-310.
    [20]Nakamura H, Yamazaki F. Spatial variation of earthquake ground motion based on dense array records [C].Transaction of the 13th International Conference on Structural Mechanics in Reactor Technology,1995,3(1):19-24.
    [21]廖松涛.工程场地地震动相干函数数值分析[D].上海:同济大学,2001.
    [22]Luco J E, Wong H L. Response of a rigid foundation to a spatially random ground motion [J]. Earthquake Engineering and Structural Dynamics,1986,14(6):891-908.
    [23]Somerville P G, Mclaren J P, Sen M K, et.al. The influnce of site condition on the spatial incoherence of ground motions [J]. Structural Safety,1991,10:1-14.
    [24]Kiureghian A D. A coherency model for spatially varying ground motions [J]. Earthquake Engineering and Structural Dynamics,1996,25(1):99-111.
    [25]Yang Q S, Chen Y J. A practical coherency model for spatially varying ground motions [J]. Structural Engineering and Mechanics,2000,9(2):141-152.
    [26]丁海平,刘启方,金星,等.基岩地震动的一个相干函数模型-倾滑断层情形[J].地震工程与工程振动,2003,23(2):8-11.
    [27]丁海平,刘启方,金星,等.基岩地震动的一个相干函数模型-走滑断层情形[J].地震学报,2004,26(1):62-67.
    [28]金星,廖振鹏.地震动随机场的物理模拟[J].地震工程与工程振动,1994,14(3):11-19.
    [29]李小军,赵凤新,胡聿贤.空间相干地震动场模拟的研究[J].地震学报,1997,19(2):212-215.
    [30]Zerva A, Zhang 0. Correlation patterns in characteristics of spatially variable seismic ground motions [J]. Earthquake Engineering and Structural Dynamics,1997,26:19-39.
    [31]屈铁军,王前信.多点输入下地震反应分析研究的进展[J].世界地震工程,1993,(1):30-36.
    [32]Dibaj D, Penzien J. Response of earth dams to traveling seismic waves[C]. ASCE,1969, 95(2).
    [33]Kuireghian A D, Neuenhofer A. Response spectrum method for multi-support seismic excitations [J]. Earthquake Engineering and Structural Dynamics,1992,21:713-740.
    [34]Loh C H, Ku B D. An efficient analysis of structural response for multiple-support seismic excitations [J]. Engineering Structures,1995,17(1):15-26.
    [35]Burdisso R A, Singh M P. Multiply supported secondary systems part I:Response spectrum analysis [J]. Earthquake Engineering and Structural Dynamics,1987,15:53-72.
    [36]Burdisso R A, Singh M P. Multiply supported secondary systems part II:Seismic inputs [J]. Earthquake Engineering and Structural Dynamics,1987,15:73-90.
    [37]Kahan M, Gibert R J, Bard P Y. Influence of seismic waves spatial variability on bridges: A sensitivity analysis [J]. Earthquake Engineering and Structural Dynamics,1996,25: 795-814.
    [38]Allam S M, Datta T K. Seismic behavior of cable-stayed bridges under multi-component random ground motion [J]. Engineering Structures,1999,21(1):62-74.
    [39]Allam S M, Datta T K. Analysis of cable-stayed bridges under multi-component random ground motion by response spectrum method [J]. Engineering Structures,2000,22: 1367-1377.
    [40]刘先明,叶继红,李爱群.多点输入反应谱法的理论研究[J].土木工程学报,2005,38(3):17-22.
    [41]孙建梅,叶继红,程文瀼.多点输入反应谱方法的简化[J].东南大学学报(自然科学版),2003,33(5):647-651.
    [42]Heredia-Zavoni E, Vammarake E H. Seismic random vibration analysis of multi-support structural systems [J]. Journal of Engineering Mechanics, ASCE,1994,120(5):1107-1128.
    [43]刘洪兵,朱晞.大跨度斜拉桥多支承激励地震响应分析[J].土木工程学报,2001,34(6):38-44.
    [44]刘洪兵,朱晞,郑峰.基于三维相关系数谱的多支承激励反应谱法[J].世界地震工程,2005,21(4):106-112.
    [45]李杰,李建华.多点激励下结构随机地震反应分析的反应谱方法[J].地震工程与工程振动,2004,24(3):21-29.
    [46]Lin J H. A fast CQC algorithm of PSD matrices for random seismic responses [J]. Computers & Structures,1992,44(3):683-687.
    [47]Lin J H, Williams F W, Zhang W S. A new approach to multiphase-excitation stochastic seismic responses [J].Microcomputers in Civil Engineering,1993,8:283-290.
    [48]Lin J H, Zhang W S, Williams F W. Pseudo-excitation algorithm for nonstationary random seismic responses [J]. Engineering Structures,1994,16(4):270-276.
    [49]王淑波.大型桥梁抗震反应谱分析理论及应用研究[D].上海:同济大学,1997.
    [50]Lin J H, Zhang Y H, Li Q S, et al. Seismic spatial effects for long-span bridges using the pseudo excitation method [J]. Engineering Structures,2004,26(9):1207-1216.
    [51]孙建梅.多点输入下大跨空间结构抗震性能和分析方法的研究[D].南京:东南大学,2005.
    [52]Yamamura N, Tanaka H. Response analysis of flexible MDF systems for multiple-support seismic excitations [J]. Earthquake Engineering and Structural Dynamics,1992,19: 345-357.
    [53]Berrah M, Kausel E. Response spectrum analysis of structures subjected to spatially varying motions [J]. Earthquake Engineering and Structural Dynamics,1992,21:461-470.
    [54]Berrah M, Kausel E. A modal combination rule for spatially varying seismic motions [J]. Earthquake Engineering and Structural Dynamics,1993,22:791-800.
    [55]Zembaty Z, Krenk S. Spatial seismic excitations and response spectra [J]. Journal of Engineering Mechanics, ASCE,1993,119(12):2449-2460.
    [56]王君杰.多点多维地震动随机模型及结构的反应谱分析[D].哈尔滨:国家地震局工程力学研究所,1992.
    [57]Jeng V, Kasai K. Spectral relative motion of two structures due to seismic travel waves [J]. Journal of Structural Engineering, ASCE,122(10):1128-1135.
    [58]Trifunac M D, Todorovska M I. Response spectra for differential motion of columns [J]. Earthquake Engineering and Structural Dynamics,1997,26:251-268.
    [59]Trifunac M D, Gicev V. Response spectra for differential motion of columns paper II: Out-of-plane response [J]. Soil Dynamics and Earthquake Engineering,2006,26:1149-1160.
    [60]夏友柏,王年桥.多点地震激励下基于改进振型位移法的反应谱方法[J].世界地震工程,2003,19(1):164-169.
    [61]Su L, Dong S L, Kato S. A new average response spectrum method for linear response analysis of structures to spatial earthquake ground motions [J]. Engineering Structures, 2006,28(13):1835-1842.
    [62]Petrov A A. Seismic response of extended systems to multiple support excitations [C]. The 11th world conference on earthquake engineering.1996
    [63]Harichandran R S, Wang W. Effects of spatially varying earthquake excitation on surface lifelines [C]. Proceedings of Fourth U. S. National Conference on Earthquake Engineering, Palm Springs,1990,1:885-894.
    [64]Harichandran R S, Wang W. Response of indeterminate two-span beam to spatially varying seismic motion [J]. Earthquake Engineering and Structural Dynamics,1990,19:173-187.
    [65]Harichandran R S, Hawwari A, Sweidan B N. Response of long-span bridges to spatially varying ground motion [J]. Journal of Structural Engineering,1996,122(5):476-484.
    [66]李忠献,林伟,丁阳.大跨度空间网格结构多维多点随机地震反应分析[J].地震工程与工程振动,2006,26(1):56-63.
    [67]丁阳,林伟,李忠献.大跨度空间结构多维多点非平稳随机地震反应分析[J].工程力学,2007,24(3):97-103.
    [68]Hao H. Arch responses to correlated multiple excitations [J]. Earthquake Engineering and Structural Dynamics,1993,22:389-404.
    [69]Hao H. Ground motion spatial variation effects on circular arch responses [J]. Journal of Engineering Mechanics,1994,120(11):2326-2341.
    [70]楼梦麟,林皋.地震动空间相关性对水坝地震反应影响[J].水利发电学报,1984,(2):39-46.
    [71]Soyluk K, Dumanoglu A A. Comparison of asynchronous and stochastic dynamic responses of a cable-stayed bridges [J]. Engineering Structures,2000,22:435-445.
    [72]Bi K M, Hao H, Chouw N. Required separation distance between decks and at abutments of abridge crossing a canyon site to avoid seismic pounding [J]. Earthquake Engineering and Structural Dynamics,2010,39(3):303-323.
    [73]林家浩,张亚辉.随机振动的虚拟激励法[M].北京:科学出版社,2004.
    [74]薛素铎,王雪生,曹资.空间网格结构多维多点随机地震响应分析的高效算法[J].世界地震工程,2004,20(3):43-49.
    [75]曹资,薛素铎.空间结构抗震理论与设计[M].北京:科学出版社,2005.
    [76]赵灿晖,周志祥.大跨度钢管混凝土拱桥在多维多点地震激励作用下的平稳随机响应[J].世界地震工程,2007,23(4):66-71.
    [77]Chopra A K著,谢礼立,吕大刚等译.结构动力学-理论及其在地震工程中的应用[M].北京:高等教育出版社,2007.
    [78]爱德华.L.维尔逊著.结构静力与动力分析—强调地震工程学的物理方法[M].北京金土木软件技术有限公司,中国建筑标准设计研究院译.北京:中国建筑工业出版社,2006.
    [79]Abdel-Ghaffar A M, Rubin I I. Suspension bridge response to multiple support excitations [J]. Journal of Engineering Mechanics, ASCE,1982,108:419-434.
    [80]项海帆.斜张桥在行波作用下的地震反应分析[J].同济大学学报,1983,11(2):1-9.
    [81]刘吉柱.大跨度拱桥地震反应的行波效应分析[D].上海:同济大学,1987.
    [82]陈幼平,周宏业.斜拉桥地震破坏的计算研究[J].地震工程与工程振动,1995,15(3):127-134.
    [83]陈幼平,周宏业.斜拉桥地震反应的行波效应[J].土木工程学报,1996,29(6):61-68.
    [84]罗尧治,王荣.索穹顶结构动力特性及多维多点抗震性能研究[J].浙江大学学报(工学版).2005,39(1):39-45.
    [85]刘枫,肖从真,徐自国,等.首都机场3号航站楼多维多点输入时程地震反应分析[J].建筑结构学报,2006,27(5):56-63.
    [86]杨志,韩庆华,周全智,等.多维多点激励下老山自行车馆屋盖结构的地震反应分析[J].天津大学学报,2007,40(11):1277-1283.
    [87]Nazmy A. S., Abdel-Ghaffar A.M. Nonlinear earthquake-response analysis of long-span cable-stayed bridges:Theory [J].Earthquake Engineering and Structural Dynamics,1990,19:45-62.
    [88]Nazmy A. S., Abdel-Ghaffar A.M. Effects of ground motion spatial variability on the response of cable-stayed bridges [J]. Earthquake Engineering and Structural Dynamics, 1992,21:1-20.
    [89]王前信,伍国騆.地震多点输入时非正交杆链体系的振动[J].地震工程与工程振动,1982,2(2):26-43.
    [90]王前信,伍国騆.地震多点输入或扰力多点输入时框架的反应[J].地震工程与工程振动,1983,3(2):1-14.
    [91]王前信,伍国騆,李云林.拱式结构对地震多点输入的反应[J].地震工程与工程振动,1984,4(2):49-81.
    [92]陈厚群,侯顺载,王均.拱坝自由场地震输入和反应[J].地震工程与工程振动,1990,10(2):53-64.
    [93]秦权,孙晓燕,贺瑞,等.苏通桥对非一致地震地面运动的反应和人工波质量的讨论[J].工程力学,2006,23(9):71-83.
    [94]Hao H. Response of two-way eccentric building to nonuniform base excitations [J]. Engineering Structures,1998,20(8):677-684.
    [95]梁嘉庆.大跨空间结构在非一致输入下的弹性响应分析[D].南京:东南大学,2004.
    [96]柳国环,李宏男,田利.九江长江大桥在多点多维地震激励下的反应分析[J].振动与冲击,2009,28(9):204-209.
    [97]史志利.大跨度桥梁多点激励地震反应分析与MR阻尼器控制[D].天津:天津大学,2003.
    [98]苗家武,胡世德,范立础.大型桥梁多点激励效应的研究现状与发展[J].同济大学学报,1999,27(2):189-193.
    [99]丁阳,王波.大跨度空间网格结构在地震行波作用下的响应[J].地震工程与工程振动,2002,22(5):71-76.
    [100]孙建梅,叶继红,程文瀼.多点输入下大跨空间网格结构的可靠度分析[J].应用力学学报,2005,22(4):560-566.
    [101]苏亮,董石麟.局部场地效应下单层球面网壳的地震反应分析[C].第十一届空间结构学术会议论文集,2005,177-181.
    [102]李忠献,林伟,丁阳.行波效应对大跨度空间网格结构地震响应的影响[J].天津大学学报,2007,40(1):1-8.
    [103]Su L, Dong S L, Kato S. Seismic design for steel trussed arch to multi-support excitations [J].Journal of Constructional Steel Research,2007,63(6):725-734.
    [104]杨庆山,刘文华,田玉基.国家体育场在多点激励作用下地震反应分析[J].土木工程学报,2008,41(2):35-41.
    [105]白凤龙,李宏男.地震动多点激励下大跨空间网架结构的反应分析[J].工程力学,2010,27(7):67-73.
    [106]马福,李海旺.大跨度拱桁架在地震作用下的动力稳定性研究[C].第十一届空间结构学术会议论文集,2005,231-235.
    [107]王秀丽,丁南生,柴宏.张弦梁结构的抗震特性及参数分析[C].第十一届空间结构学术会议论文集,2005,341-346.
    [108]Li H N, Shi W L, Wang G X, et al. Simplified models and experimental verification for coupled transmission tower-line system to seismic excitations [J]. Journal of Sound and Vibration,2005,286(3):569-585.
    [109]Li H N, Bai H F. High-voltage transmission tower-line system subjected to disaster loads [J]. Progress in Natural Science,2006,16(9):899-911.
    [110]American Society of Civil Engineers Committee on Electrical Transmission Structures, Loadings for electrical transmission structures [J].ASCE Journal of Structural Division,1982,108(5):1088-1105.
    [111]American Society of Civil Engineers, Guideline for electrical transmission line structural loading [S].ASCE Manuals and Reports on Engineering Practice, No.74, New York,1991.
    [112]Yang L, Sun B, Ye Y. Calculation of high-voltage transmission tower [J]. Engineering Mechanics,1996,13(1):46-51.
    [113]Mozer J D, Pohlman J C, Fleming J F. Longitudinal load analysis of transmission line systems [R].IEEE Transactions on Power Apparatus and Systems, PAS-96(5),1977.
    [114]李泽.大跨越输电塔线体系地震反应分析[D].上海:同济大学,2002.
    [115]何运祥.大跨越输电塔的抗震及绝缘子断裂分析[D].杭州:浙江大学,2006.
    [116]岳茂光,李宏男,王东升,等.行波激励下输电塔—导线体系纵向地震反应分析[J].中国电机工程学报,2006,26(23):145-150.
    [117]田利,李宏男,黄连壮.多点激励下输电塔—线体系的侧向地震反应分析[J].中国电机工程学报,2008,28(16):108-114.
    [118]Ghobarah A, Aziz T S, El-Attar M. Response of transmission lines to multiple support excitation [J]. Engineering Structures,1996,18(12):936-946.
    [119]Lupoi A, Franchin P, Pinto P E, et al. Seismic design of bridges accounting for spatial variability of ground motion [J]. Earthquake Engineering and Structural Dynamics,2005, 34:327-348.
    [120]Rassem M, Ghobarah A, Heidebrecht A C. Site effects on the seismic response of a suspension bridge [J]. Engineering Structures,1996,18(5):363-370.
    [121]Dumanoglu A A, Brownjohn J M W, Severn R T. Seismic analysis of the fatih sultan mehmet suspension bridge [J]. Earthquake Engineering and Structural Dynamics,1992,21 (10): 881-906.
    [122]Lou L, Zerva A. Effects of spatially variable ground motions on the seismic response of a skewed, multi-span, RC highway bridge [J]. Soil Dynamics and Earthquake Engineering,2005,25:729-740.
    [123]王君杰,王前信,江近仁.大跨度拱桥在空间变化地震动下的响应[J].振动工程学报,1995,8(2):119-126.
    [124]柳春光,焦双健.城市立交桥结构三维地震反应[J].地震工程与工程振动,2001,21(2):41-47.
    [125]范立础,王君杰.陈玮.非一致地震激励下大跨度斜拉桥的响应特征[J].计算力学学报,2001,18(3):358-363.
    [126]李忠献,史志利.行波激励下大跨度连续刚构桥的地震反应分析[J].地震工程与工程振动,2003,23(2):68-76.
    [127]刘洪兵,范立础.大跨桥梁考虑地形及多点激励的地震响应分析[J].同济大学学报,2003,31(6):641-646.
    [128]史志利,李忠献,陈平.大跨度斜拉桥多点激励地震反应分析[J].特种结构,2004,21(2):46-50.
    [129]Yashinsky M, Karshenas M J. Fundamentals of seismic protection for bridges [R]. Earthquake Engineering Research Institute, MNO-9,2003
    [130]Chouw N, Hao H. Study of SSI and non-uniform ground motion effect on pounding between bridge girders [J].Soil Dynamics and Earthquake Engineering,2005,25:717-728.
    [131]Chouw N, Hao H. Significance of SSI and nonuniform near-fault ground motions in bridge response I:Effect on response with conventional expansion joint [J]. Engineering Structures,2008,30:141-153.
    [132]Chouw N, Hao H. Significance of SSI and nonuniform near-fault ground motions in bridge response II:Effect on response with modular expansion joint [J]. Engineering Structures,2008,30:154-162.
    [133]Zanardo G, Hao H, Modena C. Seismic response of multi-span simply supported bridges to a spatially varying earthquake ground motion [J].Earthquake Engineering and Structural Dynamics,2002,31(6):1325-1345.
    [134]Zhu P, Abe M, Fujino Y. Modelling of three-dimensional non-linear seismic performance of elevated bridges with emphasis on pounding of girders [J]. Earthquake Engineering and Structural Dynamics,2002,31(11):1891-1913.
    [135]Jankowski R, Wilde K, Fujino Y. Reduction of pounding in elevated bridges during earthquakes [J]. Earthquake Engineering and Structural Dynamics,2000,29(2):195-212.
    [136]李忠献,岳福青,周莉.考虑地震动空间效应的城市高架桥梁地震碰撞响应分析[J].天津大学学报,2006,39(8):938-943.
    [137]Bi K, Hao H, Chouw N. Stochastic analysis of the required separation distance to avoid seismic pounding of adjacent bridge decks [C]. The 14th World Conference on Earthquake Engineering, Beijing, China,2008.
    [138]中华人民共和国国家标准,建筑抗震设计规范(GB50011-2001)[S].北京:中国建筑工业出版社,2001.
    [139]胡聿贤,何训.考虑相位谱的人造地震动反应谱拟合[J].地震工程与工程振动,1986,6(2):37-49.
    [140]杨庆山,姜海鹏.基于相位差谱的人造地震动的反应谱拟合[J].地震工程与工程振动,2002,22(1):32-38.
    [141]Chopra A K. Dynamics of Structures:Theory and Applications to Earthquake Engineering (2nd edn) [M]. Prentice-Hall:SaddleRiver, NY,2001.
    [142]Zerva A. Seismic ground motion simulations from a class of spatial variability models [J]. Earthquake Engineering and Structural Dynamics,1992,21(4):351-361.
    [143]Zerva A. On the spatial variation of seismic ground motions and its effects on lifelines [J]. Engineering Structures,1994,16(7):534-546.
    [144]Abrahamon N A. Generation of spatially incoherent strong motion time histories [C]. Proceedings of 10th World Conference on Earthquake Engineering, Madrid, Spain,1992: 845-850.
    [145]Ramadan 0, Novak M. Simulation of spatially incoherent random ground motions [J]. Journal of Engineering Mechanics,1993,119(5):997-1016.
    [146]Ramadan 0, Novak M. Simulation of multidimensional anisotropic ground motions [J]. Journal of Engineering Mechanics,1994,120(8):1773-1785.
    [147]Spanos P D, Zeldin B A. Efficient iterative ARMA approximation of multivariate random processes for structural dynamics applications [J]. Earthquake Engineering and Structural Dynamics,1996,25(5):497-507.
    [148]Li Y, Kareem A. Simulation of multivariate nonstationary random processes by FFT [J]. Journal of Engineering Mechanics,1991,117(5):1037-1058.
    [149]Li Y, Kareem A. Simulation of multivariate nonstationary random processes:Hybrid DFT and digital filtering approach [J]. Journal of Engineering Mechanics,1997,123(12): 1302-1310.
    [150]Jin S, Lutes L D, Sarkani S. Efficient simulation of multi-dimensional random fields [J]. Journal of Engineering Mechanics,1997,123(10):1082-1089.
    [151]Vanmarcke E H, Heredia-Zavoni E, Fenton G A. Conditional simulation of spatially correlated earthquake ground motion [J]. Journal of Engineering Mechanics,1993, 119(11):2333-2352.
    [152]Abrahamson N A. Spatial interpolation of array ground motions for engineering analysis [C]. Proceedings of 9th World Conference on Earthquake Engineering, Tokyo, Japan,1988.
    [153]Housner G W. Characteristics of strong-motion earthquakes[J]. Bulletin of the Seismological Society of America,1947,37:17-31.
    [154]Kanai K. Semi-empirical formula for the seismic characteristics of the ground [J]. Bulletin of earthquake research institute, University of Tokyo, Japan.1957,35:309-325.
    [155]Tajimi H. A statistical method of determining the maximum response of a building structure during an earthquake [C]. Proceeding of 2nd World Conference on Earthquake Engineering. Tokyo and Kyoto, Japan,1960.
    [156]欧进萍,刘会仪.基于随机地震动模型的结构随机地震反应谱及其应用[J].地震工程与工程振动,1994,14(1):14-23.
    [157]欧进萍,牛荻涛,杜修力.设计用随机地震动的模型及其参数确定[J].地震工程与工程振动,1991,11(3):45-54.
    [158]欧进萍,王光远.结构随机振动[M].北京:高等教育出版社,1998.
    [159]胡聿贤,周锡元.弹性体系在平稳和平稳化地面运动下的反应[R].中国科学院土木建筑研究所地震工程研究报告集,科学出版社,1962.
    [160]Clough R W, Penzien J. Dynamics of structures[M].2nd edition, New York:Mcgraw-Hill, Inc,1993.
    [161]王君杰,江近仁.关于地震动平稳自功率谱模型的注记[J].世界地震工程,1997,3(2):37-40.
    [162]霍俊荣,胡聿贤,冯启民.地面运动时程强度包络函数的研究[J].地震工程与工程振动,1991,11(1):1-12.
    [163]Wolf J P. Dynamic soil-structure interaction [M]. Englewood Cliffs, NJ:Prentice Hall, 1985.
    [164]Hao H, Chouw N. Modeling of earthquake ground motion spatial variation on uneven sites with varying soil conditions [C]. The 9th International Symposium on Structural Engineering for Young Experts, Fuzhou-Xiamen,2006,79-85.
    [165]Iyengar R N. A stationary random process model for earthquake accelerograms [R]. Bulletin of the Seismological Society of America,1969.
    [166]王光远,程耿东,邵卓民,等.抗震结构的最优设防烈度与可靠度[M].北京:科学出版社,1999.
    [167]Trujillo D M. A new approach to the integration of accelerometer data [J]. Earthquake Engineering and Structural Dynamics,1982,10:529-535.
    [168]潘晓东.非平稳随机地震下堤坝非线性有效应力动力响应可靠度分析[D].杭州:浙江大学,2004.
    [169]周锡元,齐微,徐平,等.震级、震中距和场地条件对反应谱特性的影响分析[J].北京工业大学学报.2006,32(2):97-103.
    [170]Der Kiureghian A. Structural response to stationary excitation [J]. Journal of Engineering Mechanics,1980,106(6):1195-1213.
    [171]Sobczyk K. Stochastic wave propagation [M]. The Netherlands:Kluwer Academic Publishers,1991.
    [172]Moehle J, Fenves G, Mayes R, et al. Highway bridges and traffic management [J]. Earthquake Spectra,1995,11:287-372.
    [173]Kawashima K, Unjoh S. Impact of Hanshin/Awaji earthquake on seismic design and seismic strengthening of highway bridges [J]. Structural Engineering/Earthquake Engineering, JSCE 1996,13(2):211-240.
    [174]Earthquake Engineering Research Institute. Chi-Chi, Taiwan, Earthquake Reconnaissance Report [R]. Report No.01-02, EERI, Oakland, California,1999.
    [175]Lin C J, Hung H, Liu Y, et al. Reconnaissance report of 0512 China Wenchuan earthquake on bridges [C].The 14th World Conference on Earthquake Engineering, Beijing, China, 2008.
    [176]Otsuka H, Unjoh S, Terayama T, et al. Damage to highway bridges by 1995 Hyogoken Nanbu earthquake and the retrofit of highway bridges in Japan [C]. The 3rd U. S.-Japan Workshop on Seismic Retrofit of Bridges, Osaka, Japan,1996.
    [177]李忠献,岳福青.城市桥梁地震碰撞反应研究与发展[J].地震工程与工程振动,2005,25(4):91-98.
    [178]中华人民共和国交通部部标准,公路工程抗震设计规范(JTJ004-89)[S].北京:人民交通出版社,1999.
    [179]CALTRANS Seismic Design Criteria. Design manual-version 1.2 [S]. Sacramento (California):California Department of Transportation,2001.
    [180]Hao H. A parametric study of the required seating length for bridge decks during earthquake [J]. Earthquake Engineering and Structural Dynamics,1998,27(1):91-103.
    [181]Ruangrassamee A, Kawashima K. Relative displacement response spectra with pounding effect [J]. Earthquake Engineering and Structural Dynamics,2001,30(10):1511-1538.
    [182]李忠献,岳福青,周莉,等.基于随机振动理论确定桥梁地震碰撞的临界间隙[J].地震工程与工程振动,2006,26(4):156-161.
    [183]Powell G H. DRAIN-2DX element description and user guide-Version 1.10 [R]. Report no. UCB/SEMM-93/18, University of California at Berkeley,1993.
    [184]Japan Road Association. Specifications for highway bridges-Part V:Seismic design [S]. Tokyo,2004.
    [185]柳春光,林皋,李宏男,等.生命线地震工程导论[M].大连:大连理工大学出版社,2005.
    [186]Sextos A G, Kyriazis D P, Andreas J K. Inelastic dynamic analysis of RC bridges accounting for spatial variability of ground motion, site effects and soilstructure interaction phenomena. Part 1:Methodology and analytical tools [J]. Earthquake Engineering and Structure Dynamics,2003,32(4):607-627.
    [187]Sextos A G, Andreas J K, Kyriazis D P. Inelastic dynamic analysis of RC bridges accounting for spatial variability of ground motion, site effects and soilstructure interaction phenomena. Part 2:Parametric study [J]. Earthquake Engineering and Structure Dynamics,2003,32(4):629-652.
    [188]Dumanoglu A A, Soyluk K. A stochastic analysis of long span structures subjected to spatially varying ground motions including the site-response effect [J]. Engineering Structures,2003,25(10):1301-1310.
    [189]Ates S, Dumanoglu A A, Bayraktar A. Stochastic response of seismically isolated highway bridges with friction pendulum systems to spatially varying earthquake ground motions [J]. Engineering Structures,2005,27(13):1843-1858.
    [190]张琳琳.随机风场研究与高耸、高层结构抗风可靠性分析[D].上海:同济大学,2006.
    [191]沈世钊,徐崇宝,赵臣.悬索结构设计[M].北京:中国建筑工业出版社,1997.
    [192]De Stefano M, Faella G, Ramasco R. Inelastic seismic response of one-way plan-asymmetric systems under bi-directional ground motions [J]. Earthquake Engineering and Structural Dynamics,1998,27:363-376.
    [193]Ghersi A, Paolo Rossi P. Influence of bi-directional ground motions on the inelastic response of one-storey in-plan irregular systems [J]. Engineering Structures,2001,23: 579-591.
    [194]Zanardo G, Pellegrino C, Bobisut C, et al. Performance evaluation of short span reinforced concrete arch bridges [J]. Journal of Bridge Engineering, ASCE,2004,9(5): 424-434.
    [195]蓝天,张毅刚.大跨度屋盖结构抗震设计[M].北京:中国建筑工业出版社,2000.
    [196]Kato S, Su L. Effects of surface motion difference at footings on the earthquake responses of large-span gable structures [J]. Steel Construction Engineering, JSSC, 2002,9(36):113-128.
    [197]Hao H, Zhang S R. Spatial ground motion effect on relative displacement of adjacent building structures [J]. Earthquake Engineering and Structural Dynamics,1999,28(4): 333-349.
    [198]Japanese Design Standard of Railway Structures [S]. Railway Technical Research Institute, Japan,1999.
    [199]苏亮,董石麟.水平行波效应下周边支承大跨度单层球面网壳的地震反应[J].空间结构,2006,12(3):24-30.
    [200]薛素铎,王雪生,曹资.基于新抗震规范的地震动随机模型参数研究[J].土木工程学报,2003,36(5):5-10.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700